Reconstructing ALP properties from inaccurate observations with ML

Alessandro Morandini

with Felix Kahlhoefer and Torben Ferber based on [2308.01353]

CRC Young Scientist Meeting, 18.10.2023

Inverse problem in high-energy physics

Simulation: 🗸

BSM parameters $\theta \longrightarrow$ detector measurements x

Inference: 🗡

(real) detector measurements $x \longrightarrow BSM$ parameters θ

Why is it complicated? No direct access to likelihood

For instance at LHC:

$$p(x|\theta) = \int \mathrm{d}z_d \int \mathrm{d}z_s \int \mathrm{d}z_p \, p(x|z_d) \, p(z_d|z_s) \, p(z_s|z_p) \, p(z_p|\theta)$$

Beam-dump experiments at ECN3

Lower energy, higher intensity:

- sensitivity to $m\,{\lesssim}\,4\,{
 m GeV}$
- sensitivity to feebly interacting particles

Physical targets:

Looking for dark scalars, axions/ALPs, heavy neutral leptons

Different proposals under consideration [report]:

- HIKE/SHADOWS [letter of intent]
- SHiP [letter of intent]

Detector sketch and input variables

Geometry of the detector: $z_{min} = 10m$, $z_{max} = 35m$, $l_{cal} = 2.5m$ Detector readout: hits x_i , y_i , energies E_i , photon direction θ_i , ϕ_i

Problem: inaccurate measurements

We see some signal events and group their features in **x**, what can we say about the ALP?

Perfect detector:

$$- \mathbf{x} \longrightarrow m_{\gamma\gamma} \longrightarrow m_a$$

$$- \mathbf{x} \longrightarrow |\mathbf{V}|, \quad |\mathbf{V}| \sim \exp\left(-|\mathbf{V}| \frac{m_a}{|\mathbf{p}_a| c \tau_a}\right)$$

Imperfect detector:

- if error is small, should work with $m_{\gamma\gamma}$
- for larger error, signal purity requirements and ad-hoc high-level observables can help
- other?

Variable distributions

- Mass information also in energy distribution
- Angles useful to infer the mass (but hardest feature to measure)

No direct access to likelihood? Then use the simulations → simulation-based inference One possible approach[†]: use ML to approximate likelihood/posterior In our case: posterior learnt with conditional invertible neural network

†:

- Posterior/Likelihood
- Classifier/NF
- Summary or not

Technical details

- Posterior \rightarrow choose a prior: $m_a \in [0.1 \text{GeV}, 4.5 \text{GeV}],$ $c\tau_a \in [0.1 \text{m}, 100 \text{m}]$
- Input parameters: $m_a, c\tau_a/m_a$
- Number of seen events: 3
- Do we trust the posterior? Check pp-plot

Posterior: role of mass and lifetime

Can we constrain both the mass and the lifetime? Depends on detector geometry and lifetime value

Posterior: role of detector resolution

What if we change the detector? Then the uncertainties change

Feature resolution	Values scanned
$\sigma(E)/E$	[0.01, 0.05, 0.1]
$\sigma(h)$	[0.1cm]
$\sigma(\theta), \sigma(\phi)$	[1 mrad, 5 mrad, 10 mrad]

Performance for 1 GeV (role of angle resolution)

- Agreement with $m_{\gamma\gamma}$ for great resolution
- Considerable outperformance for worse angular resolutions

Performance of different detector setups

Performance of different detector setups (example)

- Major role played by angular resolution
- Interplay between energy and angular resolution

Alessandro Morandini

- We can derive fast and reliable parameter estimates including their uncertainty
- The considered algorithm easily adapts to different setups
- Performance comparisons allow **experimental design**

Thank you!

BACKUP

Performance for 1 GeV (displaced case)

- Same conclusions as in non-displaced case
- Smaller parameter uncertainty (for same number of seen events!)

Performance for 0.2 GeV

Alessandro Morandini

Reconstructing ALP properties

Performance for 4 GeV

Alessandro Morandini

18.10.2023 13 / 13

Performance of different detector setups

