

Collaborative Research Center TBR 257

Particle Physics Phenomenology after the Higgs Discovery

Higgs Production with Full Quark-Mass dependence

Tom Schellenberger

- CRC Young Scientists Meeting, October 16, 2023
- In collaboration with M. Czakon, F. Eschment, M. Niggetiedt and R. Poncelet Institute for Theoretical Particle Physics and Cosmology

Table of Contents

- 1. Higgs Production
- 2. Computational Details
- 3. Results
- 4. Conclusions and Outlook

Higgs Production

Higgs Production ○●○○○		
Motivation		

- With the discovery of the Higgs in 2012 we have entered a new era of precision physics.
- We need to know properties of the Higgs very accurately to be able to search for new Physics.
- An important observable here is the Higgs production cross section.
- The gluon fusion channel is the most dominant production channel. It is therefore the channel we must determine most precisely.

(Florian et al., 1610.07922)

Higgs Production		
00000		

(Czakon et al., 2105.04436), (Anastasiou et al., 1602.00695)

Higgs Production		
00000		

	LO	NLO(HEFT)	NLO	NNLO(HEFT)	N3LO(HEFT)	NNLO
$\sigma(13{\rm TeV})[{\rm pb}]$	16.30	37.45				

(Czakon et al., 2105.04436), (Anastasiou et al., 1602.00695)

Higgs Production		
00000		

	LO	NLO(HEFT)	NLO	NNLO(HEFT)	N3LO(HEFT)	NNLO
$\sigma(13{\rm TeV})[{\rm pb}]$	16.30	37.45	37.15			

(Czakon et al., 2105.04436), (Anastasiou et al., 1602.00695)

Higgs	Production
000	00

Result 00

The Gluon Fusion Channel

	LO	NLO(HEFT)	NLO	NNLO(HEFT)	N3LO(HEFT)	NNLO
$\sigma(13{\rm TeV})[{\rm pb}]$	16.30	37.45	37.15	47.15		

(Czakon et al., 2105.04436), (Anastasiou et al., 1602.00695)

Higgs	Production
000	20

Result:

Conclusions and Outlook

The Gluon Fusion Channel

(Czakon et al., 2105.04436), (Anastasiou et al., 1602.00695)

Higgs	Production
000	50

Result:

The Gluon Fusion Channel

(Czakon et al., 2105.04436), (Anastasiou et al., 1602.00695)

Higgs Effective Field Theory (HEFT)

- Typically the top-quark is integrated out: Heavy Top Limit (HTL) 00000 $m_t \to \infty$ 00000
- Number of loops is reduced by one
- HEFT works remarkably well for gluon fusion given that the approximation $\frac{m_H^2}{m^2} = 0.52 \ll 1$ is rather bad
- Qualitative explanation: suppression of large-s region by the PDFs

(Jones, Kerner, and Luisoni, 1802.00349)

niggs Froduction Computational Details	
00000	

12 10

$$\sigma = 48.58 \text{ pb}_{-3.27 \text{ pb}(-6.72\%)}^{+2.22 \text{ pb}(+4.56\%)} \text{ (theory)} \pm 1.56 \text{ pb} (3.20\%) \text{ (PDF} + \alpha_s)$$

⁽Dulat, Lazopoulos, and Mistlberger, 1802.00827)

Computational Details	
00000 00000 00	

• Current state of the art for gluon fusion in HEFT is N3LO (Anastasiou et al., 1602.00695).

Collider Energy / TeV

⁽Dulat, Lazopoulos, and Mistlberger, 1802.00827)

Higgs Production		
00000		

⁽Dulat, Lazopoulos, and Mistlberger, 1802.00827)

Higgs Production 0000●		

⁽Dulat, Lazopoulos, and Mistlberger, 1802.00827)

Higgs Production 0000●		
The Gluon Fusion Cha	nnel	

Higgs Production		
00000		

Computational Details

	Computational Details ○●○○○○	
Ingredients		
		00000

• Double-real corrections

• 2-loop real-virtual corrections

• 3-loop virtual corrections

Computational Details	
00000	

Ingredients

- Double-real corrections
 - Easy, since one-loop calculation. We use MCFM (Budge et al., 2002.04018). But computationally most expensive.
- 2-loop real-virtual corrections

• 3-loop virtual corrections

Computational Details	
00000	

Ingredients

- Double-real corrections
 - Easy, since one-loop calculation. We use MCFM (Budge et al., 2002.04018). But computationally most expensive.
- 2-loop real-virtual corrections
 - Same diagrams as in the t-quark case (Czakon et al., 2105.04436) apart from mixed contributions, which are however factorizable.
 - Integrals with b-quarks now exhibit additional poles.
- 3-loop virtual corrections

Computational Details	
00000	

Ingredients

- Double-real corrections
 - Easy, since one-loop calculation. We use MCFM (Budge et al., 2002.04018). But computationally most expensive.
- 2-loop real-virtual corrections
 - Same diagrams as in the t-quark case (Czakon et al., 2105.04436) apart from mixed contributions, which are however factorizable.
 - Integrals with b-quarks now exhibit additional poles.
- 3-loop virtual corrections
 - Contains truly new contributions that need to be computed

Computational Details	
00000	

Amplitude calculation

Computational Details	
00000	

Amplitude calculation

Computational Details 00●000	

Amplitude calculation

Result

Conclusions and Outlook

Solving the Master Integrals

- Afterwards solve differential equation in λ to map out points in λ, z plane.
- Poles of the differential equation (thin lines) are avoided with complex contour

(Niggetiedt, PhD thesis)

Higgs Production

Result 00

Solving the Master Integrals

- Afterwards solve differential equation in λ to map out points in λ, z plane.
- Poles of the differential equation (thin lines) are avoided with complex contour

• This way the shape of the amplitude can be mapped out and used to compute the cross section

(Niggetiedt, PhD thesis)

	Computational Details 0000●0	
Renormalization		

- We work in the 5 flavor scheme.
- The quark masses are renormalized in the **On-shell scheme**.
- The field renormalization constants contain heavy quark contributions, while the LSZ constants do not, therefore the heavy contributions must be considered extra

$$Z_{3}^{OS} = a_{s}^{b}T_{F}n_{h}\left(-\frac{2}{3\epsilon}\right) + \left(a_{s}^{b}\right)^{2}n_{h}T_{F}\left(n_{h}T_{F}\left(\frac{4}{9\epsilon^{2}}\right) + C_{F}\frac{4\epsilon^{3} - 7\epsilon - 1}{\epsilon(4\epsilon^{3} - 8\epsilon^{2} - \epsilon + 2)} + C_{A}\frac{-4\epsilon^{5} + 15\epsilon^{3} + \epsilon^{2} - 11\epsilon - 3}{2\epsilon^{2}(4\epsilon^{4} - 4\epsilon^{3} - 13\epsilon^{2} + 7\epsilon + 6)}\right)$$

$$(Czakon, Mitoy, and Moch, 0707,4139)$$

• Furthermore, we need Z_m , Z_ξ and Z_g in the presence of additional massive quarks (Gray et al., 1990), (Bernreuther and Wetzel, 1982)

	Computational Details	
Infrared Divergences		

- The infrared divergences are handled with the sector improved residue subtraction scheme (Czakon, 1005.0274)
- The infrared structure of the amplitudes can be greatly simplified by subtracting a rescaled version of the HTL.

$$\sigma_{\rm EFT}^{\rm HO} = \sigma_{\rm HTL}^{\rm HO} \frac{\sigma^{\rm LO}}{\sigma_{\rm HTL}^{\rm LO}}$$

- I.e. the LO cross section of the EFT match the exact result.
- The EFT exhibits the same infrared behavior as the exact amplitudes

	Computational Details	
Infrared Divergences		

- The infrared divergences are handled with the sector improved residue subtraction scheme (Czakon, 1005.0274)
- The infrared structure of the amplitudes can be greatly simplified by subtracting a rescaled version of the HTL.

$$\sigma_{\rm EFT}^{\rm HO} = \sigma_{\rm HTL}^{\rm HO} \frac{\sigma^{\rm LO}}{\sigma_{\rm HTL}^{\rm LO}}$$

- I.e. the LO cross section of the EFT match the exact result.
- The EFT exhibits the same infrared behavior as the exact amplitudes
- Example Real-Virtual corrections:

$$\langle M_{\rm exact}^{(1)} | M_{\rm exact}^{(2)} \rangle - \left[\langle M_{\rm EFT}^{(1)} | M_{\rm EFT}^{(2)} \rangle + \frac{8\pi\alpha_s}{t} \left< P_{gg}^{(0)}(\frac{s}{s+u}) \right> \left< F^{(1)} | (F_{\rm exact}^{(2)} - F_{\rm EFT}^{(2)}) \right> \right]$$

is IR finite. No one-loop splitting needed

	Computational Details	
Infrared Divergences		

- The infrared divergences are handled with the sector improved residue subtraction scheme (Czakon, 1005.0274)
- The infrared structure of the amplitudes can be greatly simplified by subtracting a rescaled version of the HTL.

$$\sigma_{\rm EFT}^{\rm HO} = \sigma_{\rm HTL}^{\rm HO} \frac{\sigma^{\rm LO}}{\sigma_{\rm HTL}^{\rm LO}}$$

- I.e. the LO cross section of the EFT match the exact result.
- The EFT exhibits the same infrared behavior as the exact amplitudes
- Example Real-Virtual corrections:

$$\langle M_{\rm exact}^{(1)} | M_{\rm exact}^{(2)} \rangle - \left[\langle M_{\rm EFT}^{(1)} | M_{\rm EFT}^{(2)} \rangle + \frac{8\pi\alpha_s}{t} \left\langle P_{gg}^{(0)}(\frac{s}{s+u}) \right\rangle \left\langle F^{(1)} | (F_{\rm exact}^{(2)} - F_{\rm EFT}^{(2)}) \right\rangle \right]$$

is IR finite. No one-loop splitting needed

• For t-quarks the rescaling is a small correction that has physical meaning. For b-quarks this is only a computational trick.

Results

Results

Preliminary!

channel	Top-Bottom Interference [pb]			$(\sigma^{\rm NNLO}/\sigma^{\rm NNLO}_{\rm HEFT}-1)[\%]$
	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^3) \qquad \mathcal{O}(\alpha_s^4)$	
		·		
gg	-1.975	-0.8546(36)	+0.121(14)	1.4
qg		+0.4077(5)	+0.2798(27)	33
qq		-0.00039	-0.0083(1)	-8.3
total	-1.975	-0.4473(36)	+0.393(14)	+4.1

- $m_H = 125 \text{ GeV}, m_t^2/m_H^2 = 23/12, m_b^2/m_H^2 = 1/684, \mu = m_H/2$, PDF-set = NNPDF3.1
- Missing are (expected to be small due to color suppression):
 - the 3-loop mixed quark contributions,
 - the 2-loop real virtual mixed corrections
- If you are interested in bottom-bottom, top-charm or bottom-charm effects please ask

Conclusions and Outlook

	Conclusions and Outlook

Conclusions and Outlook

- We computed the Higgs production cross section in the gluon fusion channel with full quark mass dependence at NNLO.
- The associated uncertainty in the gluon fusion channel is now almost completely diminished (Theory uncertainty below 4% at 13 TeV)
- Investigate the effects and uncertainties of different top, bottom and charm masses and the choice of the renormalization scheme.
- Stay tuned...

	Conclusions and Outlook ○●

Conclusions and Outlook

- We computed the Higgs production cross section in the gluon fusion channel with full quark mass dependence at NNLO.
- The associated uncertainty in the gluon fusion channel is now almost completely diminished (Theory uncertainty below 4% at 13 TeV)
- Investigate the effects and uncertainties of different top, bottom and charm masses and the choice of the renormalization scheme.
- Stay tuned...

Thank You!

channel	Top-Bottom Interference [pb]				Bottom ² [p	ob]
	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^4)$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^4)$
$\sqrt{s} = 13 \mathrm{TeV}$						
gg	-1.975	-0.8546(36)	+0.121(14)	+0.182	+0.1256(4)	-0.0109(45)
qg		+0.4077(5)	+0.2798(27)		-0.02100(4)	-0.02371(23)
qq		-0.00039	-0.0083(1)		$+2.5 \times 10^{-6}$	+0.00014
total	-1.975	-0.4473(36)	$+0.39\overline{3(14)}$	+0.182	+0.1466(6)	-0.0345(45)

channel	Top-Charm Interference [pb]		Bottom-Charm [pb]		Charm ² [pb]		
	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^4)$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$
$\sqrt{s}=13{ m TeV}$							
gg	-0.512	-0.1891(9)	+0.121(4)	+0.0707	+0.0463(2)	+0.0072	+0.0041
qg		+0.1142(1)	+0.0805(7)		-0.0104		-0.0013
qq		-6.8×10^{-5}	-0.0030		$+8 \times 10^{-7}$		$+6 \times 10^{-8}$
total	-0.512	-0.0750(9)	+0.199(4)	+0.0707	+0.0359(2)	+0.0072	+0.0028