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Motivation

• With the discovery of the Higgs in 2012 we have entered a new era of precision physics.

• We need to know properties of the Higgs very accurately to be able to search for new Physics.

• An important observable here is the Higgs production cross section.

• The gluon fusion channel is the most dominant

production channel. It is therefore the channel we must

determine most precisely.
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The Gluon Fusion Channel
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Higgs Effective Field Theory (HEFT)

• Typically the top-quark is integrated out:

Heavy Top Limit (HTL)

t

mt → ∞

• Number of loops is reduced by one

• HEFT works remarkably well for gluon fusion

given that the approximation
m2

H

m2
t
= 0.52 ≪ 1

is rather bad

• Qualitative explanation: suppression of large-s

region by the PDFs

(Spira, 1612.07651)
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The Gluon Fusion Channel

• Current state of the art for gluon fusion in HEFT is N3LO (Anastasiou et al., 1602.00695).
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Our Goal!
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Ingredients

• Double-real corrections

• Easy, since one-loop calculation. We use MCFM (Budge et al.,

2002.04018). But computationally most expensive.

• 2-loop real-virtual corrections

• Same diagrams as in the t-quark case (Czakon et al., 2105.04436) apart

from mixed contributions, which are however factorizable.

• Integrals with b-quarks now exhibit additional poles.

• 3-loop virtual corrections

• Contains truly new contributions that need to be computed

t, b, c

t b

b t
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Amplitude calculation

Generate

Feynman Diagrams

map to topologies

and prototypes

generate

FORM-Code

project

onto form factors

reduce to

master integrals

DiaGen

(Czakon, unpublished)

Form

(Vermaseren, math-ph/0010025)

Kira + Firefly

(Klappert et al., 2008.06494)

• Solve 3-Point and 4-Point integrals

numerically with differential equations

(Niggetiedt, PhD thesis)

z = 1− m2
H

s
, λ =

t

t+ u
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Solving the Master Integrals

• Afterwards solve differential equation in λ

to map out points in λ, z plane.

• Poles of the differential equation (thin

lines) are avoided with complex contour

(Niggetiedt, PhD thesis)

• This way the shape of the amplitude can be

mapped out and used to compute the cross

section

(Czakon et al., 2105.04436)
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Renormalization

• We work in the 5 flavor scheme.

• The quark masses are renormalized in the On-shell scheme.

• The field renormalization constants contain heavy quark contributions, while the LSZ constants do

not, therefore the heavy contributions must be considered extra

abs =
αb
s

2π

∑
i

(
µ2

m2
i

)ϵ

(4π)ϵΓ(1+ ϵ)

ZOS
3 = absTFnh

(
− 2

3ϵ

)
+

(
abs
)2

nhTF

(
nhTF

(
4

9ϵ2

)
+CF

4ϵ3 − 7ϵ− 1

ϵ(4ϵ3 − 8ϵ2 − ϵ+ 2)
+ CA

−4ϵ5 + 15ϵ3 + ϵ2 − 11ϵ− 3

2ϵ2(4ϵ4 − 4ϵ3 − 13ϵ2 + 7ϵ+ 6)

)
(Czakon, Mitov, and Moch, 0707.4139)

• Furthermore, we need Zm, Zξ and Zg in the presence of additional massive quarks (Gray et al., 1990),

(Bernreuther and Wetzel, 1982)
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Infrared Divergences

• The infrared divergences are handled with the sector improved residue subtraction scheme (Czakon,

1005.0274)

• The infrared structure of the amplitudes can be greatly simplified by subtracting a rescaled version of

the HTL.

σHO
EFT = σHO

HTL

σLO

σLO
HTL

• I.e. the LO cross section of the EFT match the exact result.

• The EFT exhibits the same infrared behavior as the exact amplitudes

• Example Real-Virtual corrections:

⟨M (1)
exact|M (2)

exact⟩ −
[
⟨M (1)

EFT|M
(2)
EFT⟩+

8παs

t
⟨P (0)

gg (
s

s+ u
)⟩ ⟨F (1)|(F (2)

exact − F
(2)
EFT)⟩

]
is IR finite. No one-loop splitting needed

• For t-quarks the rescaling is a small correction that has physical meaning. For b-quarks this is only a

computational trick.
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Results

Preliminary!

channel Top-Bottom Interference [pb] (σNNLO/σNNLO
HEFT − 1)[%]

O(α2
s) O(α3

s) O(α4
s)√

s = 13TeV

gg −1.975 −0.8546(36) +0.121(14) 1.4

qg +0.4077(5) +0.2798(27) 33

qq −0.00039 −0.0083(1) −8.3

total −1.975 −0.4473(36) +0.393(14) +4.1

• mH = 125GeV,m2
t/m

2
H = 23/12,m2

b/m
2
H = 1/684, µ = mH/2, PDF-set = NNPDF3.1

• Missing are (expected to be small due to color suppression):

• the 3-loop mixed quark contributions,

• the 2-loop real virtual mixed corrections

• If you are interested in bottom-bottom, top-charm or bottom-charm effects please ask 12
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Conclusions and Outlook

• We computed the Higgs production cross section in the gluon fusion channel with full quark mass

dependence at NNLO.

• The associated uncertainty in the gluon fusion channel is now almost completely diminished (Theory

uncertainty below 4% at 13TeV)

• Investigate the effects and uncertainties of different top, bottom and charm masses and the choice of

the renormalization scheme.

• Stay tuned...

Thank You!
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channel Top-Bottom Interference [pb] Bottom2 [pb]

O(α2
s) O(α3

s) O(α4
s) O(α2

s) O(α3
s) O(α4

s)√
s = 13TeV

gg −1.975 −0.8546(36) +0.121(14) +0.182 +0.1256(4) −0.0109(45)

qg +0.4077(5) +0.2798(27) −0.02100(4) −0.02371(23)

qq −0.00039 −0.0083(1) +2.5× 10−6 +0.00014

total −1.975 −0.4473(36) +0.393(14) +0.182 +0.1466(6) −0.0345(45)

channel Top-Charm Interference [pb] Bottom-Charm [pb] Charm2 [pb]

O(α2
s) O(α3

s) O(α4
s) O(α2

s) O(α3
s) O(α2

s) O(α3
s)√

s = 13TeV

gg −0.512 −0.1891(9) +0.121(4) +0.0707 +0.0463(2) +0.0072 +0.0041

qg +0.1142(1) +0.0805(7) −0.0104 −0.0013

qq −6.8× 10−5 −0.0030 +8× 10−7 +6× 10−8

total −0.512 −0.0750(9) +0.199(4) +0.0707 +0.0359(2) +0.0072 +0.0028
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