Looking for massive ALPs from SN1987A with Cherenkov Detectors

Tim Kretz and Robert Ziegler

CRC Young Scientists Meeting - 18.10.2023

Overview

Goal: constrain axion-nucleon coupling g_{aNN} using SN1987A

- Supernova Models
- Cooling Bounds
- Cherenkov Detectors

Supernova Models

- Core-collapse Supernova
- Neutrino cooling dominant
- SN1987A signal at Kamiokande
- $m_a \lesssim T_{SN} \sim 100 \,\mathrm{MeV}$

Source: SN Simulations by H.-Th. Janka et al. MPA Garchingen [2005.07141]

Cooling Bounds

- Axion-Nucleon Bremsstrahlung $\mathscr{L} = \frac{1}{2} g_{aNN} \bar{\psi}_N \gamma_\mu \gamma_5 \psi_N \partial^\mu a$
- Energy-loss by neutrinos $\mathscr{L}_{\nu} = 3 \times 10^{52} \frac{\text{erg}}{\text{s}}$
- Axion emission only for $\mathscr{L}_a \lesssim \mathscr{L}_\nu$

Cooling Bounds

free-streaming limit:

- $g_{aNN} \operatorname{small} \Rightarrow \lambda_a \gg r_{PNS}$
- Full volume emission

trapping limit:

•
$$g_{aNN}$$
 large $\Rightarrow \lambda_a \ll r_{PNS}$

 "Pure" surface emission (like our sun)

Cooling Bounds

- Axion-induced photons: $a + {}^{16}O \rightarrow {}^{16}O^* \rightarrow {}^{16}O + \gamma$
- Invisible nucleon decay: ${}^{16}O \rightarrow {}^{15}Z^* + invisible$ searches @ SNO+ in 2017 [1812.05552]

$a + {}^{16}O \rightarrow {}^{16}O^* \rightarrow {}^{15}Z^* + n/p$

Theory: number of expected events and TOF of axions

$$N = \sum_{i} N_{SNO} \int dE_a \int_{T_{SNO}}^{T_{SNO}^{\text{end}}} dt \frac{d\phi}{dE_a} \cdot 2E_a$$

Goal: calculate number of events and compare with upper limits by SNO+

$a\sigma(E_a)B(E_a, E_i, \Gamma_i) \sum BR(E_{\gamma})\epsilon(E_{\gamma})$ $E_{\gamma} < E_i$

Cherenkov Detectors Theory: TOF of axions

Allows to constrain axion masses in a window of: 170 keV to 400 keV

Cherenkov Detectors Experiment: recasting of invisible nucleon decay

- Counting analysis of 6 data sets in agreement with background Upper limits on the number of events at 90 % CL

$$0.9 = A \int_{0}^{N_{90\%}} dN$$

Data Set	T^{\min} [MeV]	T ^{max} [MeV]	Measurement Time $t [d]$	Background	Number of Events <i>n</i>
1	5.75	9	5.1	1.18	1
2	5.95	9	14.9	2.35	2
3	5.85	9	30.7	3.46	4
4	5.95	9	29.4	3.38	8
5	5.85	9	11.5	1.46	1
6	6.35	9	23.2	5.84	6

$$N(N\epsilon + B)^{N_{\text{tot}}} e^{-(N\epsilon + B)} \Rightarrow N_{90\%} = 27$$

log₁₀(*m* [eV])

log₁₀(*m* [eV])

Conclusion

- SN Cooling constrains g_{aNN}
- Include TOF of massive axions
- Invisible nucleon decay carries same signature as axion induced photons
- Water Cherenkov detectors potentially capable of detecting axions

Flux: $\phi(t, g_{aNN}) = \left(\frac{r_a}{d_{SN}}\right)^2 \frac{\pi}{(2\pi)^3} \frac{t_{SN}}{d_{SN}} \frac{m_a^3}{e^{E_a/T} - 1} \frac{\beta^4(t)}{(\sqrt{1 - \beta^2(t)})^5}$

Backup: Cooling Bounds Comparison

Backup: Flux

Flux with m_a

$$t_{t} = 200 \,\mathrm{keV}$$
 and $t = 2017$

Backup: SN Density

Backup: Oxygen Transitions

	E [MeV]	J^{π}	Γ [keV
,	8.872	2-	3.7 meV
	10.957	0-	82 meV
	12.530	2-	0.097
	12.796	0-	40
	12.9686	2-	1.34
	13.664	1+	64
	13.980	2-	20
	14.302	4-	34
	14.399	5+	27
	15.196	2-	63
	15.785	3+	40
	16.209	1+	19
	16.817	3+	28
	17.140	1+	34
	17.775	4-	45
	17.877	2-	24
	18.977	4-	8.2
	19.001	2-	420
	19.808	4-	32

Γ [keV]	Decay Modes
3.7 meV	γ, α
82 meV	
0.097	γ, α, p
40	p
1.34	γ, α, p
64	γ, α, p
20	α, p
34	
27	
63	α, p
40	
19	γ, p, n
28	γ, α, p
34	γ, α, p, n
45	p
24	γ, (α), p
8.2	γ, α, p
420	γ, <i>p</i>
32	

Backup: Nitrogen Transitions

E [MeV]	J_i^{π}	\rightarrow
5.27	$\frac{5}{2}^{+}$	\rightarrow
5.30	$\frac{1}{2}^+$	\rightarrow
6.32	$\frac{3}{2}^{-}$	\rightarrow
7.30	$\frac{3}{2}^{+}$	\rightarrow
8.31	$\frac{1}{2}^+$	\rightarrow
9.05	$\frac{1}{2}^+$	\rightarrow
9.152	$\frac{3}{2}^{-}$	\rightarrow
9.76	$\frac{5}{2}^{-}$	\rightarrow
9.93	$\frac{3}{2}^{-}$	\rightarrow
10.07	$\frac{3}{2}^+$	\rightarrow
10.69	$\frac{9}{2}^+$	\rightarrow
11.62	$\frac{1}{2}^+$	\rightarrow

J_f^{π}	E_{γ} [MeV]	BR [%]
$\frac{1}{2}^{-}$	5.27	100
$\frac{1}{2}^{-}$	5.30	100
$\frac{1}{2}^{-}$	6.32	100
$\frac{1}{2}^{-}$	7.30	99.3
$\frac{1}{2}^{-}$	8.31	79
$\frac{1}{2}^{-}$	9.05	92
$\frac{1}{2}^{-}$	9.152	100
$\frac{1}{2}^{-}$	9.76	81.5
$\frac{1}{2}^{-}$	9.93	77.6
$\frac{1}{2}^{-}$	10.07	61.6
$\frac{5}{2}^{+}$	5.42	61.6
$\frac{1}{2}^{-}$	11.62	90.7

Average Photon Energy $E_{\gamma} = 8.1 \,\mathrm{MeV}$

Backup: SN Bounds Cooling + Water Cherenkov + Comparison

Source: Green Exclusion by Bhusal, Houston and Li [2004.02733]