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B-physics

▶ Allows to test CP violation and the CKM matrix
▶ High sensitivity to new physics contributions
▶ More precision necessary in view on future experimental

developments

[fig taken from 1609.02015]
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Exclusive decays at large recoil

〈
π(p)

∣∣q̄γµb∣∣B̄(pB)
〉
= F+(q

2)(pµB + pµ) + F−(q
2)qµ

Fi(q
2) = CiξB→π(q

2) + ϕB ⊗ Ti ⊗ ϕπ

ξB→π(q
2) =

∑
i

∞∫
0

dω

1∫
0

du ϕi
B(ω)T

i(u, ω)ϕi
π(u)

▶ Complicated interplay of soft and collinear dynamics
▶ Naively amplitude factorises according to SCET / QCD

factorisation [Beneke/Feldmann ’00]
▶ Factorisation theorem is plagued by endpoint divergences
▶ Factorisation of scales is spoilt
▶ Generic problem of SCET at subleading power
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Endpoint divergences in h → γγ

lµ = l−
nµ

2
+ l+

n̄µ

2
+ lµ⊥ b

b

b

▶ Scale hierarchy Mh ≫ mb demands resummation of large logs
▶ Factorisation theorem has endpoint divergences [Liu/Neubert ’19]

Mb(h → γγ) = H1 ⟨γγ|O1|h⟩+ 4

∫ 1

0

dz

z
H̄2(z) ⟨γγ|O2(z)|h⟩

+H3

∫ ∞

0

dl−
l−

∫ l−

0

dl+
l+

S(l+l−)J(l+)J(l−)

▶ Rearrange using refactorisation identities [Böer ’18, Liu/Neubert ’19]

4[[H̄2]]⊗ [[⟨O2⟩]] = 2H3

∫ ∞

0

dω

ω
S(ω)

∫ Mh

0

dl−
l−

J(ω/l−)J(l−)
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Endpoint divergences in h → γγ
▶ Rearranged factorisation theorem has no endpoint divergences:

Mb(h → γγ) =(H1 +∆H1) ⟨γγ|O1|h⟩

+ 4

∫ 1

0

dz

z

[
H̄2(z) ⟨γγ|O2(z)|h⟩ − [[H̄2(z)]][[ ⟨γγ|O2(z)|h⟩]]

]
+H3

∫ Mh

0

dl−
l−

∫ Mh

0

dl+
l+

J(l−)J(l+)S(l+l−)

▶ Leading double logs are given by last term:

Mb(h → γγ)

∣∣∣∣
DL

= M0

Mh∫
m2

b
/Mh

dl+
l+

Mh∫
m2

b
/Mh

dl−
l−

θ(l+l− −m2
b)

e−S(Mh/l+, Mh/l−)

= M0
L2

2
2F2

(
1, 1;

3

2
, 2;−CFαs

8π
L2

)

with L = ln
M2

h

m2
b

and S(x, y) =
αsCF

2π
lnx ln y

[Liu/Neubert ’19]
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Endpoint divergences in µe-backward scattering

▶ Electrons and muons scatter exactly backwards
(me = mµ ≡ m ≪ √

s)

▶ Leading logs are generated by soft lepton
configurations

▶ Twisted ladder diagrams
give leading logs

M(1) ≃ M(0)

√
s∫

m2
√
s

dk+
k+

√
s∫

m2
√
s

dk−
k−

θ(k+k− −m2) =
L2

2
with L = ln

m2

s
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Endpoint divergences in µe-backward scattering
To all orders double logs are
generated by crossed diagrams
with strongly ordered
longitudinal momenta

m2

√
s
≈ p̄− ≪ k1− ≪ · · · ≪ kn− ≪ p− ≈ √

s

m2

√
s
≈ p+ ≪ kn+ ≪ · · · ≪ k1+ ≪ p̄+ ≈ √

s

M(n) = M(0)

p−∫
p̄−

dk1−
k1−

p−∫
k1−

dk2−
k2−

· · ·
p−∫

kn−1,−

dkn−
kn−

×
p̄+∫

m2

k1−

dk1+
k1+

k1+∫
m2

k2−

dk2+
k2+

· · ·
kn−1,+∫
m2

kn−

dkn+
kn+

= M(0) L2n

n!(n+ 1)!
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Endpoint divergences in µe-backward scattering
▶ Integral equations can be recast into recursive form

(M ≃ FM(0)):

F (l−, l+) = 1 +
αem

2π

∫ p−

l−

dk−
k−

∫ l+

m2

k−

dk+
k+

F (k−, k+)

=⇒ M ≃ M(0)F (p̄−, p̄+) = M(0) I1(2
√
z)√

z
with z =

αem

2π
L2

▶ Recursive structure can be understood by involved refactorisation
in SCET [Bell,Böer,Feldmann ’22]

[[fc(x)]] ≃
∫ 1

0

dx′

x′
fc(x

′)

∫
dρ

ρ
Jhc(ρx

′)S(x, ρ)

Compared to refactorisation in h → γγ

4[[H̄2]]⊗ [[⟨O2⟩]] = 2H3

∫ ∞

0

dω

ω
S(ω)

∫ Mh

0

dl−
l−

J(ω/l−)J(l−)
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Non-relativistic heavy-to-light form factors

▶ Process considered:
▶ Bc → ηc at large recoil γ ≡ v · v′ = O(mb/mc)
▶ non-relativistic approximation with mb ≫ mc ≫ ΛQCD
▶ perturbative toy example for B → π form factors

▶ Factorisation theorems for heavy-to-light form factors have
factorisable and non-factorisable terms

▶ Non-factorisable part is called "soft overlap" contribution

F (γ) ≡ 1

2Eη
⟨ηc(pη)|(c̄Γ b)(0)|Bc(pB)⟩ with Γ =

/̄n/n

4

mbv

mcv

mcv
′

mcv
′

mbv

mcv

mcv
′

mcv
′
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Non-relativistic heavy-to-light form factors

Goal of this work:
Diagrammatic resummation of leading double logs of the soft
overlap contribution
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Soft quark logs in Bc → ηc form factor
▶ In light-cone gauge and Abelian limit all soft-quark logs are given

by ladder diagrams:

▶ Soft-quark logs are governed by recursive integral equations

F (γ)

∣∣∣∣
soft quark

∝ 6f(γ)− 1 with f(γ) ≡ f(mc,mc)

f(l+, l−) = 1 +
αsCF

2π

pη−∫
l−

dk−
k−

l+∫
m2

c/k−

dk+
k+

(
f(k+, k−) +

1

2
fmc(k+, k−)

)

fmc(l+, l−) = 1 +
αsCF

2π

pη−∫
l−

dk−
k−

l+∫
m2

c/k−

dk+
k+

fmc(k+, k−)
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Interplay with soft gluons
Sudakov logs account for soft gluon effects

F (γ) ∝ exp

{
−αsCF

4π
L2

}
× (6f(γ)− 1) with f(γ) ≡ f(mc,mc)

f(l+, l−) = 1 +
αsCF

2π

pη−∫
l−

dk−
k−

l+∫
m2

c/k−

dk+
k+

e−S(l+/k+,pη−/k−)

(
f(k+, k−) +

1

2
fmc(k+, k−)

)

fmc(l+, l−) = 1 +
αsCF

2π

pη−∫
l−

dk−
k−

l+∫
m2

c/k−

dk+
k+

e−S(l+/k+,pη−/k−)fmc(k+, k−)

S(x, y) =
αsCF

2π
lnx ln y
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Order-by-order solution

▶ Solving this integral equation in a closed form is work in progress
▶ First few terms are given by:

f(γ) = 1 +
3

2

(
αsCF

4π
L2

)
+

5

12

(
αsCF

4π
L2

)2

− 1

180

(
αsCF

4π
L2

)3

+ . . .

▶ Independently checked up to 2-loops by means of pole cancellation
arguments and explicit calculation of the only unknown pole in
hard-collinear region

▶ Typical tool chain (qgraf, Form, Fire, pySecDec, . . . )
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Summary and outlook

▶ h → γγ

Mb(h → γγ)

∣∣∣∣
DL

= M0

Mh∫
m2

b
/Mh

dl+
l+

Mh∫
m2

b
/l+

dl−
l−

e−S(Mh/l+, Mh/l−)

▶ µe backward scattering

F (l−, l+) = 1 +
αem

2π

p−∫
l−

dk−
k−

l+∫
m2/k−

dk+
k+

F (k−, k+)

▶ Bc → ηc form factor at large recoil

f(l+, l−) = 1 +
αsCF

2π

pη−∫
l−

dk−
k−

l+∫
m2

c/k−

dk+
k+

e−S(l+/k+,pη−/k−)

(
f(k+, k−) +

1

2
fmc(k+, k−)

)

▶ Cross check at α3
s

▶ Non-Abelian colour structures
▶ Develop EFT language
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