Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes

Matthew Black

In collaboration with: R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel

October 16, 2023

► B-meson mixing and lifetimes are measured experimentally to high precision

► Key observables for probing New Physics ► high precision in theory needed!

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

- ► B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics ► high precision in theory needed!

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

- ► B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics ► high precision in theory needed!

► For lifetimes and mixing, we use the Heavy Quark Expansion

$$\Gamma_{B_q} = \Gamma_3 \langle \mathcal{O}_{D=3} \rangle + \Gamma_5 \frac{\langle \mathcal{O}_{D=5} \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_{D=6} \rangle}{m_b^3} + \dots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_{D=6} \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_{D=7} \rangle}{m_b^4} + \dots \right]$$

$$\bar{B}_q \underbrace{ \begin{array}{c} & & \\$$

Factorise observables into = perturbative QCD contributions
 Non-Perturbative Matrix Elements

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

- ▶ Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations
- ▶ $\Delta B = 2$ well-studied by several groups ➡ precision increasing
 - \blacktriangleright preliminary $\Delta K = 2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta B = 0$ = exploratory studies from ~20 years ago + new developments for lifetime ratios [Lin, Detmold, Meinel '22]
 - ➡ contributions from gluon disconnected ("eye") diagrams
 - mixing with lower dimension operators in renormalisation

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

- Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations
- ▶ $\Delta B = 2$ well-studied by several groups ➡ precision increasing
 - \blacktriangleright preliminary $\Delta K = 2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta B = 0$ = exploratory studies from ~20 years ago + new developments for lifetime ratios [Lin, Detmold, Meinel '22]
 - ➡ contributions from gluon disconnected ("eye") diagrams
 - mixing with lower dimension operators in renormalisation

- 1. Establish gradient flow renormalisation procedure with $\Delta B = 2$ matrix elements
- 2. Pioneer **connected** $\Delta B = 0$ matrix element calculation
- 3. Tackle disconnected contributions

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

> To first test method, only consider $\tilde{\mathcal{O}}_1$ for **mixing**:

$$\tilde{\mathcal{O}}_1 = (\bar{Q}_i \gamma_\mu (1 - \gamma_5) q_i) (\bar{Q}_j \gamma_\mu (1 - \gamma_5) q_j) \implies \langle \tilde{\mathcal{O}}_1(\mu) \rangle = \frac{8}{3} M_P^2 f_P^2 B_1(\mu)$$

> Hadronic physics encoded in decay constant f_P and **bag parameter** B_1

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

> To first test method, only consider $\tilde{\mathcal{O}}_1$ for **mixing**:

$$\tilde{\mathcal{O}}_1 = (\bar{Q}_i \gamma_\mu (1 - \gamma_5) q_i) (\bar{Q}_j \gamma_\mu (1 - \gamma_5) q_j) \implies \langle \tilde{\mathcal{O}}_1(\mu) \rangle = \frac{8}{3} M_P^2 f_P^2 B_1(\mu)$$

- > Hadronic physics encoded in decay constant f_P and **bag parameter** B_1
- Decay constant extracted independently from two-point correlation function:

$$C_{AP}(t) = \sum_{n} \frac{\langle P_n | A_\mu | 0 \rangle \langle 0 | \gamma_5 | P_n \rangle}{2E_{P_n}} e^{-E_{P_n} t} \implies \langle 0 | A_\mu | P(0) \rangle = f_P M_P$$

► Bag parameter extracted from ratio of three-point correlator to two-point correlators:

$$R_{1} = \frac{C_{\mathcal{O}_{1}}^{3\text{pt}}(t,\Delta t)}{\frac{8}{3}C_{AP}^{2\text{pt}}(t)C_{PA}^{2\text{pt}}(\Delta t - t)} \implies B_{1} = \frac{\langle P|\mathcal{O}_{1}|P\rangle}{\frac{8}{3}\langle P|\gamma_{5}|0\rangle\langle 0|A_{\mu}|P\rangle\langle P|A_{\mu}|0\rangle\langle 0|\gamma_{5}|P\rangle},$$
$$C_{\mathcal{O}_{1}}^{3\text{pt}}(t,\Delta t) = \sum_{n,n'} \frac{P_{n}P_{n'}}{4M_{n}M_{n'}}\langle P_{n}|\mathcal{O}_{1}|P_{n'}\rangle e^{-(\Delta t - t)M_{n}}e^{-tM_{n'}}$$

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black

precision < 1%

[FLAG '23]

Gradient Flow

- Formulated by [Lüscher '10], [Lüscher '13] \Rightarrow scale setting, RG β -function, renormalisation... \succ
- Introduce auxiliary dimension, flow time τ as a way to regularise the UV
- Extend gauge and fermion fields in flow time and express dependence with first-order differential \succ equations:

$$\partial_t B_\mu(\tau, x) = \mathcal{D}_\nu(\tau) G_{\nu\mu}(\tau, x), \quad B_\mu(0, x) = A_\mu(x), \\ \partial_t \chi(\tau, x) = \mathcal{D}^2(\tau) \chi(\tau, x), \qquad \chi(0, x) = q(x).$$

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black

 \sim

Matrix Elements without Gradient Flow (Schematic)

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matrix Elements with Gradient Flow (Schematic)

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

We will consider RBC/UKQCD's 2+1 flavour Shamir DWF + Iwasaki gauge action ensembles [Shamir '93] [Iwasaki, Yoshie '84] [Iwasaki '85]

	L	T	$a^{-1}/{ m GeV}$	$am_l^{\rm sea}$	$am_s^{\rm sea}$	$M_{\pi}/{ m MeV}$	$srcs \times N_{conf}$	
C1	24	64	1.7848	0.005	0.040	340	32×101	
C2	24	64	1.7848	0.010	0.040	433	32×101	
M1	32	64	2.3833	0.004	0.030	302	32×79	
M2	32	64	2.3833	0.006	0.030	362	32×89	[Allton et al. '08
М3	32	64	2.3833	0.008	0.030	411	32×68	[Aoki et al. '10]
F1S	48	96	2.785	0.002144	0.02144	267		[Boyle et al. '17

► Exploratory simulations on C1, C2, M1 so far

> To remove additional extrapolations in valence sector, we simulate at physical charm and strange

 \blacktriangleright "neutral D_s " meson mixing

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

First Look – Mixing O1 Operator vs GF time

> operator is renormalised in 'GF' scheme as it is evolved along flow time

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

First Look – Mixing O1 Operator vs GF time

➤ different lattice spacings overlap in physical flow time ➡ mild continuum limit

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Continuum Limit

➤ continuum limit very flat at positive flow time ✔

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

► Relate to regular operators in 'short-flow-time expansion':

'flowed' MEs calculated on lattice $\mathcal{O}_n(\tau) = \sum_m \zeta_{nm}(\tau)\mathcal{O}_m + O(\tau)$ additional calculated perturbatively

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

► Relate to regular operators in 'short-flow-time expansion':

$$\widetilde{\mathcal{O}}_{n}(\tau) = \sum_{m} \zeta_{nm}(\tau) \mathcal{O}_{m} + O(\tau)$$
'flowed' MEs calculated on lattice matching matrix calculated perturbatively
$$\sum_{n} \zeta_{nm}^{-1}(\mu, \tau) \langle \widetilde{\mathcal{O}}_{n} \rangle(\tau) = \langle \mathcal{O}_{m} \rangle(\mu)$$

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

► Relate to regular operators in 'short-flow-time expansion':

$$\widetilde{\mathcal{O}}_{n}(\tau) = \sum_{m} \zeta_{nm}(\tau) \mathcal{O}_{m} + O(\tau)$$
'flowed' MEs calculated on lattice matching matrix calculated perturbatively
$$\sum_{n} \zeta_{nm}^{-1}(\mu, \tau) \langle \widetilde{\mathcal{O}}_{n} \rangle(\tau) = \langle \mathcal{O}_{m} \rangle(\mu)$$

> Calculated at two-loop for \mathcal{B}_1 based on [Harlander, Lange '22]:

$$\begin{aligned} \zeta_{\mathcal{B}_{1}}^{-1}(\mu,\tau) &= 1 + \frac{a_{s}}{4} \left(-\frac{11}{3} - 2L_{\mu\tau} \right) + \frac{a_{s}^{2}}{43200} \left[-2376 - 79650L_{\mu\tau} - 24300L_{\mu\tau}^{2} + 8250n_{f} + 6000 n_{f}L_{\mu\tau} \right. \\ &+ 1800 n_{f}L_{\mu\tau}^{2} - 2775\pi^{2} + 300 n_{f}\pi^{2} - 241800 \log 2 \\ L_{\mu\tau} &= \log(2\mu^{2}\tau) + \gamma_{E}, \quad \mu = 3 \,\text{GeV} \\ &+ 202500 \log 3 - 110700 \,\text{Li}_{2} \left(\frac{1}{4} \right) \right] \end{aligned}$$

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matched Results

Compare to existing short-distance
 D⁰ mixing results

[ETM '15] 0.757(27) [FNAL/MILC '17] 0.795(56)

Promising first signs of agreement

 Different perturbative orders show different behaviour

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Summary

- $\blacktriangleright \Delta B = 0$ four-quark matrix elements are strongly-desired quantities
 - Standard renormalisation introduces mixing with operators of lower mass dimension
 - \blacktriangleright We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure
- ▶ Testing method first with $\Delta Q = 2$ matrix elements
- Shown first simulations for $\Delta C = 2$
- Preliminary results show promising agreement with literature

Next Steps:

- Simulate on all ensembles with multiple valence quark masses
- \blacktriangleright Extrapolate to physical B_s meson mixing
- > Repeat analysis for quark-line connected $\Delta B = 0$ matrix elements
- Consider gluon disconnected contributions

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes