

Progress in N3LO 0-jettiness soft function calculation

Andrey Pikelner | CRC YSM 2023, Siegen

in collaboration with: Daniel Baranowski, Maximilian Delto, Kirill Melnikov and Chen-Yu Wang

Karlsruhe Institute of Technology

Plan of the talk

- I. Introduction and motivation
- 2. Soft function for 0-jettiness slicing
- 3. IBP reduction of integrals with θ -functions
- 4. Techniques for master integrals calculation
 - RRR
 - RRV
- 5. Results and conclusion

|--|

Motivation

- Differential calculation require a good handle on IR divergences, many schemes at NNLO
- Slicing scheme seems feasible at N3LO due to complexity of subtraction schemes

$$\sigma(\mathbf{O}) = \int_{0} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau} = \int_{0}^{\tau_{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau} + \int_{\tau_{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau}$$

- q_T subtraction scheme [Catani,Grazzini'07]
 N-jettiness subtraction scheme [Boughezal et al.'15][Gaunt et al.'15]
- SCET factorization theorem motivates us to consider jettiness as convenient slicing variable

$$\lim_{\tau \to 0} \mathrm{d}\sigma(\mathbf{O}) = \mathbf{B}_{\tau} \otimes \mathbf{B}_{\tau} \otimes \mathbf{S}_{\tau} \otimes \mathbf{H}_{\tau} \otimes \mathrm{d}\sigma_{\mathrm{LO}}$$

Intro • 0	Soft function	θ-IBP oo	MI calc 000000	Conclusion
•••			000000	00

Difficulties with 0-jettiness variable

• 0-jettiness for the colorless final state is complicated due to the presence of min-function

$$\tau = \sum_{i=1}^{m} \min_{q \in \{n,\bar{n}\}} \left[\frac{2q \cdot k_i}{n \cdot \bar{n}} \right] = \sum_{i=1}^{m} \min\{\alpha_i, \beta_i\}$$

Definition which is more friendly for PS integration generates different configurations

$$\delta\left(\tau-\sum_{i=1}^{m}\min\{\alpha_{i},\beta_{i}\}\right)=\delta(\tau-\alpha_{1}-\alpha_{2}-\ldots)\theta(\beta_{1}-\alpha_{1})\theta(\beta_{2}-\alpha_{2})\ldots$$
$$+\delta(\tau-\alpha_{1}-\beta_{2}-\ldots)\theta(\beta_{1}-\alpha_{1})\theta(\alpha_{2}-\beta_{2})\ldots$$

Sudakov decomposition

$$\mathbf{k}_i = \frac{\alpha_i}{2}\mathbf{n} + \frac{\beta_i}{2}\overline{\mathbf{n}} + \mathbf{k}_{i,\perp}, \quad \mathbf{k}_i \cdot \mathbf{n} = \beta_i, \quad \mathbf{k}_i \cdot \overline{\mathbf{n}} = \alpha_i, \quad \mathbf{n} \cdot \overline{\mathbf{n}} = 2$$

IntroSoft functionθ-IBPMI calcCo●oooooooooo	onclusion
---	-----------

Unique emission configurations and present status

Same hemisphere

Different hemispheres

 $\delta(\tau-\beta_1-\beta_2-\beta_3)$

Same hemisphere calculated with modern techniques for multi-loop calculation [Baranowski et al. '22]

- Our goal is to calculate different hemispheres contribution \implies this talk
- Emission of two gluons with one-loop correction \implies this talk

Intro	Soft function	θ-IBP	MI calc	Conclusion
oo	●○○	00	000000	00

Eikonal factors and soft amplitudes squared

RRR - split according to soft-gluon propagator structure [Catani, Colferai, Torrini'19]

Configuration specific measurement functions

Same hemisphere

- RRR: $\alpha_1, \alpha_2, \alpha_3$ unconstrained
 - $d\Phi_{\theta\theta\theta}^{nnn} = \delta(\tau \beta_1 \beta_2 \beta_3) \\ \theta(\alpha_1 \beta_1)\theta(\alpha_2 \beta_2)\theta(\alpha_3 \beta_3)$
- RRV: α_1, α_2 unconstrained

$$d\Phi_{\theta\theta}^{nn} = \delta(\tau - \beta_1 - \beta_2)$$
$$\theta(\alpha_1 - \beta_1)\theta(\alpha_2 - \beta_2)$$

Different hemispheres

• RRR: $\alpha_1, \alpha_2, \beta_3$ unconstrained

$$d\Phi_{\theta\theta\theta}^{nn\bar{n}} = \delta(\tau - \beta_1 - \beta_2 - \alpha_3) \\ \theta(\alpha_1 - \beta_1)\theta(\alpha_2 - \beta_2)\theta(\beta_3 - \alpha_3)$$

• RRV: α_1, β_2 unconstrained

$$\begin{aligned} \Phi_{\theta\theta}^{n\bar{n}} &= \delta(\tau - \beta_1 - \alpha_2) \\ &\theta(\alpha_1 - \beta_1)\theta(\beta_2 - \alpha_2) \end{aligned}$$

- Well known technique: reduction of integrals with δ -functions
- New technique: reduction of integrals with θ -functions

[Anastasiou,Melnikov'02]

[Baranowski, Delto, Melnikov, Wang'21]

IBP for integrals with θ functions

• In dimensional regularisation system of IBP equation can be constructed by integration under integral sign

$$\int \mathrm{d}^{d} I \frac{\partial}{\partial I_{\mu}} \big[\mathbf{v}_{\mu} \cdot f(\{l\}) \big], \qquad \frac{\partial}{\partial k \cdot \bar{n}} \theta(k \cdot \bar{n} - k \cdot n) = \delta(k \cdot \bar{n} - k \cdot n)$$

• IBP for integrals with θ -functions generate new auxiliary topologies, partial fractioning required

$$\frac{\theta(k \cdot \bar{n} - k \cdot n)}{(k \cdot \bar{n})^a (k \cdot n)^b} \to \frac{\delta(k \cdot \bar{n} - k \cdot n)}{(k \cdot \bar{n})^a (k \cdot n)^b}$$

RRR $\underbrace{\theta \theta \theta}_{\text{Level 3}} \rightarrow \underbrace{\delta \theta \theta + \theta \delta \theta + \theta \theta \delta}_{\text{Level 2}} \rightarrow \underbrace{\delta \delta \theta + \delta \theta \delta + \theta \delta \delta}_{\text{Level 1}} \rightarrow \underbrace{\delta \delta \delta + \theta \delta \delta}_{\text{Level 1}} \rightarrow \underbrace{\delta \delta \delta + \theta \delta \delta}_{\text{Level 1}} \rightarrow \underbrace{\delta \delta \delta + \theta \delta \delta}_{\text{Level 1}} \rightarrow \underbrace{\delta \delta \delta + \theta \delta \delta}_{\text{Level 1}} \rightarrow \underbrace{\delta \delta \delta + \theta \delta \delta \delta + \theta \delta + \theta \delta \delta + \theta \delta \delta + \theta \delta + \theta \delta \delta + \theta \delta + \theta \delta \delta + \theta \delta +$

Intro

Conclusion

8/15 16. 10. 2023 Andrey Pikelner: N3LO soft function

KIT TTP

Conclusion

Details of IBP reduction

Many integrals can be mapped on a small unique set, same symmetries as loop integral

$$\theta(A) \to \frac{1}{A - m_{\theta}^2}, \quad \delta(A) \to \frac{1}{A - m_{\delta}^2}$$

 θ -IBP

0.

- User-defined system reduction option available in Kira
- Complexity of master integrals after IBP reduction

Soft function

- **RRR**: number of θ -functions, complexity of gluon propagators
- RRV: number of θ -functions, complexity of one-loop integral
- No $\theta \dots \theta$ master integrals for both RRR and RRV same hemisphere configurations

MI calc

[Klappert et al. '21]

[Pak'11]

DE for RRR integrals with auxiliary mass

- Integrals for both *nnn* and *nnn* configurations with denominator $1/k_{123}^2$ are difficult to calculate
- Integrals are single scale, auxiliary parameter needed to construct DE system $I \rightarrow J(m^2)$
- Our solution is to make the most complicated propagator massive $\frac{1}{(k_1+k_2+k_2)^2} \rightarrow \frac{1}{(k_1+k_2+k_2)^2+m^2}$
- Calculation of boundary conditions simplifies in the limit $m^2
 ightarrow \infty$
- Result for integrals of our interest from the solution for $J(m^2)$ in the limit $m^2 \rightarrow 0$

Difficulties of the chosen strategy:

- Both points $m^2 \rightarrow 0$ and $m^2 \rightarrow \infty$ are singular points of the DE system
- Solution of the DE for integrals with massive denominator possible only numerically

20 • 00 000 00
00 000 000 000 000

Details of the DE solution

- Larger DE system size with 670 equations for *nnn* configuration compared to 176 for *nnn*
- Needed to calculate all contributing regions into boundary conditions in the $m^2 \rightarrow \infty$ limit

$$\frac{\sim (m^2)^0}{1/m^2} \qquad \frac{\sim (m^2)^{-\varepsilon}}{\alpha_i \sim m^2} \qquad \frac{\sim (m^2)^{-2\varepsilon}}{\alpha_i, \alpha_j \sim m^2}$$

- For each large parameter $\alpha_i \sim m^2$ we remove $\theta \implies$ additional IBP reduction of BC integrals possible
- Numerical solution of the DE system as a sequence of series expansions [Liu et al.'18][Chen et al.'22]

Intro oo	Soft function	θ -IBP	MI calc o●oooo	Conclusion 00

Unregularized singularities from IBP reduction

- Not all integrals appearing during IBP reduction are regulated dimensionally, initial integrals are regular
- Possible solution is to introduce additional regulator: $d\Phi_{f_1f_2f_3}^{nn\bar{n}} \rightarrow d\Phi_{f_1f_2f_3}^{nn\bar{n}}(k_1 \cdot n)^{\nu}(k_2 \cdot n)^{\nu}(k_3 \cdot \bar{n})^{\nu}$

$$I \sim \int_{0}^{1} \mathrm{d} z \frac{1}{z} z^{\varepsilon} z^{-\varepsilon} (\dots) \longrightarrow I(\nu) \sim \int_{0}^{1} \mathrm{d} z \frac{1}{z^{1+\nu}} (\dots)$$

- IBP reduction with additional regulator possible but more complicated, especially for auxiliary integrals $J(m^2)$
- Special choice of MIs in ν -dependent IBP reduction with minimal number of $1/\nu$ divergent integrals \bar{I}_{α}^{ν}

$$S = \sum_{\alpha} c_{\alpha} I_{\alpha} \quad \rightarrow \quad S^{\nu} = \sum_{\alpha} c_{\alpha}(\nu) I_{\alpha}^{\nu} + \nu \sum_{\alpha} c_{\alpha}(\nu) \overline{I}_{\alpha}^{\nu}$$

Intro	Soft function	θ-IBP	MI calc	Conclusion
00	000	00	000000	00

- Number of MIs after IBP reduction of both configurations in RRV case
 - $\begin{array}{ccc} \delta\delta & \delta\theta + \theta\delta & \theta\theta \\ 8 & \mathsf{I3} & \mathsf{I7} \end{array}$
- Direct integration, except pentagon loop part and box with $a_3 = 0$
- DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

Different strategy compared to RRR case: instead of $I = \lim_{z \to z_0} J(z)$ now $I = \int dz J(z)$

Intro	Soft function	θ-IBP	MI calc	Conclusion
00		oo	○○○●○○	00

RRV master integrals from differential equations

• For $\delta\delta$ integrals we introduce auxiliary paremeter x and solve DE system $\partial_x J(x) = M(\varepsilon, x)J(x)$

$$I_{\delta\delta} = \int \mathrm{d}(k_1 \cdot k_2) f(k_1 \cdot k_2) = \int_0^1 \mathrm{d}x \int \mathrm{d}(k_1 \cdot k_2) \,\delta(k_1 \cdot k_2 - \frac{x}{2}) f(k_1 \cdot k_2) = \int_0^1 J(x) \mathrm{d}x$$

• For $\delta\theta$ and $\theta\delta$ we use integral representation for θ -function and solve DE system $\partial_z J(z) = M(\varepsilon, z)J(z)$

$$\theta(b-a) = \int_0^1 b\delta(zb-a)dz, \quad I_{\delta\theta} = \int_0^1 J(z)dz$$

• For $\theta\theta$ integrals PDE system in two variables z_1, z_2 , no IBP reduction with θ -functions needed

$$I_{\theta\theta} = \int_0^1 \mathrm{d} z_1 \int_0^1 \mathrm{d} z_2 J(z_1, z_2)$$

Intro	Soft function	θ -IBP	MI calc	Conclusion
00	000	00	000000	00

13/15 16.10.2023 Andrey Pikelner: N3LO soft function

Differential equations in canonical form

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon) \rightarrow \varepsilon A$
- Straightforward solution for integrals in canonicaal basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$g(z) = z^{a_1+b_1\varepsilon}(c_1+\mathscr{O}(z)) + z^{a_2+b_2\varepsilon}(c_2+\mathscr{O}(z)) + \dots$$

• Construction of subtraction terms to remove endpoint singularities in final integration

$$\int_{0}^{1} J(z) dz = \int_{0}^{1} \underbrace{\left[J(z) - z^{a_{i}+b_{i}\varepsilon} j_{0}(z) - (1-z)^{a_{k}+b_{k}\varepsilon} j_{1}(z) \right]}_{\varepsilon - \text{expanded}} dz + \int_{0}^{1} \underbrace{\left(z^{a_{i}+b_{i}\varepsilon} j_{0}(z) - (1-z)^{a_{k}+b_{k}\varepsilon} j_{1}(z) \right)}_{\varepsilon - \text{exact}} dz$$

Conclusion

Triple-real part

- Same hemisphere result is known, and many new techniques have developed now successfully applied in the more complicated calculation of different hemispheres contribution
- For different hemispheres case parts free from $1/k_{123}^2$ denominator are calculated
- Calculated all boundaries and DEs solved for auxiliary integrals for most complicated part with $1/k_{123}^2$ denominator
- Careful analysis of contributions from integral with potentially unregularized divergencies is ongoing
- Real-real-virtual part
 - For same hemisphere contribution all needed integrals are calculated, checks of obtained result are in progress
 - Calculating remaining heta heta integrals not entering the same-hemisphere part is in progress

Intro	Soft function	θ-IBP	MI calc	Conclusion
oo		oo	000000	●0

Thank you for attention!