Sterile Neutrinos

ISAPP 2024, 18/09/2024

Thierry Lasserre (CEA Irfu & TUM)

Active Neutrinos

Established Neutrino Physics

• 3 flavor, spin $\frac{1}{2}$, neutral, left handed, $\sigma(1 \text{ MeV}) \approx 10^{-44} \text{ cm}^2$

- PMNS mixing matrix U: $|v_i\rangle = \Sigma U_{\alpha i} |v_{\alpha}\rangle$

Neutrino Oscillations (for 2 Flavour)

5

Neutrino Oscillations (for 2 Flavour)

Neutrino Oscillations (for 2 Flavour)

3v Oscillation Formalism

- 3 masses $m_{1,2,3}$: $\Delta m_{sol}^2 = m_2^2 m_1^2 \sim 8 \ 10^{-5} \ eV^2$ & $\Delta m_{atm}^2 = |m_3^2 m_1^2| \sim 2 \ 10^{-3} \ eV^2$
- Oscillation in vacuum : $P(v_x \rightarrow v_x) \approx 1 \sin^2(2\theta_i) \times \sin^2\left(1.3 \cdot \Delta m_i^2 \cdot \frac{L}{E}\right)$

Th. Lasserre - ISAPP 2024

tunable

Facts & open questions

Masses of the mass eigenstates v_i?

- Lepton Number conservation (Dirac or Majorana) ?
- Precise measurements of PMNS matrix?
- Is CP violated in the neutrino sector?
- Are there additional (sterile) neutrino states

This lecture!

Sterile Neutrinos

Elementary Particle
1/2
0
0
None
Not yet known
Possible with ν_e , ν_μ , ν_τ
Hypothetic

ТШ

Caveat: v_4 and v_s !!!

Active Neutrino Mass

The neutrinos of the Standard Model have a mass < about 1 eV

TeV

Sterile Neutrino Mass

Which Mass: 0.1-1 eV?

Which Mass: keV?

These neutrinos are suitable candidates to explain the mystery of the dark matter in the Galaxy/Universe

eV

Which Mass: GeV?

These neutrinos could explain the matter - antimatter asymmetry in the Universe, through a mechanism called the Leptogenesis

New Experiments !

Without new theoretical insights only new experiments shall bring light on the sterile neutrino question

How to detect sterile Neutrinos?

... through their Mixing !

Light sterile neutrino – 3+1 model \mathbf{V}_4 $\frac{L}{E}$ (Mass)² meter $\Delta m_{41}{}^2$ max. oscillation ? MeV **V**₃ $\Delta m_{atm}{}^2$ \mathbf{V}_2 **V**₁ $\mathbf{v}_{e} \prod |U_{ei}|^{2} \mathbf{v}_{\mu} \prod |U_{\mu i}|^{2} \mathbf{v}_{\tau} \prod |U_{\tau i}|^{2} \mathbf{v}_{s} \prod |U_{s i}|^{2}$ 20

Many Neutrino Sources can be used

Grand Unified Neutrino Spectrum at Earth

• $v_e^{(-)}$ disappearance (Reactor, Gallium, ...)

•
$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{ee} = |U_{e4}|^2 (1 - |U_{e4}|^2)$$

• v_{μ} disappearance (CDHS, MiniBOONE, Minos, ICE Cube...)

•
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{\mu\mu} = |U_{\mu4}|^2 (1 - |U_{\mu4}|^2)$$

• $v_e^{(n)}$ appearance (LSND, Karmen, MiniBooNE, Opera, Icarus, JSNS...)

•
$$P_{\mu e} = 4\sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{\mu e} \approx \frac{1}{4}\sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance requires $\nu_{\mu} \& \nu_{e}$ disappearance

• $v_{e}^{(-)}$ disappearance (Reactor, Gallium, ...)

•
$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{ee} = |U_{e4}|^2 (1 - |U_{e4}|^2)$$

• $\bar{\nu}_{\mu}$ disappearance (CDHS, MiniBOONE, Minos, ICE Cube...)

•
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{\mu\mu} = |U_{\mu4}|^2 (1 - |U_{\mu4}|^2)$$

• v_e appearance (LSND, Karmen, MiniBooNE, Opera, Icarus...)

•
$$P_{\mu e} = 4\sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance (via v_s) requires $\nu_{\mu} \& \nu_{e}$ disappearance

Anomalous findings & Sterile Neutrinos

... results against sterile neutrinos !

.... anomalies at $L_{[m]}/E_{[MeV]} \sim 1 \; m/MeV$

пп

LSND (stopped π⁺ beam**) – 1990's**

Anomaly on the electron antineutrino interaction rate

LSND (stopped π⁺ beam**) – 1990's**

By-product charged mesons

- K mesons (493.677 MeV/c²)
 - The energy of the proton beam is too low to create a substantial number of K mesons
- π^- mesons (139.6 MeV/ c^2)
 - The great majority (~99%) capture on the target nuclei: $\pi^- + {}^A_Z X \rightarrow n + {}^{A-1}_{Z-1} Y$
 - Then decay and rarely produce neutrinos
- π^+ mesons (139.6 MeV/c²)
 - Come to rest within the target (less than 1% disintegrate in flight)
 - And then decay at rest

π^+ decay at rest: the « relevant » u's

- 1) $\pi^+ \rightarrow \mu^+ + \nu_\mu$
 - Decay At Rest (DAR)
 - Prompt neutrino emission
 - 2 body decay (Q= 33.91 MeV) Monoenergetic 29.8 MeV ν_{μ} emission

- 2) $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_\mu}$
 - Delayed emission (muon decays with a 2.2 μs lifetime)
 - 3 body decay (ν energy between 0 and $m_{\mu}/2$)
 - v_e , and $\overline{v_{\mu}}$ have a well-defined « Michel » spectra

LSND Search for $\overline{\nu_e} + p \rightarrow e^+ + n$

Reines et al. in Physical Review 117 (159) 1960 reported σ =12⁺⁷-4 10⁻⁴⁴ cm²

IBD: detecting (e⁺,n) in time / space coincidence

- After the IBD reaction (e+,n) are produced simultaneously
- Step 1) e⁺ detection
- Step 2) neutron detection
- Step 3) check that time-difference is less than a few μs

Gallium Anomaly

⁵¹Cr Mono-Energetic Neutrino Source

- Electron capture isotopes decay to two bodies →
 mono-energetic beam of neutrinos at low energies: ⁵¹Cr + s-shell e⁻ → ⁵¹V + v_e (+ X-ray)
- Validated the results of radiochemical solar neutrino experiments (not used for calibration)

Decay scheme of ⁵¹Cr to ⁵¹V through electron capture.

- 90% of the time the capture goes directly to the ground state of ⁵¹V and you get a 750 keV neutrino
- 10% of the time it goes to an excited state of ⁵¹V and you get a 320 keV photon plus a 430 keV neutrino

Facts about the ⁵¹Cr neutrino generator

• Can be produced with thermal neutron capture (irradiation)

(⁵⁰Cr has a 17 barn neutron capture cross section)

- Mega-Curie scale sources have been produced by both Gallex, SAGE, and later for BEST
 1 Mega-Curie = 3.7 × 10¹⁶ Bq !!!
- Has a long, but not too long, lifetime (39.9 days) → <u>definitively and issue but not a show stoppe</u>r
- Has one, relatively easy to shield, gamma that accompanies 10% of decays.
 - 5 cm of tungsten reduce 320 keV γ rate from 1 MCi to 1 Hz

Production of ⁵¹Cr neutrino generator

• First step:

- Enrichment of ${}^{50}Cr$ by gas centrifugation in form of chromium oxyfluoride ${}^{50}CrO_2F_2 \rightarrow {}^{50}CrO_3 \rightarrow {}^{50}Cr$ metal
- Second step:
 - Irradiation of ⁵⁰Cr in a nuclear reactor core (slow / thermal neutrons)
 - May need multiple irradiations of a few tens of days

Examples in neutrino physics

GALLEX

(1) 1.17 MCi 1994 -1995
(2) 1.87 MCi 1995 -1996

The Gallex neutrino generator

- Made in the Siloé reactor in Gernoble, France (35 MW)
- Two sources produced from the same enriched Cr (38.6% ⁵⁰Cr)

Characteristics of the production of the two sources in the Siloé reactor.

	1.67 MCi	1.89 MCi
Mean neutron flux $(n / cm^2.s)$	5.2×10^{13}	5.6×10^{13}
Duration of the irradiation	23.8 d	26.5 d
Chromium weight (g)	35530 ± 10	35575 ± 10
	First source	Second source

• Dismantled in Saclay and sent to INFN in 2017

Cr capsule

Transportation of a ⁵¹Cr neutrino source

Challenge: ½ of the activity after irradiation is lost every 27 days !!!

- Step 1: from production site to airport
 - By truck / train
- Step 2: from production airport to detector airport
 - By plane
 - IAEA Limits ⁵¹Cr transport in a type B(U) container by air: 90 PBq (2,4 MCi) per individual package
- Step 3: from detector airport to detector site
 - By truck

Gallium Neutrino Anomaly

 Test of solar neutrino radiochemical detectors GALLEX and SAGE

• ⁷¹Ga/³⁷Ar + $\mathbf{v}_{e} \rightarrow {}^{71}\text{Ge}/{}^{37}\text{Cl} + e^{-}$

- 4 calibration runs with 0.6 2 MCi
 Electron Capture v_e emitters
 - Gallex, <L>=1.9 m
 ⁵¹Cr, 750 keV
 - Sage, <L>=0.6 m
 ⁵¹Cr & ³⁷Ar (810 keV)
- Deficit observed
 - 3**σ** anomaly
 - Supported by lates ⁷¹Ga(³He,³H)⁷¹Ge cross section measurements

Mixing

cea

The Reactor Antineutrino Anomaly

EABT REACTOR

47

Nuclear Fission

#neutrinos released / fission

#neutrinos released / GW

T. Lasserre – Mona 2022

Overview of reactor neutrino spectra

- Fission-induced neutrino spectra for ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Spectra between 0 to 10 MeV
- Shape and rate depend on the considered isotope
- Reactor v spectrum is a mixture of the spectra of the 4 main fissile isotopes, ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, weighted by their fission fractions α₂₃₅, α₂₃₈, α₂₃₉, α₂₄₁

Reactor Fuel evolution (burn-up)

A closer look at the reactor neutrino spectrum of ²³⁵U

- The neutrino spectrum for a specific isotope is a weighted mixture of the spectra of all fission products involved after the fission
- It is composed of a superimposition of
 several thousand individual β-decay
 branches
- It can painfully be calculated (15% uncertainty), or measured by a dedicated experiment (ie. ILL in the 80's, Double Chooz/Daya Bay, few% uncertainty)
- Not (yet) measured below 1.8 MeV IBD ($\overline{\nu_e}p \rightarrow e^+n$) threshold

Th. Lasserre - ISAPP 2024

C S S

Reactor Neutrino Flux Evaluation

fission⁻¹.MeV⁻¹ β spectra Magnetic BILL spectrometer 10⁻² 10⁻³ 241Pu 10⁻⁴ 239Pu 235U 10⁻⁵ 2 3 4 5 6 7 8 9 β kinetic energy (MeV) 2011: Reevaluation of the e - v conversion procedure

A. A. Hahn, K. Schreckenbach et al., Phys. Let. B218,365 (1989)

New Reactor v-Fluxes / IBD - 2011

Increased prediction of detected flux by 6.5%

Flux: Neutrino Emission:

- Improved reactor neutrino spectra \rightarrow +3.5%
- Accounting for long-lived isotopes in reactors $\rightarrow \pm 1\%$

IBD: Neutrino Detection:

- Reevaluation of $\sigma_{IBD} \rightarrow +1.5\%$ (evolution of the neutron life time)
- Reanalysis of all SBL experiments

The Reactor Anomaly (2011)

Sterile Neutrino Interpretation

Reactor Experiments dedicated to sterile neutrino search

Searching for sterile ν at reactors

Testing $\mathbf{v}_{e}^{(-)}$ disappearance anomalies \mathbf{I}

- Input from sterile neutrino fits (anomalies)
 - $\Delta m^2 \approx 0.1-10 \text{ eV}^2 \rightarrow L_{osc}(m) = 2.5 \frac{E(\text{MeV})}{\Delta m^2(\text{eV}^2)} \approx 2-10 \text{ m}$ $\sin^2(2\Theta_{ee}) \approx 0.01-0.15$
- Experimental specifications

Cea

- Compact neutrino source (<< L_{osc})
- Good vertex and energy resolutions (<< L_{osc})
- High statistics (few % stat. uncertainty)
- Few % syst. uncertainty \rightarrow Low Backgrounds
- Search for a new oscillation pattern in E & L completed by normalization information

Sterile v Observable @Reactor

Electron antineutrino Detection (IBD)

Experimental challenges

- Compact reactor core
 - No oscillation smearing
- High statistics (few 100 evts/day/t)
 - → High Power (10-3000 MW)
 → Short baselines (5-50 m)
- Highly enriched fuel
 → Well known ²³⁵U fission spectrum
- Reactor ON/OFF periods
 - \rightarrow Moderate overburden compensated by accurate measurement of the cosmogenic bkg component (induced by muons)
- But <u>challenging</u> reactor-induced backgrounds (γ and n)
 - → Need Particle ID and comprehensive shieldings S/B around 1!

The Stereo Experiment

IBD ν fluxes from U-235 and Pu-239

Latest result from STEREO (orange band), which has provided the most accurate measurement of antineutrino flux from U-235 fission to date. Support deficit of U-235 wrt HM, but not with Bestiole

Summary of all rates info Supports deficit in U-235 (uncertain for Pu-239) sterile ν : deficit should be the same for all isotopes \Rightarrow disagrees with these observations.

Example of state-of-the-art (2024) neutrino flux summation model IBD flux from uranium-235 fission by -(7.5 ± 3.9)% compared with the HM model. This shift would significantly reduce the statistical significance of the RAA.

Example of state-of-the-art neutrino flux conversion model. Reference model for the evaluation of the RAA

Remark on the ν flux measurement

ЯДЕРНАЯ ФИЗИКА, 2021, том 84, № 1, с. 3–11

ИЗМЕРЕНИЕ ОТНОШЕНИЯ КУМУЛЯТИВНЫХ СПЕКТРОВ БЕТА-ЧАСТИЦ ОТ ПРОДУКТОВ ДЕЛЕНИЯ ²³⁵U И ²³⁹Рu ДЛЯ РЕШЕНИЯ ЗАДАЧ ФИЗИКИ РЕАКТОРНЫХ АНТИНЕЙТРИНО

= ЯДРА

© 2021 г. В. И. Копейкин^{1)*}, Ю. Н. Панин¹⁾, А. А. Сабельников¹⁾

Поступила в редакцию 19.07.2020 г.; после доработки 19.07.2020 г.; принята к публикации 19.07.2020 г.

Выполнен первый цикл измерений отношения кумулятивных спектров β -частиц изотопов ²³⁵U и ²³⁹Pu, делящихся тепловыми нейтронами. Обнаружено, что кривая отношения спектров β -частиц ²³⁵U/²³⁹U, измеренная в настоящей рабосте, лежит на 5% ниже такой же кривой, полученной из измерений группы ILL. Проведенный анализ показал, что это связано с ошибочным завышением на 5% и "спектр $\bar{\nu}_e^{-35}$ U в момент рождения", который восстанавливается из кумулятивного спектра β -частиц ²³⁵U. Полученные данные объясняют эффект "реакторной антлиейтринной аномалии".

DOI: 10.31857/S0044002721010128

ВВЕДЕНИЕ

Оценки спектра антинейтрино (*ie*,) ядерного реактора впервые получены Альваресом в 1949 г., см. работу Райнеса и Коузна [1], в которой по этим данным они рассчитали ожидаемое сечение процесса обратного *д*-распада

 $\bar{\nu}_e + p \rightarrow n + e^+$

в потоке реакторных $\bar{\nu}_e$. С тех пор проводятся исследования спектра $\bar{\nu}_e$, сформировалось и развивается новое направление — спектроскопия реакторных $\bar{\nu}_e$. Знание спектра $\bar{\nu}_e$ необходимо для интерпретации ведуцихся и гланирования новых нейтринных экспериментов. Особую актуальность изучение спектра $\bar{\nu}_e$ приобрело в последние годы в связи с повышением точности измерений, постановкий развитием нейтринных экспериментов и развитием нейтриных издуствых спериментов и развитием нейтриной издустриментов и развитием нейтринной издустрии на здерных реакторах.

Спектр $\bar{\nu}_e$ в области энергий, превышающих порог реакцая (1) $E_{\rm th}=1.8$ МэВ, формируется от β -распада продуктов деления изотопов топлива $^{235}{\rm U}$, $^{239}{\rm Pu}$, $^{239}{\rm Du}$, $^{239}{\rm Du}$, $^{239}{\rm Du}$, $^{239}{\rm Du}$ вносят подавляющий вклад. Наиболее пцательное моделироване спектров $\bar{\nu}_e$ изотопов урана и плутония было проведено в 2011 г. [2, 3] по данным измерений кумулятивных спектров $\bar{\beta}$ -частиц этих пэотопов, выполненных группой института Лауэ—Ланжевена (ILL)[4–7]. Оказалось [8], что измеренный на станратио удалении \sim 15–100 м от реактора выход

реакции (1) на ~5% меньше, чем ожидаемый выход по данным работ [2, 3]. Обнаруженный 5% дефицит измеренного выхода к ожидаемому ("reactor antineutrino anomaly") обычно связывают с двумя причинами: – существованием стерильных нейтрино,

существованием стериялия истрино,
 – ошибками в измерениях спектров β-частиц
 (1) ²³⁵U и ²³⁹Pu группы ILL.

Гипотеза существования стерильных нейтрино, проверяется с помощью нескольких детекторов *b*.е., расположен пых на расстояниях менее 15 м от реакторов. Настоящая работа Курчатовского института (KI) нацелена на проверку измерений спектров *β*частиц ²³⁰U и ²³⁹Pu. Статъв построена следующим образом. Вначале мы кратко рассмотрим способы определения спектра реакторных *й*-е в той части, которая необходима для анализа эксперимента. Далее опишем методику опыта, полученные результаты и проведем их обсуждение. Отметим, что эксперимент в настоящее время продолжается, однако полученный материал уже позволяет сделать определенные выводы.

1. О СПОСОБАХ ИЗУЧЕНИЯ СПЕКТРА РЕАКТОРНЫХ $\bar{\nu}_e$

1.1. Расчетный метод

Спектры антинейтрино ρ_{ν}^{i} делящихся изотопов *i*, где индексы *i* = 5, 9, 8, 1 относятся соответственно к изотопам ²³⁵U, ²³⁹Pu, ²³⁸U и ²⁴¹Pu, получаются путем суммирования вкладов всех β -переходов от всех продуктов деления. На практике спектры

- New reactor beta spectrum measurements performed at a research reactor in National Research Centre Kurchatov Institute (KI)
- New relative measurements of the ratio between cumulative β spectra from U-235 and Pu-239
- A 5% discrepancy with the β spectra measured at Institut Laue-Langevin (ILL) is observed (normalization)
- Lead to new predictions are consistent with the results of Daya Bay, Double Chooz, RENO, STEREO
- Could be the final explanation for the RAA $igodoldsymbol{eta}$
- And then ower the interest for light sterile neutrino search (back to the <2011 status-quo)

¹⁾Национальный исследовательский центр "Курчатовский институт", Москва, Россия. *E-mail: kopeikin46@yandex.ru

Neutrino-4 Experiment

- Overburden: 3-5 mwe
- Baseline: 6-12m
- Pure ²³⁵U fission spectrum compact core
- 5 x 10 identical cells filled with LS-Gd
 Oscillation analysis independent of the prediction
- High external background mitigated by
 Heavy shielding PSD capability
- 200 IBD/day S/B ~ 0.5 About 500 days of data

Neutrino-4: claim for a $\ll 2-3 \sigma \approx \text{signal}^{\parallel}$

Neutrino Source Experiment dedicated to sterile neutrino search

Neutrino Generator Experiment

For two flavors:

BEST experiment

- Source: ${}^{51}Cr (t_{1/2} = 26 \text{ d}) \rightarrow \text{electron neutrinos with 0.75 MeV}$
- Detector: liquid-metal Ga in 2 zones
- Detection: v_e capture at two baselines then count ⁷¹Ge atoms

V. V. Barinov et al. Phys. Rev. C 105, 065502, 2022

Th. Lasserre - ISAPP 2024

BEST results – R_{in}, R_{out}, R_{out} / R_{in}

- 3.4-MCi ⁵¹Cr source at the center of two nested Ga volumes.
- Production measurements of ⁷¹Ge through the CC reaction: ⁷¹Ga(v_e,e⁻)⁷¹Ge, at two average L_{in/out}
- The measured ratio (R) of the measured rate of ⁷¹Ge production at each distance to the expected rate from the known cross section are:
 - R_{in} = 0.791±0.05 !
 - R_{out} = 0.766±0.05 !
- The ratio of the outer to the inner result is $R_{out}/R_{in}0.97\pm0.07$

BEST results compared to Gallex / Sage

EST results : sterile neutrino interpretation

- Proofed technology & methodology.
 BEST results are robust
- R_{in} / R_{out} consistent with 1: No specific sterile neutrino signature
- Results consistent with $v_e \rightarrow v_s$ oscillations with:
 - Large $\Delta m^2 > 1 eV^2$
 - Large Mixing sin²2θ (≈0.4)
- Considering the sterile neutrino hypothesis:
 - Large $\Delta m^2 \&$ Large mixing !

Beta-decay Experiment

KATRIN experiment

Sterile Neutrino Signature in β -decay

ПП

Th. Lasserre - ISAPP 2024

ПШ

Th. Lasserre - ISAPP 2024

ТΠ

Th. Lasserre - ISAPP 2024

83

ТΠ

Th. Lasserre - ISAPP 2024

٦Π

Sterile Neutrino Modeling

Fit Parameters:

- m² neutrino mass (fixed/free/constrained)
- **E**_{0,fit} endpoint
- **N** signal normalization
- B energy-independent background rate

 m_4^2 4th neutrino mass $|U_{e4}|^2$ 4th neutrino mixing

Synergy with oscillation experiments

- Oscillation Electron Disappearance Experiments
 - $\Delta m_{41}^2 = m_4^2 m_1^2 \approx \Delta m_{42}^2 \approx \Delta m_{43}^2$
 - $\sin^2 2\Theta = 4 |U_{e4}|^2 (1 |U_{e4}|^2)$
- KATRIN
 - m_β and m_4
 - $\sin^2 \Theta = |U_{e4}|^2$
- Conversion KATRIN -to- Oscillation
 - $\Delta m_{41}^{2} \simeq m_{4}^{2} m_{\beta}^{2}$
 - $\sin^2 2\Theta = 4 \sin^2 \Theta (1 \sin^2 \Theta)$
- Projected KATRIN final sensitivity (1000 days of data – reduced background)

KATRIN and the sterile neutrino puzzle

✓ Anomalies observed at reactors and BEST

G. Mention, Phys. Rev. D 83, 073006 (2011) V. V. Barinov *et al.* Phys. Rev. C **105**, 065502, 2022 πп

KATRIN and the sterile neutrino puzzle

Anomalies observed at reactors and BEST

G. Mention, Phys. Rev. D 83, 073006 (2011) V. V. Barinov *et al.* Phys. Rev. C **105**, 065502, 2022

Stereo (and similar experiments) do not observe a signal

DANSS, arXiv:1911.10140 (2019) PROSPECT, Phys. Rev. D 103, 032001 (2021) – here new result in 2024 STEREO, Nature 613, 257–261 (2023)

Th. Lasserre - ISAPP 2024

ПП

KATRIN and the sterile neutrino puzzle

✓ Anomalies observed at reactors and BEST

G. Mention, Phys. Rev. D 83, 073006 (2011) V. V. Barinov *et al.* Phys. Rev. C **105**, 065502, 2022

✓ Stereo (and similar experiment) do not observe a signal

DANSS, arXiv:1911.10140 (2019) PROSPECT, Phys. Rev. D 103, 032001 (2021) STEREO, Nature 613, 257–261 (2023)

KATRIN is a complementary probe to oscillationbased experiments

KATRIN Collab., PRL. 126, 091803 (2021) KATRIN Collab. Phys. Rev. D **105**, 072004 (2022)

Accelerator Experiments dedicated to the search for sterile neutrinos

Neutrinos from accelerators

- Protons hit a target (e.g. made of beryllium)
- Generation of pions, kaons, and charmed mesons
- Mesons decay and produce neutrinos

Accelerator v proposals / projects

Туре	Source	App. /Dis.	Oscillation Channels	Projects
lsotope Decay at Rest	p + ⁹ Be → ⁸ Li + 2p n + ⁷ Li→ ⁸ Li ⁸ Li→ ⁹ Be + e ⁻ + \mathbf{v}_{e}	Dis.	$\mathbf{v}_{\mathrm{e}} \rightarrow \mathbf{v}_{\mathrm{e}}$	IsoDAR
Pion (Kaon) Decay at Rest	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ $ \downarrow \bullet \mathbf{e}^{+} \overline{\nu}_{\mu} \nu_{\mathbf{e}}$	App. & Dis.	$egin{aligned} & \mathbf{v}_{\mu} & ightarrow \mathbf{v}_{e} \ & \mathbf{v}_{e} & ightarrow \mathbf{v}_{e} \end{aligned}$	OscSNS, KDAR, JPARC-MLF
Pion Decay in Flight	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ $ \downarrow \mathbf{e^{+} } \overline{\nu}_{\mu} \nu_{\mathbf{e}}$	App. & Dis.	$\begin{array}{c} \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu} \\ \mathbf{v}_{e} \rightarrow \mathbf{v}_{e} \end{array}$	MINOS+, nuPRISM,
Low-E Neutrino Factory	$\mu^{+} \rightarrow \mathbf{e}^{+} \overline{\nu}_{\mu} \nu_{\mathbf{e}}$ $\mu^{-} \rightarrow \mathbf{e}^{-} \nu_{\mu} \overline{\nu}_{\mathbf{e}}$	App. & Dis.	$\begin{array}{c} \mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu} \\ \mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu} \\ \mathbf{v}_{e} \rightarrow \mathbf{v}_{e} \end{array}$	vSTORM

Th. Lasserre - ISAPP 2024

ТΠ

The Fermilab SBN program

The Fermilab SBN program

Short-Baseline Neutrino Program at Fermilab

Beam Experiment Sensitivities (example)

ПП

eV sterile ν : Take Away

- 3 σ anomalies calling for clarification
 - → $\Delta m^2 \approx eV^2$ Sterile Neutrino? Or Experimental Artifacts?
 - Caveat: tensions in global fits no global solution
- Reactor Neutrinos mostly reject the sterile neutrino hypothesis
 - Challenge: background mitigation (S/B close to 1)
- Radioactive Source (⁵¹Cr) confirm the Gallium anomaly
 - Confirm the Gallium anomaly
- KATRIN a new comer, somehow!
 - Reject the sterile neutrino hypothesis complementary!
- Neutrino Beams
 - 5-10 years timescale is going to shed light on the anomalies
 - Added value: allow studying sterile neutrino phenomenology, in case?

Thanks for your attention

Th. Lasserre - ISAPP 2024

KeV Neutrino Search

Th. Lasserre - ISAPP 2024

keV Sterile Neutrino and Dark Matter

- ✓ Dark matter constitutes 27% of the energy contents of the Universe
- ✓ But no particle of the standard model can explain the Dark Matter

keV Sterile Neutrino and Dark Matter

 Sterile neutrinos with a mass of the order of the kilo-electronvolt are viable candidates to explain the observations

How to Detect keV Sterile neutrino Relics?

Neutrino Decay

- ✓ If these neutrinos are present in abundance in the galaxies and galaxy clusters
- They could decay into a neutrino and a photon X, each taking half of the massenergy of the neutrino constituting the dark matter particle

Astrophysical Searches

Chandra Satellite

✓ These photons are searched for with X-ray satellites such as Chandra or XMM Newton

Is there a 7 keV Neutrino?

- The expected signal is extremely weak and the astrophysical backgrounds are significant
- Nevertheless two research teams recently discovered a non explained signal that could correspond to 7 keV neutrino
- \checkmark This remains obviously to be confirmed

keV Neutrino Search in Laboratory

KATRIN Spectrometer

- It would thus be interesting to test this hypothesis in laboratory
- It may be possible by modifying the KATRIN experiment currently dedicated to the direct measurement of the Standard Model neutrino mass
- This experiment, located in Germany, uses the most intense source of Tritium available for the scientific community

Tritium Beta Decay and Sterile Neutrinos

- Tritium decays into an electron and an electronic antineutrino
- ✓ The precise measurement of the electron energy spectrum allows to search for neutrino in the keV mass range

Beta-decay experiments

Th. Lasserre - ISAPP 2024

Expected signal without keV neutrino

Expected signal with a 10 keV Sterile Neutrino

The KATRIN experiment

Measurement with KATRIN: the challenge

Measurement with KATRIN: the challenge

KATRIN/TRISTAN sensitivity to steriles

Th. Lasserre - ISAPP 2024

ПΠ

KATRIN/TRISTAN sensitivity to steriles

Th. Lasserre - ISAPP 2024

ТΠ

Overview eV-keV-sterile hunt

Backup

MiniBooNE (FNAL)

Primary goal: look for \bm{v}_e appearance in a \bm{v}_μ beam Check the LSND with similar L/E

- Beam: π^+ (π^-) decay in flight
- Detection: Cherenkov + scintillation
- L/E ≈ 1 m / MeV
 - Baseline: 541 m
 - <u>200</u> < E (MeV) < 3000

MiniBooNE old-Results

- Results published from 2007-12
- Channel: (anti-) $\nu_{\mu} \rightarrow$ (anti-) ν_{e}
- Detection: $v_e(p)n \rightarrow e p(CCQE)$
- Results:
 - An overall 3.8 excess Mostly at low energy
- Backgrounds?
 - But MiniBooNE can't differentiate between electrons and gammas!
- not conclusive...

MiniBooNE new-Results in 2018

MiniBooNE allowed regions

ПΠ