Neutrino Telescopes

Anna Franckowiak Ruhr-University Bochum

Astronomisches Institut **RUHR-UNIVERSITÄT** BOCHUM

Learning Objectives

- How can we detect astrophysical neutrinos at various energies (focus on TeV-PeV neutrinos)?
- What is the background in the search for high-energy cosmic neutrinos and how can we disentangle it from the signal?
- Have have we detected with neutrino detectors alone (messenger searches / detections follow tomorrow)

Cosmic Neutrino Background

Cosmic micro-wave background

- Decoupled when Universe was 379,000 years old
- Density: 411 / cm³
- Temperature: 2.725 K

- Decoupled when Universe was ~1 second old
- Density: 336 / cm^3 (56 v_e)
- Temperature: 1.95 K

Neutrino capture on beta-unstable nuclides

• For example: tritium \rightarrow no energy threshold

Background:

- Measure electrons

- Background far more numerous, but maximum energy is smaller by twice the average neutrino mass (~eV)
- detector must have excellent energy resolution to separate signal from background
- **Ptolemy:** 100g of tritium, demonstrator by 2025 in Gran Sasso with 0.2g tritium

٠

Solar Neutrinos

Solar radiation:

- 98% light
- 2% neutrinos → at Earth:
 66 billion neutrinos / cm² / s

Neutrino Production in the Sun

Solar Neutrino Spectrum

The Homestake Experiment

$$\nu_{\rm e} + {}^{37}{\rm Cl} \longrightarrow {}^{37}{\rm Ar} + {\rm e}^{-}$$

Homestake: Results

Solution to the solar neutrino problem

Solar Neutrino Spectrum

GALLEX / SAGE (1991-2003)

Solution to the solar neutrino problem

Electron-Neutrino Detectors

Different detection technique: Cherenkov Effect

(Super) Kamiokande

RUB

Super-Kamiokande – "Image" of the Sun

Seasonal variation due to elliptic orbit of Earth around sun

Solution to the solar neutrino problem

Sudbery Neutrino Observatory (SNO)

Solution to the solar neutrino problem

Supernova Neutrinos

For a 25 solar mass star:

Stage	Duration
H → He	7x10 ⁶ years
He → C	7x10 ⁵ years
C → O	600 years
O → Si	6 months
Si → Fe	1 day
Core Collapse	1/4 second

- ~10⁵⁸ neutrinos in ~10s
- 99% of gravitational energy
- typical energy: 10-20 MeV

First and only Supernova neutrino detection

Optical detection of SN1987A in LMC

MeV neutrino burst

Diffuse Supernova Background (DSNB)

Core-Collapse Supernova (CCSN)

• Release ~10⁵³ erg of gravitational energies as neutrino emission

Super Kamiokande with Gadolinium

Gadolinium: highest affinity for capturing neutrons among all elements in nature.

0.1% concentration of Gd: 90% of neutrons will be captures
→ highly efficient background suppression

Diffuse Supernova Background (DSNB)

Core-Collapse Supernova (CCSN)

• Release ~10⁵³ erg of gravitational energies as neutrino emission

 Also, the latest update of DSNB search in SK-Gd using additional more condensed Gd-water data are exhibited

→ There is no significant DSNB signal, however, some excess appears to be visible in the signal region, which is 2.3σ tension from non-DSNB hypothesis

Looking forward to discovery of DSNB in the next decade !!

Next Generation Detector: Hyper Kamiokande

Super Kamiokande

Volume: 50kT

Hyper Kamiokande

Data taking start in 2027

Questions?!

How are high-energy neutrinos produced?

Neutrino Production Processes

Cosmic ray

$$\begin{array}{c}
pp\\p\gamma\\p\gamma\\target
\end{array} \left\{ \begin{array}{c}
\dots + \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu\\
\dots + \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu\\
\dots + \pi^0 \to \gamma\gamma
\end{array}$$

Neutrino Production Processes

$$\begin{array}{c} \text{Cosmic ray} \\ pp \\ p\gamma \\ p\gamma \\ \text{target} \end{array} \left\{ \begin{array}{c} \dots + \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu \\ \dots + \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu \\ \dots + \pi^0 \to \gamma\gamma \end{array} \right.$$

Gamma-rays are not exclusively produced in hadronic processes

Neutrino Production Processes

What are the Cosmic-Ray Sources?

High-energy Neutrino Detectors

- Huge volumes necessary: ~1km³ → need to use natural medium
- Transparent medium (Cherenkov emission of secondary charged particles)

High-energy Neutrino Detectors

IceCube (1 km³)

IceCube-Gen2 (8km³) planned

M.G. Aartsen *et al* 2017 *JINST* **12** P03012 M.G. Aartsen *et al* J.Phys.G 48 (2021) 6, 060501

KM3NeT (2 x 0.5 km³)

Under construction Predecessor ANTARES decommissioned after 14y

Two sites: ARCA for HE and ORCA for LE, roughly ~20% complete

S. Adrián-Martínez et al. arXiv:1601.07459

Baikal-GVD (1 km³) Under construction

2022: 10 clusters 2026: 18 clusters

A.D. Avrorin et al. arXiv:2011.09209

High-energy Neutrino Detectors P-ONE

planned deployment of 10 strings explorer in 2023-2024 70 strings between 2028-2030

M. Agostini et al. Nature Astronomy 4 (2020)

High-energy Neutrino Detectors

String
 Junction box — — ROV path

Tropical Deep-sea Neutrino Telescope (TRIDENT), South Chinese Sea

depth of ~3.5 km

Volume: 7.5 km³

2021: water quality measurements

Full deployment in 2030

Differences between ice and water detectors

Property	Lake Baikal	Mediterranean (ANTARES)	Antarctic Ice
Absorption length (m)	22	60	100
Effective Scattering (m)	480	265	25
Depth	1370	2475	2450
Noise	Quiet	⁴⁰ K, bioluminescence	Quiet
Retrieve/redeploy	Yes	Yes	No

Long scattering length in Mediterranean implies better angular resolution; long absorption length for IceCube allows sparser instrumentation. Smaller depth implies larger atmospheric muon background.

Neutrino Cross-Sections

Glashow resonance:

resonance when the center-of-mass energy of the system reaches the mass of the mediating boson. For electrons at rest and the mass of the W[±] boson (80 GeV), the Glashow resonance occurs at a neutrino energy of 6.3 × 10¹⁵ eV

Absorption of High-Energy Neutrinos in the Earth

For high-energies Earth becomes opaque to neutrinos

SOUTH POLE NEUTRIND OBSERVATORY

The South Pole

Elevation: 2,835 m Average temperate: -28°C (summer), -60°C (winter)

IceCube Coll., JINST 12 P03012 (2017)

IceCube Coll., JINST 12 P03012 (2017)

Event Signatures

a) through-going muon track E ~ 140 TeV
b) Starting muon track E ~ 70 TeV

Charged current interaction of muon neutrino outside / inside the detector

Event Signatures

through-going muon track E ~ 140 TeV

- Starting muon track E ~ 70 TeV
- Shower event E ~ 1 PeV

Neutral current or electron neutrino charged current interaction

W

e.-m.

cascade

hadronic

cascade

Event Signatures

- a) through-going muon track E ~ 140 TeV
- b) Starting muon track E ~ 70 TeV
- c) Shower event E ~ 1 PeV
- d) "double bang" event E ~ 200 PeV

Tau neutrino charged current interaction

hadronic

cascade

hadronic

cascade

W

Only for very large energies the two showers can be separated (otherwise signature c)

Atmospheric Neutrinos - Production

Atmospheric Neutrinos - Spectrum

IceCube Coll., Science 342, 2013, PRL 113, 101101 (2014)

Seite 65

Diffuse flux now seen in different channels

- Selected horizontal and up-going muon tracks
- Sensitive to astrophysical neutrinos above ~100 TeV

Spectrum of diffuse flux

Spectrum of diffuse flux: not a power law?

Can other neutrino detectors see the diffuse flux?

First hint for diffuse flux with Baikal-GVD

Exciting First Results from KM3NeT

- Significant event observed with huge amount of light
- Horizontal event (1° above horizon) as expected since earth opaque to neutrinos at PeV scale
- 3672 PMTs (35%) were triggered in the detector
- Muons simulated at 10 PeV almost never generate this much light
- KM3NeT/ARCA21 Preliminary 4000 0.35 107 $10 \text{PeV} \mu \text{MC}$ KM3NeT 3500 1PeV μ MC Preliminary 0.30 106 events VHE event 3000 0.25 1 in 110 million 105 events f triggered PMTs data events of 0.20 10⁴ ⁴ ⁰ ¹ ¹ ⁰ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ Fraction 0.15 ້ວ 1500 0.10 1000 0.05 10¹ 0.00 500 3000 5000 0 1000 2000 4000 100 # of triggered PMTs -0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 cos(zenith)

Likely multiple 10's of PeV

Talk by J. Coehlo on behalf of KM3NeT:

RUB https://agenda.infn.it/event/37867/contributions/233917/attachments/121916/178248/JCoelho_202406_Neutrino_KM3NeT.pdf Seite 71

Exciting First Results from KM3NeT

Talk by J. Coehlo on behalf of KM3NeT:

RUB https://agenda.infn.it/event/37867/contributions/233917/attachments/121916/178248/JCoelho_202406_Neutrino_KM3NeT.pdf Seite 72
What are the sources of the highenergy diffuse neutrino flux?

→ Next lecture

Cosmogenic Neutrinos

Cosmogenic Neutrinos

Cosmogenic Neutrinos

Neutrinos with the Pierre Auger Observatory

Neutrinos with the Pierre Auger Observatory

Neutrinos with the Pierre Auger Observatory

RNO-G

Askaryan effect:

- Charge accumulation in the shower front gives rise to a changing current, which gives rise to radio emission
- Emission is coherent at frequencies corresponding to the size of the shower

Trinity

One of 18 planned Trinity telescopes

Trinity demonstrator

Deployed: Oct 2023

Frisco Peak, UT

GRAND

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) . COLCA VALLEY, PERU

Diffuse Flux, 1:1:1 Flavor Ratio

Ackermann et al., JHEAp 36 (2022) 55-110

Other detector Concepts

O. Scholten 2011

trees are efficient broadband antennas

S. Prohira 2024, arXiv:2401.14454

- How can we detect astrophysical neutrinos at various energies (focus on TeV-PeV neutrinos)?
 - Lowest energies (CNB): neutrino capture on unstable nucleus (e.g. tritium), extremely challenging, excellent energy resolution required
 - MeV range: Neutrino capture on stable nucleus (Chlorine, Gallium), densely instrumented water Cherenkov detectors
 - TeV-PeV range: sparsely instrumented water/ice Cherenkov detectors, challenge: atmospheric background
 - Highest energies: radio emission of neutrino induced showers in ice, Earth skimming tau events

- What is the background in the search for high-energy cosmic neutrinos and how can we disentangle it from the signal?
 - Atmospheric neutrinos and muons: restrict search to Northern sky, look for starting events, large energy threshold in Southern sky, correlation with known source positions and times (next lecture)
- Have have we detected with neutrino detectors alone (multiwavelength searches / detections follow tomorrow)

- Have have we detected with neutrino detectors alone (multimessenger searches / detections follow tomorrow)
 - The Sun
 - SN1987A (hint for diffuse supernova background)
 - Diffuse 10TeV-PeV flux
 - Evidence for TeV-PeV source candidates (next lecture)

Multi-messenger Astronomy with Neutrinos

Anna Franckowiak Ruhr-University Bochum

Astronomisches Institut RUHR-UNIVERSITÄT BOCHUM

Open questions

Neutrino background from stars

The DSNB dominates at higher energies (above 10 MeV), while stellar neutrinos contribute primarily at lower energies.

Thanks to Subhadip

DOM failure

- The majority of the failures (55) occurred before post-deployment commissioning; we hypothesize that these are primarily attributable to cable failures, water leaks, or freeze-in damage.
- 32 DOMs have failed after commissioning. No particular pattern in the failures is observed, other than they are typically during non-standard operation or an exceptional event: a power outage, calibration run, or flash filesystem upgrade. Diagnosis of DOM failures beyond identifying electrical shorts is challenging.
- Currently we estimate the mean failure rate to be 4.1 ± 1.2 yr-1, resulting in a survival fraction in 2030 of 97.4 ± 0.3%. While this simplified model does not account for an increase in failure rate due to component aging, the recent observed failure rate since detector completion of 1.7 yr-1 is significantly lower than the mean predicted rate.
- Each DOM is equipped with two ATWD chips, and each chip is provided with three different amplifier gains with nominal values of 16, 2, and 0.25 in order to completely cover the dynamic range of the PMT output (up to 150 mA, or 7.5 V, when saturated).

What is the solar neutrino problem?

19 Antworten

Why don't we detect neutrinos from more supernovae?

19 Antworten

Which element was added to the water of Super-Kamiokande? 19 Antworten

How many neutrinos were detected from supernova SN1987A? 19 Antworten

What is the average energy of supernova neutrinos?

19 Antworten

- What is multi-messenger astronomy?
- What are the multi-messenger observations involving neutrinos and what can we learn from them?

Multi-messenger Astronomy

Multi-messenger Astronomy

Birth of MM Astronomy with Neutrinos

Astronomy Picture of the Day June 5, 1998

The Sun in Neutrinos seen by Super-Kamiokande

Birth of MM Astronomy with Neutrinos

The Sun in Neutrinos seen by Super-Kamiokande Combining neutrinos and electromagnetic information led to:

The solar neutrino problem

RUB

Birth of MM Astronomy with Neutrinos

The Sun in Neutrinos seen by Super-Kamiokande Combining neutrinos and electromagnetic information led to:

- Confirmation of model of fusion
- Breaking the standard model of particle physics

First (and only) detection of a Supernova

Optical detection of SN1987A in LMC

- ~10⁵⁸ neutrinos in ~10s
- 99% of gravitational energy
- typical energy: 10-20 MeV

MeV neutrino burst

Location of Magellanic Clouds

SN1987A light curve

First (and only) detection of a Supernova

First direct confirmation of our basic picture of a stellar collapse

Neutrino cooling and neutrino-driven wind ($t \approx 10$ s)

Woosely & Janka, Nature Physics 2005

First (and only) detection of a Supernova

First direct confirmation of our basic picture of a stellar collapse

Neutrino cooling and neutrino-driven wind ($t \approx 10$ s)

Constraints on exotic physics (e.g. axions)

Lella et al. PRD 109 (2024)

Woosely & Janka, Nature Physics 2005

Supernova early warning system

Supernova early warning system

MeV neutrino burst as trigger for electromagnetic supernovae observations

SNEWS

Al Kharusi et al New J. Phys. 23 2021

Supernova early warning system

SNEWS SUPERNOVA EARLY WARNING SYSTEM

MeV neutrino burst as trigger for electromagnetic supernovae observations

SNEWS 2.0:

- new infrastructure
- public sub-threshold alerts
- pointing using inter-experiment triangulation
- searches for pre-supernova neutrinos

Detectors participating in SNEWS

Supernova localization

Coordinated follow-up observations with widefield-of-view instruments are necessary

Catching the next Galactic Neutrino Supernova

- Unprecedented insights into the explosion mechanism
- Information about surrounding material
- Spatially resolved imaging of early phases of explosion

Catching the next Galactic Neutrino Supernova

- Unprecedented insights into the explosion mechanism
- Information about surrounding material
- Spatially resolved imaging of early phases of explosion

Delay between neutrino burst and optical signal: 2 min to 2 days

Catching the next Galactic Neutrino Supernova

Sensitivity to SN today

In the future: Hyper-Kamiokande (~2030)

Distinguish different supernova models

Supernova detection with DM Detectors

Multi-messenger Astronomy

What are the Cosmic-Ray Sources?

Diffuse Neutrino Flux Detected

Multi-messenger Diffuse Flux

Neutrino Sky Map

Neutrinos alone do not reveal the sources (yet)

Galactic Contribution

GeV gamma-ray sky by Fermi-LAT

Cosmic rays propagate through the Galaxy and interact with photons and gas

Galactic Contribution

GeV gamma-ray sky by Fermi-LAT

Galactic Contribution

GeV gamma-ray sky by Fermi-LAT

Search for Extragalactic Sources: Strategies

- Look for hotspots in the neutrino sky → identify source candidates
- Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

Search for Extragalactic Sources: Strategies

- Look for hotspots in the neutrino sky
 → identify source candidates
- Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

Extragalactic Sources: hot spot search

Challenge: Atmospheric background, large trial factor

Extragalactic Sources: hot spot search

Solution: Use predefined source lists to reduce trials

Search for Extragalactic Sources: Strategies

- Look for hotspots in the neutrino sky → identify source candidates
- 2. Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

Extragalactic Sources

110 sources based on gamma-ray properties and weighted with neutrino search sensitivity

Most significant candidate:

NGC 1068 (M77), 4.2σ

- Nearby (M=14Mpc) Seyfert 2 galaxy
- AGN and star-forming activity

Combining gamma-ray source list with neutrino data allowed neutrino source detection

Complete Multi-wavelength data of NGC 1068

More Seyferts?

Assumption: Neutrino production in disk corona, intrinsic X-ray flux (2–10 keV) as proxy for neutrino emission

More Seyferts?

No assumption about neutrino emission model

Two more source candidates at 2.5 σ and 2.1 σ level

IceCube arXiv:2406.07601, see also Neronov et al. PRL 132 (2024) 10, 101002

Search for Extragalactic Sources: Strategies

- Look for hotspots in the neutrino sky → identify source candidates
- Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

Neutrinos as Triggers

Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- "Gold" alert stream: 10 / yr, ~5 / yr of cosmic origin
- Median latency: 30 sec

Goal: Find electromagnetic counterpart

Astropart. Phys., 92, 30 (2017)

First example: IC-170922A – a 290 TeV Neutrino

Signalness: 56.5%

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Seite 144
IC-170922A – a 290 TeV Neutrino

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Seite 145

Fermi-LAT finds Flaring Source

Fermi-LAT Coll., ApJ 846, 2017, Video credits: Matteo Giomi, Fermi-LAT Collaboration Seite 146

Fermi-LAT finds Flaring Blazar, TXS 0506+056

Fermi-LAT finds Flaring Blazar, TXS 0506+056

Fermi-LAT finds Flaring Blazar, TXS 0506+056

3 sigma significance including trials> 6 PeV protons accelerated in the source

Do gamma-ray blazars produce all diffuse neutrinos?

Fermi Blazars

Gamma rays tell us **where** to look for neutrinos

Fermi-LAT blazars can only be responsible for a small fraction of the observed ν 's.

Seyfert 2

Seyfert 1 QSO

Other Sources?

Other neutrino source candidates

ZTF Follow-up Pipeline

Neutrino IC191001A (200 TeV) coincident with Tidal Disruption Event AT2019dsg

Distance: z = 0.05 (d = 230 Mpc), thermal X-rays, no gamma rays

Chance coincidence: 0.2% to find a TDE that bright (including trials)

Radio Data reveal long-lasting activity of central engine

Seite 157

Neutrino Production in TDEs

Hayasaki, Nature Astronomy 2021, Winter & Lunardini, Nature Astronomy 2021, Liu et al. PRD, 102 (2020) Murase et al. ApJ 902 (2020)

Two more TDE candidates!

Multi-messenger Astronomy

Neutrinos and Gravitational Waves

MeV Neutrinos and Gravitational Waves: CCSN

Increase detection probability of GW signal from a CCSN by combining GW and neutrino signals

MeV Neutrinos and Gravitational Waves: BNS merger

Even single MeV neutrino
→ pin down energy scale of thermal neutrino emission from BNS mergers
→ support or disfavor formation of remnant massive neutron stars

TeV Neutrinos and Gravitational Waves: BNS merger

Neutrino could help to constrain direction and teach us about the GW source environment

LIGO, Virgo, Auger, ANTARES, IceCube, ApJ 850 (2017)

New Neutrino Detectors

- Larger detectors
- New sites
- New technologies

New Detectors

Multiwavelength Instruments

- Increased sensitivity
- Increased wavelength coverage
- Increased cadence

Learning Objectives

- What is multi-messenger astronomy?
 - Observing sources with neutrinos and photons or neutrinos and gravitational waves
- What are the multi-messenger observations involving neutrinos and what can we learn from them?
 - Sun: neutrino oscillation, fusion in solar core
 - SN1987A: stellar evolution, explosion mechanism
 - Diffuse flux: majority of sources are gamma-ray dark
 - Galactic Plane: cosmic-ray population and propagation
 - Seyfert galaxy NGC 1068: neutrino production in Corona
 - Blazar TXS 0506+056: origin of ~10PeV cosmic rays

Summary

Stay Tuned!