Neutrino oscillation experiments

ISAPP School "Neutrinos and Dark Matter" KIT/Bad Liebenzell, 20 Sep 2024 Michael Wurm JGU Mainz/PRISMA+

Contents of this talk

- Neutrino oscillations in a nut-shell
- Discovery of neutrino oscillations
- Current knowledge on oscillation parameters
- Two ways to order neutrino masses
- Accelerator neutrinos and CP violation

Why can neutrinos oscillate?

- Neutrinos appear in three families
- Neutrinos appear to be massless
 - \rightarrow upper limit: m_{β} < 0.5 eV
- Participate only in weak interactions
 - → only left-handed neutrinos or right-handed antineutrinos
 - → assumed mass-less in the Standard Model (mostly for convenience)
- but IF they have tiny masses mass and flavor eigenstates can be different (rotated)
- IF so, eigenstates will interfere while propagating → neutrino oscillations

Neutrino masses and mixing

QM: For massive neutrinos with different masses,

the three neutrino flavor-eigenstates (taking part in weak interactions)

can be a superposition of

- the three mass-eigenstates (propagating through space)
- The relative fractions of mass in flavor states are described by a 3x3-mixing matrix

$$\begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$
flavor-
mass-
states
states

PMNS-mixing matrix corresponds to a 3D-rotation between flavor and mass eigenspaces

 \rightarrow cf. CKM-matrix in quark-sector

Neutrino oscillation formalism

• propagation for $E_i = \sqrt{m_i^2 + p^2} = p + \frac{m_i^2}{2p} = E + \frac{m_i^2}{2E}$

• amplitude:
$$\mathcal{A}_{\nu_a \to \nu_\beta} = \langle \nu_\beta | \text{propagation} | \nu_\alpha \rangle = \sum_i U_{\beta i} U_{\alpha i}^* e^{-i(\frac{m_i^2}{2E})L}$$

• probability:
$$P_{\nu_a \to \nu_\beta} = |\mathcal{A}_{\nu_a \to \nu_\beta}|^2 = \sum_{i,j} U_{\beta i} U^*_{\alpha i} U^*_{\beta j} U_{\alpha j} e^{-i \left(\frac{m_i^2 - m_j^2}{2E}\right) L}$$

Parametrization of three-flavor mixing

Pontecorvo – The 'inventor' of v oscillations

1957

"... the neutrino may be a particle mixture and ... there is a possibility of real transitions neutrino to antineutrino in vacuum, provided that the lepton (neutrino) charge is not conserved."

1968

"If the lepton charge is not an exactly conserved quantum number, and the neutrino mass is different from zero, oscillations similar to those in K⁰ beams become possible in neutrino beams."

"From an observational point of view the ideal object is the sun."

Neutrinos from the Sun

from Learn Something New Every Day:

FACT: about 65 million neutrinos pass through your thumbnail every second.

Neutrinos from the Sun

Hydrogen burning in the Sun

Expected solar neutrino flux

flux at Earth $\Phi_{\gamma} \approx 4 \times 10^{21} / \text{m}^2 \text{s}$ $\rightarrow S_{\gamma} = 1367 \text{ W/m}^2$

electromagnetic luminosity

 $L_{\odot} = 3.85 \times 10^{26} \text{ W}$

neutrino luminosity $L_v \approx 2\% L_\odot$

First detection of solar neutrinos: Davis

- Location: Homestake mine (US)
- Depth: 1478 m
- Target material: 615 tons of C₂Cl₄
 → ca. 6x10³⁰ atoms of ³⁷Cl
- Detection reaction:

```
\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-
```

First detection of solar neutrinos: Davis

- Location: Homestake mine (US)
- Depth: 1478 m
- Target material: 615 tons of C₂Cl₄
 → ca. 6x10³⁰ atoms of ³⁷Cl
- Detection reaction:

$$\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$$

First detection of solar neutrinos: Davis

- Location: Homestake mine (US)
- Depth: 1478 m
- Target material: 615 tons of C₂Cl₄
 → ca. 6x10³⁰ atoms of ³⁷Cl
- Detection reaction:

$$\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$$

Michael Wurm (JGU Mainz)

Neutrino Oscillation Experiments

Solar neutrinos: Two-flavor approximation

 \rightarrow observation of rate deficit!! but how to prove it is flavor oscillations?

distance from source

Sudbury Neutrino Observatory (SNO)

- Water Cherenkov detector Underground water tank to measure neutrino interactions by final-state charged particles
- Location: Sudbury mine depth: 2000 m → 6000 mwe
- **Target mass:** 1 kt of D₂O

Michael Wurm (JGU Mainz)

Neutrino Oscillation Experiments

Detection reactions in heavy water

 \rightarrow determine total neutrino flux (all flavors) and v_e-flux separately

2002: SNO result on flavor conversion

The fluxes measured via the three channels were:

$$\Phi_{\rm CC} = 1.76 \pm 0.11 \\ \Phi_{\rm ES} = 2.39 \pm 0.27 \\ \Phi_{\rm NC} = 5.09 \pm 0.62 \\ \right\} \times 10^6 \ {\rm cm}^{-2} {\rm s}^{-1}$$

The Standard Solar Model prediction for ⁸B- ν 's is:

 $\Phi_{\rm SSM} = \left(5.05^{+1.01}_{-0.81}\right) \times 10^6 \ \rm cm^{-2} s^{-1}$

- → The survival probability for ν_e measured in (CC) channel is $P_{ee} \approx 35 \%$.
- $\rightarrow \quad \text{The overall neutrino flux of (NC) corresponds} \\ \text{to the SSM prediction as } \nu_e \text{ converted to } \nu_{\mu,\tau} \\ \text{still contribute to the (NC) rate.}$

→ total flux (all flavors) as predicted by SSM
 → v_e flux suppressed by oscillations
 → cross-check: elastic scattering (mostly v_e)

2002: SNO result on flavor conversion

The fluxes measured via the three channels were:

$$\Phi_{\rm CC} = 1.76 \pm 0.11 \\ \Phi_{\rm ES} = 2.39 \pm 0.27 \\ \Phi_{\rm NC} = 5.09 \pm 0.62 \\ \right\} \times 10^6 \ {\rm cm}^{-2} {\rm s}^{-1}$$

The Standard Solar Model prediction for ⁸B- ν 's is:

 $\Phi_{\rm SSM} = \left(5.05^{+1.01}_{-0.81}\right) \times 10^6 \ \rm cm^{-2} s^{-1}$

- → The survival probability for ν_e measured in (CC) channel is $P_{ee} \approx 35 \%$.
- $\rightarrow \quad \text{The overall neutrino flux of (NC) corresponds} \\ \text{to the SSM prediction as } \nu_e \text{ converted to } \nu_{\mu,\tau} \\ \text{still contribute to the (NC) rate.}$

→ total flux (all flavors) as predicted by SSM
 → v_e flux suppressed by oscillations
 → cross-check: elastic scattering (mostly v_e)

but:

SNO proves only flavor conversion what about the oscillation pattern?

LECTURE QUIZ

Question 1

How many solar neutrinos are passing through your thumbnail every second?

B:60 thousand

C:60 million

D:60 billion

Atmospheric v's in Super-Kamiokande

Super-Kamiokande dimensions: 45m x 45m target mass: 50 kton light readout: 11,200 20"-PMTs

Michael Wurm (JGU Mainz)

Atmoshperic neutrino production

- High-energy cosmic rays collide with nitrogen in the Earth's atmosphere $p + N \rightarrow p + N' + \pi, K...$
- Charged mesons decay into neutrinos:

$$\begin{array}{rccc} \pi^+, K^+ & \to & \mu^+ \nu_\mu \\ & \mu^+ \to e^+ \nu_e \bar{\nu}_\mu \end{array}$$

$$\pi^-, K^- \to \mu^- \bar{\nu}_\mu \\ \mu^- \to e^- \bar{\nu}_e \nu_\mu$$

→ Flavor ratio: At GeV energies, the expected ratio of v_{μ} to v_{e} is $R_{th} = 2$.

Angular distribution of atmospheric v's

- Neutrinos are the only particles to cross the Earth from the antipodes.
- Arrival direction described by zenith angle:

 $cos\theta = +1$ for zenith $cos\theta = -1$ for nadir

Angular distribution of atmospheric v's

- Neutrinos are the only particles to cross the Earth from the antipodes.
- Arrival direction described by zenith angle:

 $cos\theta = +1$ for zenith $cos\theta = -1$ for nadir

 In first approximation, the atmospheric v flux should be independent of the zenith angle θ.

Neutrino detection by Cherenkov effect

Flavor identification by ring *fuzziness*

1998: Super-Kamiokande result

At **low neutrino energies**, the measured ratio R_{exp} of v_{μ} : v_{e} was lower than the expectation:

 $R_{\rm exp}/R_{\rm th} = 0.63 \pm 0.03_{stat} \pm 0.05_{syst}$

At high neutrino energies, asymmetry in angular distribution

- down-going (cosθ=1):
 baseline: ~20 km
 → no oscillations
- up-going (cosθ=-1): baseline ≤ 13,000 km
 - $\rightarrow v_{\mu}$ disappearance
- no v_e excess observed:
 - $\rightarrow\,$ oscillations are $\nu_{\mu}\!\rightarrow\nu_{\tau}$
- surprise: large amplitude! \rightarrow today: $\theta_{23} \approx 45^{\circ}$

Later SK data on atmospheric v's

- evidence (4.6 σ) for v_t-appearance in the detector
- still unclear whether $\sin^2 2\theta_{23} < 1 \ (\theta_{23} \neq 45^\circ)$

Nobel Prize in Physics 2015

→ neutrinos undergo flavor oscillations and at least 2 neutrino states have mass!

LECTURE QUIZ

Question 2

What is the expected ratio of electron to muon neutrinos created by pion decay in the Earth's atmosphere (i.e. without oscillations)?

G) 2:1

H) 1:1

I) 1:2

Current Status of Neutrino Oscillations

Mass splittings

- Squared mass differences → oscillation frequencies
- Absolute mass scale not constrained by oscillations

Mixing angles
(NMO, 1
$$\sigma$$
 unc.)
• $\theta_{12} = 33.7^{\circ} \pm 0.7^{\circ}$
• $\theta_{23} = 49.1^{\circ} {}^{+1.3^{\circ}}_{-1.0^{\circ}}$
• $\theta_{13} = 8.5^{\circ} \pm 0.1^{\circ}$

Mass splittings (NMO, 1σ unc.) • $\Delta m_{21}^2 = 7.4 \pm 0.2 \times 10^{-5} \text{eV}^2$ • $\Delta m_{31}^2 = 2.51 \pm 0.03 \times 10^{-3} \text{eV}^2$

based on combination of results from solar, reactor, atmospheric, accelerator ... experiments

Open Issues in 3-Flavor Oscillations

Upcoming Oscillation Experiments

Michael Wurm (JGU Mainz)

LECTURE QUIZ

Question 3

At what precision do we know the neutrino mixing angles?

M:0.1°

N: 1°

O: 10°

Experiments for Neutrino Mass Ordering

Arrangement of the neutrino masses

oas in quark sector

 \rightarrow normal mass ordering (NMO)

opposed to it

 \rightarrow inverted mass ordering (IMO)

ow/o clear ordering

 \rightarrow quasi-degenerate (QD)

Arrangement of the neutrino masses

oas in quark sector

 \rightarrow normal mass ordering (NMO)

oopposed to it

 \rightarrow inverted mass ordering (IMO) \circ w/o clear ordering

 \rightarrow quasi-degenerate (QD)

resolving the degeneracy in the interpretation of δ_{CP} measurements

Arrangement of the neutrino masses

oas in quark sector

 \rightarrow normal mass ordering (NMO)

opposed to it

 \rightarrow inverted mass ordering (IMO) \circ w/o clear ordering

 \rightarrow quasi-degenerate (QD)

- resolving the degeneracy in the interpretation of δ_{CP} measurements
- target range for sensitivity of
 0vββ decay experiments

Arrangement of the neutrino masses

oas in quark sector

 \rightarrow normal mass ordering (NMO)

opposed to it

 \rightarrow inverted mass ordering (IMO)

ow/o clear ordering

 \rightarrow quasi-degenerate (QD)

- resolving the degeneracy in the interpretation of δ_{CP} measurements
- target range for sensitivity of
 0vββ decay experiments
- combination with cosmology to find lightest neutrino mass

Measuring the Neutrino Mass Ordering

Mid-baseline reactor neutrino oscillations

DUNE.

2 Low-energy atmospheric neutrino oscillations

Very-Long Baseline Neutrino Beams

JUNO

ORCA/PINGU Hyper-K

Standard oscillations and Δm^2_{ii} values

Common three-flavor reactor electron-antineutrino survival probability:

$$P_{ee} = 1 - \sin^2(2\theta_{13})\sin^2\left(\frac{\Delta m_{31}^2}{4E}\right) - \sin^2(2\theta_{12})\sin^2\left(\frac{\Delta m_{21}^2}{4E}\right)$$

- \rightarrow oscillation parameters are extracted from $\overline{\mathbf{v}}_{e}$ disappearance pattern
- \rightarrow due to the sin² terms, P_{ee} terms do not depend on sign of Δm^{2}_{ij}
- \rightarrow however, the formula above implicitly assumes $\Delta m_{31}^2 = \Delta m_{32}^2$

NMO from reactor \overline{v}_e disappearance

Survival probability $P_{\bar{e}\bar{e}} = 1 - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$ $P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$ $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$

Petcov, Piai, hep-ph/0112074

Pee

Michael Wurm (JGU Mainz)

NMO from reactor $\overline{\mathbf{v}}_{\mathrm{e}}$ disappearance

Petcov, Piai, hep-ph/0112074

NMO from reactor \overline{v}_e disappearance

Petcov, Piai, hep-ph/0112074

Michael Wurm (JGU Mainz)

Nuclear reactors as intense $\overline{\mathbf{v}}_{\mathrm{e}}$ source

Mid-distance $\overline{v}_e \rightarrow \overline{v}_e$ oscillations

Nuclear reactor(s) ΣP~30GW

Mid-distance $\overline{v}_e \rightarrow \overline{v}_e$ oscillations

Mid-distance $\overline{v}_e \rightarrow \overline{v}_e$ oscillations

Basic Detector Requirements for JUNO

- reactor antineutrinos at MeV energies
 → Liquid-scintillator detector
 - \rightarrow Detection by inverse beta decay
- signature in position of spectral wiggles
 → ~3% energy resolution at 1 MeV
 → photoelectron yield: ~1,100 pe/MeV
- large distance to source and high-statistics measurement
 → large target mass: 20 kilotons of LAB
- cosmogenic background
 → rock overburden of ~600 m

Experimental Setup of JUNO

Michael Wurm (JGU Mainz)

Neutrino Oscillation Experiments

JUNO Detector Layout

JUNO: Current Status

JUNO Sensitivity

- sensitivity to NMO: about 6 years (10⁵ events) to reach 3σ
- depends strongly on energy resolution and energy scale linearity
- combination with existing experiments increases sensitivity to 4σ after 6 years

LECTURE QUIZ

Question 4

How large is the scintillator target mass to be deployed in JUNO?

L: 200 tons

M : 2 kt

N : 20 kt

Measuring the Neutrino Mass Ordering

Mid-baseline reactor neutrino oscillations

DUNE.

2 Low-energy atmospheric neutrino oscillations

Very-Long Baseline Neutrino Beams

JUNO

ORCA/PINGU Hyper-K

$v_{\mu} \rightarrow v_{e}$ oscillation probability

Oscillation probability for v_e appearance in a v_{μ} neutrino beam:

$$V_{\mu} \rightarrow V_{e} \text{ oscillation probability}$$

Descillation probability for v_{e} appearance
in a v_{μ} neutrino beam:

$$P_{\mu e(\bar{\mu}\bar{e})} = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2}\sin^{2}\left(\frac{B_{\pm}L}{2}\right)$$

$$+\cos^{2}\theta_{23}\sin^{2}2\theta_{12}\left(\frac{\Delta_{12}}{A}\right)^{2}\sin^{2}\left(\frac{AL}{2}\right)$$

$$+J\frac{\Delta_{12}}{A}\frac{\Delta_{13}}{B_{\pm}}\sin\left(\frac{AL}{2}\right)\sin\left(\frac{B_{\pm}L}{2}\right)\cos\left(\mp\delta-\frac{\Delta_{13}L}{2}\right)$$

 $J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}} \qquad B_{\pm} = |A \pm \Delta_{13}| \qquad A = \sqrt{2}G_F N_e$$

$\nu_{\mu} \! \rightarrow \nu_{e}$ oscillation probability

Oscillation probability for \boldsymbol{v}_{e} appearance

in a v_{μ} neutrino beam:

$$P_{\mu e(\bar{\mu}\bar{e})} = \frac{\sin^2 \theta_{23} \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^2 \sin^2 \left(\frac{B_{\pm}L}{2}\right)}{\text{solar oscillations}} + \cos^2 \theta_{23} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \approx 0$$
$$+ J \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{B_{\pm}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{B_{\pm}L}{2}\right) \cos \left(\mp \delta - \frac{\Delta_{13}L}{2}\right)$$
$$neutrino-antineutrino asymmetry term$$

 $J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}} \qquad B_{\pm} = |A \pm \Delta_{13}| \qquad A = \sqrt{2}G_F N_e$$

$v_{\mu} \rightarrow v_{e}$ oscillation probability: CP violation

Oscillation probability for \boldsymbol{v}_{e} appearance

in a v_{μ} neutrino beam:

$$P_{\mu e(\bar{\mu}\bar{e})} = \frac{\sin^2 \theta_{23} \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^2 \sin^2 \left(\frac{B_{\pm}L}{2}\right)}{\frac{solar oscillations}{1 + \cos^2 \theta_{23} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \approx 0} \stackrel{leptonic}{P \text{ violation}} + J \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{B_{\pm}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{B_{\pm}L}{2}\right) \cos \left(\mp \delta - \frac{\Delta_{13}L}{2}\right)}{\frac{1 + \sqrt{2}}{A} \frac{\Delta_{13}}{B_{\pm}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{B_{\pm}L}{2}\right) \cos \left(\mp \delta - \frac{\Delta_{13}L}{2}\right)}$$

 $J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}} \qquad B_{\pm} = |A \pm \Delta_{13}| \qquad A = \sqrt{2}G_F N_e$$

$v_{\mu} \rightarrow v_{e}$ oscillation probability: NMO

$$J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$$

$$\omega eak matter potential A$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}} \qquad B_{\pm} = |A \pm \Delta_{13}| \qquad A = \sqrt{2}G_F N_e$$

$$\nu \leftrightarrow \bar{\nu} \text{ asymmetry if } A \sim \Delta_{13}!$$

Neutrino Oscillation Experiments

Matter effect on neutrino oscillations

Forward-scattering of v's in matter:

NC the same for all flavors

- CC on electrons only for v_e

Smirnov

Wolfenstein

Oscillation spectra at long baselines

- Oscillation probabilities differ for $v_{\mu} \rightarrow v_{e}$ vs. $v_{\mu} \rightarrow v_{e}$
- Enhanced electron-flavor appearance for:

neutrinos \rightarrow normal hierarchy antineutrinos \rightarrow inverted

• Far detector at first atmospheric oscillation maximum:

longer baseline \rightarrow larger energy \rightarrow larger matter effect!

Long-baseline oscillations with NOvA

Long-baseline oscillations with NOvA

Results from NOvA Experiment

- baseline: 810km
- alignment: 16 mrad off-axis
- spectrum: (2±1) GeV
- beam power: 400kW
- detector: 14kt of segmented scintillator
- near detector for cross-sections and spectral comparison

Total events - neutrino beam

Matter effects and atmospheric neutrinos

• nice to have: lepton charge ID (v/\overline{v})

Neutrino Oscillation Experiments

Upcoming Detectors

Matter effects in atmospheric v oscillations

Signal

- matter effects inverted for NH and IH
- similar flux of v and \overline{v}
- detector cannot separate v and v events!
 → combined signal
- **but:** different x-sections $\sigma(vN) : \sigma(\overline{v}N) \approx 2 : 1$
- → few % effect

Requirements

- high statistics
- very good control of systematic effects

plots by Sebastian Böser

Michael Wurm (JGU Mainz)

Event statistics

ν_µ: 5.0x10⁴ yr⁻¹
 ν_e: 3.8x10⁴ yr⁻¹

plots by Sebastian Böser

Event statistics

ν_µ: 5.0x10⁴ yr⁻¹
 ν_e: 3.8x10⁴ yr⁻¹

plots by Sebastian Böser

Event statistics

- ν_μ: 5.0x10⁴ yr⁻¹
- ν_e: 3.8x10⁴ yr⁻¹
- \rightarrow detectable difference

Event statistics

- ν_μ: 5.0x10⁴ yr⁻¹
- ν_e: 3.8x10⁴ yr⁻¹
- \rightarrow detectable difference

Detector resolution

- energy resolution: ~20% above 10 GeV
- directional resolution improving with energy

plots by Sebastian Böser
Expected signal in PINGU

Event statistics

- ν_μ: 5.0x10⁴ yr⁻¹
- v_e: 3.8x10⁴ yr⁻¹
- \rightarrow detectable difference

Detector resolution

- energy resolution: ~20% above 10 GeV
- directional resolution improving with energy

Particle identification

- ν_µ (CC): tracks
- v_e (CC) + v_x (NC): cascades
- \rightarrow distinction of event types

Global NMO sensitivity vs. time

Expected sensitivities vs. Time

NMO sensitivity depends on

- oscillation parameters, e.g. δ_{CP} for DUNE, θ_{23} for atm. exp.
- detector performance, e.g. energy resolution for JUNO

Note: there is a strong synergy effect between JUNO and any kind of NMO measurement based on matter effects

 \rightarrow combined sensitivity quickly reaches 5 σ discovery range

LECTURE QUIZ

Question 5

What detector technology is used in the NOvA Far Detector?

C : Water Cherenkov Detector

D : Liquid Argon Detector

E : Liquid Scintillator Detector

CP violation

... is one of the three preconditions of creating matter-antimatter asymmetry:

 \rightarrow matter access is tiny, but CP violation in the quark sector is not sufficient

CP violation in neutrino oscillations opens the door for leptonic CP violation

- \rightarrow can still be 1000x larger than in the quark sector
- \rightarrow Leptogenesis: Leptonic CP asymmetry can be transferred to baryon sector

Effects of the leptonic CP phase

→ Neutrinos themselves violate both P and C-parities.

\rightarrow In oscillations:

 $\begin{array}{ll} \text{CP conservation:} & P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) \\ \text{CP violation:} & P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) \\ & \text{but} & P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}) \\ \end{array} \right.$

Full three-flavor oscillation probability:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta}$

$$-4\sum_{i< j} \operatorname{Re}\left[U_{\alpha i}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\beta j}\right]\sin^{2}\left[\frac{\Delta m_{ji}^{2}}{4E}L\right]$$
$$+2\sum_{i< j} \operatorname{Im}\left[U_{\alpha i}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\beta j}\right]\sin\left[\frac{\Delta m_{ji}^{2}}{2E}L\right]$$

same for neutrinos and antineutrinos → conserves CP-symmetry

 \rightarrow flavor disapperance & appearance

different for neutrinos and antineutrinos

- \rightarrow violates CP-symmetry
- → only **appearance** oscillations!

$v_{\mu} \rightarrow v_{e}$ oscillation probability: δ_{CP} vs. NMO

- → matter effects and δ_{CP} both lead to differences in neutrino/antineutrino oscillation probabilities
- → δ_{CP} best measured over short baselines where impact of matter effects is small!

T2K: Tokai-to-Kamioka Experiment

T2K Experiment

Michael Wurm (JGU Mainz)

Neutrino Oscillation Experiments

Long-baseline v_{μ} beam experiments

Search modes: • Disappearance oscillations: $v_{\mu} \rightarrow v_{\mu} \rightarrow \theta_{23}, \Delta m_{32}^2$ $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2}{4E}\right)$

• Appearance oscillations: $v_{\mu} \rightarrow v_{e} \rightarrow \theta_{13}, \delta_{CP}$

Neutrino target

- production of charged pions (and kaons) by interactions of protons on carbon
- light material favors higher-energy pions
- pions are beamed in forward direction
- beams are typically pulsed
 → BG reduction

Focussing horns

- magnetic fields improve forward-focussing of pions
- de-selects other particles (especially wrong-sign pions)

Inclined decay pipe

T2K Near Detectors for v spectrum

T2K: Off-axis beam

v_{μ} -beam energy spectrum

- on-axis: wide-band beam
- off-axis: narrower beam spectrum, increased peak intensity
- \rightarrow increased event rate at correct L/E
- \rightarrow less high-energy background

Short-baseline v_e appearance probability

Effective oscillation probability

$$P_{\mu e} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + h.o.f.(\theta_{ij}, \Delta m_{ij}^2) \cdot \cos(\mp \delta)$$

- → term with CP phase shifts amplitude and position of 1st oscillation maximum
- → neutrinos and antineutrino shifts are inverted

T2K $\nu_{\mu} \rightarrow \nu_{e}$ appearance results for δ_{CP}

Michael Wurm (JGU Mainz)

Neutrino Oscillation Experiments

Future experiments for CP-phase

 $|\Delta \chi^2|$

17 kton module

(10 kton active volume)

- OUNE: Fermilab → Homestake (1300 km)
- O T2HK: Tokai → Kamioka (285 km)
- ESSvSB: Lund → ? (360/450 km)

66 m

 δ [deg]

Michael Wurm (JGU Mainz)

19 m

Sanford Underground

Research Facility

18 m

 δ [deg]

LECTURE QUIZ

Question 6

What device is used in the T2K beam?

Q : Berillium target

R : Magnetic horn

S: Neutrino lense

Summary

- The discovery of neutrino flavor oscillations is the 1st evidence of physics beyond the original Standard Model.
- Historically, natural neutrino sources (e.g. atmospheric, solar ν's) have played a large role in their exploration.
 Precision experiments often use reactors or beams.
- Basic oscillation parameters (mixing angles, mass splittings) have been measured on few %-level but important ingredients are still missing.
- Upcoming oscillation experiments investigate the neutrino mass ordering (JUNO, ORCA, IC-Upgrade) and CP phase δ_{CP} (T2HK, NovA, DUNE)
- Note: Complementary searches for non-standard oscillations (eV sterile neutrinos) are on-going.

Thanks for your attention!

Questions? Or is it time for