Astrophysical Searches for Dark Matter

Elisa Pueschel ISAPP School "Neutrinos and Dark Matter" 24 September 2024

Dark Matter: Where to Look

Lin 2019 arXiv:1904.07915

Astrophysical searches probe across different mass scales

Indirect Searches for Dark Matter

Astrophysical signal from annihilation or decay to standard model particles

Weakly Interacting Massive Particles

Indirect Searches with Gamma Rays and Neutrinos

Gamma rays, neutrinos, p+/p-, e+/e-

Look for an excess above astrophysical backgrounds

Gamma-ray Targets

Neutrino Targets

Galactic center Galactic halo Galaxy clusters **Isotropic contributions**

Milky Way satellites Dark matter clumps

Targets: Advantages and Disadvantages

More on Galactic Center

Bright in gamma rays! 12 years of Fermi-LAT data, >1 GeV

More on Galactic Center

More on Galactic Center

- Resolved sources of gamma rays
	- Pulsar wind nebulae
	- Gamma-ray binaries
	- Supernova remnants/ molecular clouds
	- Pulsars
	- Fermi bubbles
	- TeV halos
- Diffuse/isotropic emission
	- Cosmic ray/gas hadronic interactions
	- Interaction of cosmic rays with CMB & infrared/optical light via inverse Compton

11

More on Dwarf (Spheroidal) Galaxies

- Milky Way satellites: nearby (~20-200 kpc)
- projection of a 4-year LAT counts map (*E >* 1 GeV). The 15 dwarf galaxies included in the • Classic (thousands of bright stars) and Ultrafaint (tens of bright stars)
	- circles. • Multiple objects = less sensitivity to mis-modeling of single object
	- Many more expected with Vera Rubin Observatory
- Large mass to light ratios: ~O(1000) M⊙/L⊙
- Low astrophysical background (no known gamma-ray emitters)
- Modest angular extension

Predicted Signal (Annihilation)

$$
\frac{\mathrm{d}^2\Phi\left(\langle\sigma v\rangle,J\right)}{\mathrm{d}E\mathrm{d}\Omega}=\frac{1}{4\pi}\frac{\langle\sigma v\rangle}{2M_\chi^2}\sum_f\mathrm{BR}_f\frac{\mathrm{d}N_f}{\mathrm{d}E}\int_{\mathrm{l.o.s.}}\rho_{\mathrm{DM}}^2(r(s,\theta))\;ds
$$

- Assuming branching ratio of 1 to a given final state
- Spectral shape is a key input!
	- Continuum emission from **χχ →** quark pairs, lepton pairs, W+W- , ZZ
		- Cut-off at M**^χ** (assuming annihilation)
	- "Line" emission from **χχ → γ**X, X = h, Z, **γ**

Predicted Signal (Annihilation)

- J-factor depends on
	- Dark matter distribution in target
	- Distance to target
	- Instrument response (point spread function)
- Significant source of uncertainty in extracted limits on ⟨**σ**v⟩

Predicted Signal (Decay)

$$
\frac{\mathrm{d}^2 \Phi(J)}{\mathrm{d} E \mathrm{d} \Omega} = \frac{1}{4\pi} \frac{1}{\tau_\chi M_\chi} \sum_f \mathrm{BR}_f \frac{dN_f}{dE} \int_{l.o.s.} dl \rho_{DM}(r(s, \theta)) ds
$$

Note differences from flux for annihilation

$$
\frac{\mathrm{d}^2 \Phi\left(\langle \sigma v \rangle, J\right)}{\mathrm{d} E \mathrm{d} \Omega} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2M_\chi^2} \sum_f \mathrm{BR}_f \frac{\mathrm{d} N_f}{\mathrm{d} E} \int_{\text{l.o.s.}} \rho_{\rm DM}^2(r(s, \theta)) \, ds
$$

Order of ρ_{DM} affects target choice: galaxy clusters good targets for decay searches

J-factor Calculations: Highly Non-Trivial

Example: dwarf spheroidal galaxies (Milky Way satellites)

- Different choices for DM density profile, velocity anisotropy, light profile, consideration of systematics
- Choice of stars to include has significant impact
	- Particularly for ultra faint systems with tens of stars

Different calculations can yield very different results!

J-factor Calculations: Highly Non-Trivial

Example: Galactic Center/Halo

- Profiles motivated by N-body simulations
- Attempts to use observations of tidal streams to probe profiles
- Assumed dark matter density profile strongly affects extracted upper limits on dark matter annihilation cross section

Detecting Gamma Rays

- Imaging Atmospheric Cherenkov Telescopes (IACTs)
	- E ~100 GeV to > 30 TeV
	- Precise energy & angular reconstruction
	- High sensitivity
	- Limited duty-cycle/FOV

- Large duty-cycle
- Full-sky coverage

- Water Cherenkov Technique
	- $E \sim 1 100$ TeV
	- Large duty-cycle
	- Large field of view

- Multiple detection methods
	- \bullet E \sim < 1 TeV 1 PeV
	- Large duty-cycle
	- Large field of view

Impact of differing sensitive energy ranges

Detecting Gamma Rays

Shower image, 100 GeV y-ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Not to scale

PoS(ICRC2019)785

Detecting Neutrinos

See Anna Franckowiak's lectures last week!

Contract

- Excess observed at high significance in Fermi-LAT diffuse emission towards Galactic Center
- · Significant backgrounds dominated by hadronic inverse Compton scattering
- Spectrum and morphology have been studied by many \bullet pectrum and morphology nave been siudied by many \mathbf{r} estimate the uncertainty level of the DM-like signal, we repeat the DM-like signal, we repeat the DM-like signal, we repeat the \mathbf{r} groups

where N is the number of signal counts integrated over the number of signal counts integrated over the number of α

 \circ \circ

Galactic Center Excess

[https://doi.org/10.1146/](https://doi.org/10.1146/annurev-nucl-101916-123029) [annurev-nucl-101916-123029](https://doi.org/10.1146/annurev-nucl-101916-123029)

- **Figure 4** • Galactic Center excess consistent with a dark matter signal error bars). Data from Gordon & Macias (9), Abazajian et al. (10), Daylan et al. (11), Calore et al. (12), Abazajian & Keeley (55), and • In mild tension with limits from other dark matter searches
- Modeling of interstellar emission has large uncertainties
- ϵ Signal consistent with other explanation • Signal consistent with other explanations
- by cold DM *N*-body simulations of galaxy formation. As they contain stars, they are observed • Population of millisecond pulsars

Annihilation in the Galactic Center: Continuum Emission Applack triangle shows the position of the supermassive black hold supermassive black hold supermassive black h

V

Annihilation in the Galactic Center: Continuum Emission Applack triangle shows the position of the supermassive black hold supermassive black hold supermassive black h

 \boldsymbol{V}

Annihilation in the Galactic Center: Line Emission

- H.E.S.S. location **→** good visibility for Galactic Center
- Earlier survey observations of inner region of Galactic halo (254 hours, 4 telescopes)
- $\overline{}$ • Gaussian "line" at E**γ** = M**χ** with width set by H.E.S.S. energy resolution @ E**^γ**

Annihilation in the Galactic Center: Neutrino Channel

 $\frac{1}{2}$ ine control **at 90 E.L. on the search** Annihilation to 2 noutrings Annihilation to 2 neutrinos

than the expected sensitivity at energies at energies at energies around 1 TeV at energies around 1 TeV at energies around 1 TeV at each sensitivity at energies around 1 TeV at each sensitivity at energies around 1 TeV at

tables I to II in the Appendix.

FIG. 5. Lower limits (solid line) and sensitivity (dotted line) **COMMODITY SURFEIT** Soarch for cocondary noutrin Search for secondary neutrinos FIG. 7. Left: Same as Fig. 4, but for ⌧ ⁺⌧ annihilation channel and Burkert profile. Right: Lower limits, and sensitivity, on **Continuum search**

prong sensitivity to assumed dark maner pront umod dark matter prefile Strong sensitivity to assumed dark matter profile

Results on DM decays for the same ⌫*e*⌫*^e* neutrino channel are summarized in Fig. 5. Because it is the same together with additional years of data. puting cluster of the RWTH Aachen; Sweden – Swedish *arXiv:2303.13663* \overline{a}

Line Searches in GC: Gamma/Neutrino Comparison

Gamma-ray searches currently achieve better sensitivity FIG. 3: Comparison of constraints for prompt annihilation ently achieve better sensitivity and the Einas dots) and NFW (cyan dots) profiles, respectively, \mathbf{r}

> *arXiv*:2303.13663 \sim Magic observations of the dwarf galaxy Segue 1 \sim

Annihilation in Dwarf Spheroidal Galaxies

- Fermi-LAT archival search
- 14 years of data

 \boldsymbol{V}

- ~40 dwarf spheroidal galaxies
- Probe below thermal relic cross section $<$ 100 GeV

Annihilation in Dwarf Spheroidal Galaxies

- Joint search from 5 current generation gamma-ray instruments
- Combined limits from 5 GeV to 100 TeV
- Factor than 2-3 more constraining than individual limits

 \bullet Darticularly interesting for decaying dark matter searches containment bands are also shown. • Particularly interesting for decaying dark matter searches

from the analysis of 300 realizations of the null hypothesis. This consist of MC simulations in which both

- represent the limits calculated in this work using the three different source groups. The other lines are the o
 $\frac{1}{2}$ • Dark matter lifetime must be >> age of the universe (1017 sec) to be viable
- \bullet Gamma-ray search using observations of Perseus cluster (MA • Gamma-ray search using observations of Perseus cluster (MAGIC)
- lifetime ⌧DM for each decay channel are obtained with a binned likelihood analysis (80 GeV to 10 TeV in $\bullet\,$ Neutrino stacked analysis using several galaxy clusters and dwarf spheroidal $\mathbf g$ alaxies $\mathbf g$ where $\mathbf g$ where also reported are the two-sided 68% containment of two-sided 68% \mathbf{y} and the null hypothesis, computed from the distribution of the lower limits obtained from the lower limits obtained fro

Galaxy clusters **Isotropic contributions**

Galactic center Galactic halo

Dark Matter Capture in the Sun or Earth

- Dark matter particles scatter on nuclei of Sun/Earth/star
- Energy loss **→** some fraction gravitationally bound to object
- Further scattering can occur
- Dark-matter overdensity at object's core
	- Sufficient for dark matter selfannihilation or decay
	- Search for excess neutrinos

Neutrino Capture in the Sun

Spin-dependent DM/proton scattering cross section Can be compared to direct detection limits

Neutrino Capture in the Sun

Spin-independent DM/proton scattering cross section Can be compared to direct detection limits

Extragalactic Gamma-ray Background

but including also the emission from star-forming galaxies (gray band, Ackermann et al.

- Diffuse gamma rays from resolved and unresolved extragalactic gamma-ray populations, diffuse contributions (e.g. dark matter annihilation)
	- Mostly blazars
- Limited budget for additional contributions

40

Indirect Searches with Cosmic Rays

Gamma rays, neutrinos, p⁺/p⁻, e⁺/e⁻

- •Large astrophysical backgrounds for matter particles
- Search for anti-matter (e⁺, p⁺,...)
- •Cosmic-ray transport models important to interpretation

Indirect Searches with Cosmic Rays

Particularly clean search channels

Detecting Cosmic Rays

Particle detectors: measure particle energy, momentum, species

Detecting Cosmic Rays

Particle detectors: measure particle energy, momentum, species

Positron spectrum/Positron fraction

- •Rise observed in positron fraction, contrary to expectations
- http://tevcat.uchicago.edu •Positron spectrum softer than electron spectrum for secondary positrons
- •Advantage of fraction: less sensitive to instrument response

Positron spectrum/Positron fraction

- Rising positron spectrum also observed **intensity of cosmic ray to construct**
- http://tevat.uchicago.edu/ • Possible scenarios for producing high-energy positrons: (dots) as a function of kinetic energy *E*. We have included data from the most recent space as from the ground-based H.E.S.S. experiment [96]. The spectra have been multiplied by *E*³ to
	- Dark matter annihilation \bullet
	- Positron acceleration in (local) sources
	- Secondary production from cosmic rays on interstellar gas cocourantly production now commonly on interestion gate

Positron spectrum/Positron fraction

- Local source? Diffusion constant in TeV halos around pulsars important
- Dark matter annihilation?
	- Not for a simple model leptophilic?
	- Measurement of high-energy cutoff important

Antiproton spectrum n

- Four years of AMS-02 data
- Fit antiproton spectrum
- Expected to be mainly due to secondaries
- Include contribution from dark matter annihilation

Figure 1: The secondary contribution based on the LiBeB analysis of [33] (dot-dashed blue), and *arXiv:2202.03076*

Antiproton spectrum rofon specirum stat/none 4.49 8.0 2.98e-25

Cosmic Ray Propagation

HELIX balloon experiment: measure isotopic abundance ratios **→** distinguish between propagation models

Antideuteron

Antihelium \mathcal{L}_{G} science impact in particular input in particular input in particular in

GAPS: optimized for searches for low-energy antinuclei

Beyond WIMPs

Thermal-relic scenario with point-like DM particle

→ heavy DM (>~100-200 TeV) overproduced black holes. Mass ranges are only approximate (in order of magnitude), and meant to indicate general \sim 1>

$$
\langle \sigma v \rangle_{max} \propto \frac{1}{M_{\chi}^2}
$$
 (unitarity limit)
and $\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle}$ (thermal relic density)

- Unitarity bound can be evaded with various extensions
	- Dark sector: <u>1</u>..., composite DM (with/without geometrical cross section): $\mathcal{L} = \mathcal{L} = \mathcal$
		- <u>[1,](https://arxiv.org/abs/2110.13926) [2](https://arxiv.org/abs/1606.00159), [3](https://arxiv.org/abs/1811.06975)</u>, capture to bound states: <u>1</u>... $\frac{1}{2}$, suppose to we see that stations $\frac{1}{2}$...

Accessing >100 TeV Dark Matter

Final state gamma rays → only a small fraction of energy from heavy dark matter annihilation γ ³ ya Tempe decreases. The various referenches refer to the channels: channels channels (solid), quarks (dashed), q

>10% flux deposited in <100 TeV gamma rays for dark matter particles up to PeV masses
A V gamma r *^N ^N* \overline{a} vs 2 ln ¹ on on l VS and the set of \sim *^a a* \bullet \bullet \bullet \bullet \mathbf{s}

Absorption on Diffuse Photon Fields

- Gamma rays undergo pair production on diffuse photon fields
- Galactic neighborhood
	- Cosmic microwave background radiation
	- Extragalactic background light
	- Starlight
	- Also can have absorption by dust

arXiv:1608.01587

 $5200/$ allocated 100 TeV >20% effect at 100 TeV

Gamma-ray Limits on Ultra-Heavy Dark Matter Annihilation

- VERITAS search using observations of dwarf spheroidal galaxies
- Benchmark 1: Partial-Wave Unitarity Bound
	- Point-like J=0 dark matter particle
	- VERITAS limits not constraining above unitarity bound

Gamma-ray Limits on Ultra-Heavy Dark Matter Annihilation

- Benchmark 2: Composite Unitarity Bounds
	- Composite dark matter particles; bound scales with particle radius
	- VERITAS able to constrain composite models

Gamma-ray Limits on Ultra-Heavy Dark Matter Annihilation

- Benchmark 2: Composite Unitarity Bounds
	- Composite dark matter particles; bound scales with particle radius
	- VERITAS able to constrain composite models

Axions and Axion-like Particles

Peccei-Quinn axion

- No observed CP violation in QCD
	- No reason theoretically to be zero
	- Violated in weak interaction
- CP-violating extension to QCD
	- New U(1) symmetry (globally broken) **→** new light particle

Axion-like particles

- \cdot Light particle mixing with photon ${\sf predicted}$ in several SM ${\sf C}$ extensions such as TeVeS [9] give a notably worse fit to CMB and largepossible by mass and spin. Fig. 3 gives a compact summary of the landscape and the main tourist *A brief aside on MOND.* — MOdified Newtonian Dynamics (MOND) is a framework for modified relativistic theory is needed to obtain predictions during the early universe. Assuming no additional
- Does not necessarily solve strong CP-problem
- Dark matter candidate arguments here: first, a fermion DM candidate must have mass greater than *O*(keV) in order to

Axion-like Particles

- Gamma rays traveling from distance sources could mix with ALPs en route to Earth
- Strong magnetic fields in e.g. galaxy clusters would induce mixing, or weak magnetic fields in intergalactic medium

Axion-like Particles

- Gamma-ray flux classically attenuated by interactions with diffuse photon fields (extragalactic background light)
- ALP-mixing reduces attenuation, introduces spectral features
- Non-detection used to set limits

Limits on Axion-like Particles

Limits on Axion-like Particles

https://cajohare.github.io/AxionLimits/

Primordial Black Holes

- \bullet Form around matter overdensities in early Universe the big band with the b Black holes with a wide range of masses could have
- 28 \bullet Possible contributor to dark matter content of Universe M such ''primordial'' black holes (PBHs) is that such that such that such that $\mathcal{P}(B|B)$

$$
M \sim \frac{c^3 t}{G} \sim 10^{15} \left(\frac{t}{10^{-23} \text{ s}}\right) \text{g}
$$

 $\mathbb{Z}^{\mathbb{Z}}$ and $\mathbb{Z}^{\mathbb{Z}}$. Mass related to time $\mathbb{E}\left[\begin{array}{ccc} \frac{1}{2} & \mathsf{or} \end{array}\right]$ formation

Limits on PBH burst rate parameters. Most relevant, however, are the best constraints for each

arXiv:2111.01198

- Survey instruments have a major advantage
- A current status of searches is shown for the different status of the different status of α ϵ for the state ϵ as the blue data in ϵ is the blue data in ϵ • Competitive limits from upcoming Cherenkov Telescope Array Observatory

Astrophysical Searches for Dark Matter

Mass scale of dark matter

(not to scale)

Lin 2019 arXiv:1904.07915

Astrophysical searches diverse and capable of $\mathsf{\small{probing}}$ broad phase space and the main top $\mathsf{\small{pmod}}$

Including regions not discussed in this lecture! \mathcal{S} , originally put for the specific to data matter. A specific to data matter \mathcal{S}