Astrophysical Searches for Dark Matter

Elisa Pueschel ISAPP School "Neutrinos and Dark Matter" 24 September 2024

Dark Matter: Where to Look

Lin 2019 arXiv:1904.07915

Astrophysical searches probe across different mass scales

Indirect Searches for Dark Matter

Astrophysical signal from annihilation or decay to standard model particles

Weakly Interacting Massive Particles

Indirect Searches with Gamma Rays and Neutrinos

Gamma rays, neutrinos, p⁺/p⁻, e⁺/e⁻

Look for an excess above astrophysical backgrounds

Gamma-ray Targets

Neutrino Targets

Galaxy clusters

Isotropic contributions

Galactic halo Galactic center

Milky Way satellites

Dark matter clumps

+ Sun

+ Earth

Targets: Advantages and Disadvantages

More on Galactic Center

Bright in gamma rays! 12 years of Fermi-LAT data, >1 GeV

More on Galactic Center

9 years of H.E.S.S. data, >1 TeV

More on Galactic Center

- Resolved sources of gamma rays
 - Pulsar wind nebulae
 - Gamma-ray binaries
 - Supernova remnants/ molecular clouds
 - Pulsars
 - Fermi bubbles
 - TeV halos
- Diffuse/isotropic emission
 - Cosmic ray/gas hadronic interactions
 - Interaction of cosmic rays with CMB & infrared/optical light via inverse Compton

More on Dwarf (Spheroidal) Galaxies

- Milky Way satellites: nearby (~20-200 kpc)
- Classic (thousands of bright stars) and Ultrafaint (tens of bright stars)
 - Multiple objects = less sensitivity to mis-modeling of single object
 - Many more expected with Vera Rubin Observatory
- Large mass to light ratios: ~O(1000) M_{\odot}/L_{\odot}
- Low astrophysical background (no known gamma-ray emitters)
- Modest angular extension

Predicted Signal (Annihilation)

$$\frac{\mathrm{d}^2\Phi\left(\langle\sigma v\rangle, J\right)}{\mathrm{d}E\mathrm{d}\Omega} = \frac{1}{4\pi} \frac{\langle\sigma v\rangle}{2M_\chi^2} \sum_f \mathrm{BR}_f \frac{\mathrm{d}N_f}{\mathrm{d}E} \int_{\mathrm{l.o.s.}} \rho_{\mathrm{DM}}^2(r(s,\theta)) \, ds$$

- Assuming branching ratio of 1 to a given final state
- Spectral shape is a key input!
 - Continuum emission from XX → quark pairs, lepton pairs, W⁺W⁻, ZZ
 - Cut-off at M_X (assuming annihilation)
 - "Line" emission from χχ → γX, X
 = h, Z, γ

Predicted Signal (Annihilation)

$$\frac{\mathrm{d}^{2}\Phi\left(\langle\sigma v\rangle,J\right)}{\mathrm{d}E\mathrm{d}\Omega} = \frac{1}{4\pi} \frac{\langle\sigma v\rangle}{2M_{\chi}^{2}} \sum_{f} \mathrm{BR}_{f} \frac{\mathrm{d}N_{f}}{\mathrm{d}E} \int_{\mathrm{l.o.s.}} \rho_{\mathrm{DM}}^{2}(r(s,\theta)) \, ds$$

$$J\text{-factor}$$

- J-factor depends on
 - Dark matter distribution in target
 - Distance to target
 - Instrument response (point spread function)
- Significant source of uncertainty in extracted limits on $\langle \sigma v \rangle$

Predicted Signal (Decay)

$$\frac{\mathrm{d}^2 \Phi(J)}{\mathrm{d}E \mathrm{d}\Omega} = \frac{1}{4\pi} \frac{1}{\tau_{\chi} M_{\chi}} \sum_{f} \mathrm{BR}_{f} \frac{\mathrm{d}N_{f}}{\mathrm{d}E} \int_{l.o.s.} \mathrm{d}l\rho_{DM}(r(s,\theta)) \mathrm{d}s$$

Note differences from flux for annihilation

$$\frac{\mathrm{d}^2\Phi\left(\langle\sigma v\rangle, J\right)}{\mathrm{d}E\mathrm{d}\Omega} = \frac{1}{4\pi} \underbrace{\langle\sigma v\rangle}{2M_{\chi}^2} \sum_f \mathrm{BR}_f \frac{\mathrm{d}N_f}{\mathrm{d}E} \int_{\mathrm{l.o.s.}} \rho_{\mathrm{DM}}^2(r(s,\theta)) \, ds$$

Order of *p*_{DM} affects target choice: galaxy clusters good targets for decay searches

J-factor Calculations: Highly Non-Trivial

Example: dwarf spheroidal galaxies (Milky Way satellites)

- Different choices for DM density profile, velocity anisotropy, light profile, consideration of systematics
- Choice of stars to include has significant impact
 - Particularly for ultra faint systems with tens of stars

Different calculations can yield very different results!

J-factor Calculations: Highly Non-Trivial

Example: Galactic Center/Halo

- Profiles motivated by N-body simulations
- Attempts to use observations of tidal streams to probe profiles
- Assumed dark matter density profile strongly affects extracted upper limits on dark matter annihilation cross section

Detecting Gamma Rays

- Imaging Atmospheric Cherenkov Telescopes (IACTs)
 - E ~100 GeV to > 30 TeV
 - Precise energy & angular • reconstruction
 - High sensitivity •
 - Limited duty-cycle/FOV

- Large duty-cycle
- Full-sky coverage

MAGIC

Water Cherenkov Technique

- E ~1 100 TeV
- Large duty-cycle
- Large field of view

- Multiple detection methods
 - E ~ < 1 TeV 1 PeV
 - Large duty-cycle
 - Large field of view

Impact of differing sensitive energy ranges

Detecting Gamma Rays

Shower image, 100 GeV ≻ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

PoS(ICRC2019)785

Detecting Neutrinos

See Anna Franckowiak's lectures last week!

Galactic Center Excess

- Excess observed at high °° significance in Fermi-LAT diffuse emission towards Galactic Center
- Significant backgrounds: dominated by hadronic interactions + bremsstrahlung, inverse Compton scattering
- Spectrum and morphology have been studied by many groups

0 0 0

Galactic Center Excess

https://doi.org/10.1146/ annurev-nucl-101916-123029

- Galactic Center excess consistent with a dark matter signal
 In mild tension with limits from other dark matter searches
- Modeling of interstellar emission has large uncertainties
- Signal consistent with other explanations
 - Population of millisecond pulsars

Annihilation in the Galactic Center: Continuum Emission

Annihilation in the Galactic Center: Continuum Emission

Annihilation in the Galactic Center: Line Emission

- H.E.S.S. location \rightarrow good visibility for Galactic Center
- Earlier survey observations of inner region of Galactic halo (254 hours, 4 telescopes)
- Gaussian "line" at $E_{\gamma} = M_{\chi}$ with width set by H.E.S.S. energy resolution @ E_{γ}

Annihilation in the Galactic Center: Neutrino Channel

Line search Annihilation to 2 neutrinos

Continuum search Search for secondary neutrinos

Strong sensitivity to assumed dark matter profile

arXiv:2303.13663

Line Searches in GC: Gamma/Neutrino Comparison

Gamma-ray searches currently achieve better sensitivity

arXiv:2303.13663

Annihilation in Dwarf Spheroidal Galaxies

- Fermi-LAT archival search
- 14 years of data

V

- ~40 dwarf spheroidal galaxies
- Probe below thermal relic cross section <~100 GeV

 10^{2}

 M_{χ} [GeV]

 10^{3}

 10^{4}

Annihilation in Dwarf Spheroidal Galaxies

- Joint search from 5 current generation gamma-ray instruments
- Combined limits from 5 GeV to 100 TeV
- Factor than 2-3 more constraining than individual limits

Milky Way satellites

Dark matter clumps

+ Sun

+ Earth

- Particularly interesting for decaying dark matter searches
- Dark matter lifetime must be >> age of the universe (10¹⁷ sec) to be viable
- Gamma-ray search using observations of Perseus cluster (MAGIC)
- Neutrino stacked analysis using several galaxy clusters and dwarf spheroidal galaxies

Milky Way satellites

+ Earth

Dark Matter Capture in the Sun or Earth

- Dark matter particles scatter on nuclei of Sun/Earth/star
- Energy loss → some fraction gravitationally bound to object
- Further scattering can occur
- Dark-matter overdensity at object's core
 - Sufficient for dark matter selfannihilation or decay
 - Search for excess neutrinos

Neutrino Capture in the Sun

Spin-dependent DM/proton scattering cross section Can be compared to direct detection limits

Neutrino Capture in the Sun

Spin-independent DM/proton scattering cross section Can be compared to direct detection limits

+ Sun

+ Earth

Extragalactic Gamma-ray Background

- Diffuse gamma rays from resolved and unresolved extragalactic gamma-ray populations, diffuse contributions (e.g. dark matter annihilation)
 - Mostly blazars
- Limited budget for additional contributions

Indirect Searches with Cosmic Rays

Gamma rays, neutrinos, p⁺/p⁻, e⁺/e⁻

- Large astrophysical backgrounds for matter particles
- Search for anti-matter (e⁺, p⁺,...)
- Cosmic-ray transport models important to interpretation

Indirect Searches with Cosmic Rays

Particularly clean search channels

Detecting Cosmic Rays

Particle detectors: measure particle energy, momentum, species

Positrons

PAMELA

Positrons

- Antiprotons
- Antideuterons
- Antihelium3?

Detecting Cosmic Rays

Particle detectors: measure particle energy, momentum, species

Positron spectrum/Positron fraction

- Rise observed in positron fraction, contrary to expectations
- Positron spectrum softer than electron spectrum for secondary positrons
- Advantage of fraction: less sensitive to instrument response

Positron spectrum/Positron fraction

- Rising positron spectrum also observed
- Possible scenarios for producing high-energy positrons:
 - Dark matter annihilation
 - Positron acceleration in (local) sources
 - Secondary production from cosmic rays on interstellar gas

Positron spectrum/Positron fraction

- Local source? Diffusion constant in TeV halos around pulsars important
- Dark matter annihilation?
 - Not for a simple model leptophilic?
 - Measurement of high-energy cutoff important

Antiproton spectrum

- Four years of AMS-02 data
- Fit antiproton spectrum
- Expected to be mainly due to secondaries
- Include contribution from dark matter annihilation

arXiv:2202.03076

Antiproton spectrum

Cosmic Ray Propagation

HELIX balloon experiment: measure isotopic abundance ratios → distinguish between propagation models

Antideuteron

Antihelium

GAPS: optimized for searches for low-energy antinuclei

Beyond WIMPs

Thermal-relic scenario with point-like DM particle

 \rightarrow heavy DM (>~100-200 TeV) overproduced

$$\langle \sigma v
angle_{max} \propto rac{1}{M_\chi^2}$$
 (unitarity limit)
and $\Omega_\chi \propto rac{1}{\langle \sigma v
angle}$ (thermal relic density)

- Unitarity bound can be evaded with various extensions
 - Dark sector: <u>1</u>..., composite DM (with/without geometrical cross section):
 - <u>1</u>, <u>2</u>, <u>3</u>, capture to bound states: <u>1</u>...

Accessing >100 TeV Dark Matter

Final state gamma rays → only a small fraction of energy from heavy dark matter annihilation

>10% flux deposited in <100 TeV gamma rays for dark matter particles up to PeV masses

Absorption on Diffuse Photon Fields

- Gamma rays undergo pair production on diffuse photon fields
- Galactic neighborhood
 - Cosmic microwave background radiation
 - Extragalactic background light
 - Starlight
 - Also can have absorption by dust

arXiv:1608.01587

>20% effect at 100 TeV

Gamma-ray Limits on Ultra-Heavy Dark Matter Annihilation

- VERITAS search using observations of dwarf spheroidal galaxies
- Benchmark 1: Partial-Wave Unitarity Bound
 - Point-like J=0 dark matter particle
 - VERITAS limits not constraining above unitarity bound

Gamma-ray Limits on Ultra-Heavy Dark Matter Annihilation

- Benchmark 2: Composite Unitarity Bounds
 - Composite dark matter particles; bound scales with particle radius
 - VERITAS able to constrain composite models

Gamma-ray Limits on Ultra-Heavy Dark Matter Annihilation

- Benchmark 2: Composite Unitarity Bounds
 - Composite dark matter particles; bound scales with particle radius
 - VERITAS able to constrain composite models

Axions and Axion-like Particles

Peccei-Quinn axion

- No observed CP violation in QCD
 - No reason theoretically to be zero
 - Violated in weak interaction
- CP-violating extension to QCD
 - New U(1) symmetry (globally broken) → new light particle

Axion-like particles

- Light particle mixing with photon predicted in several SM extensions
 - Does not necessarily solve strong CP-problem
 - Dark matter candidate

Axion-like Particles

- Gamma rays traveling from distance sources could mix with ALPs en route to Earth
- Strong magnetic fields in e.g. galaxy clusters would induce mixing, or weak magnetic fields in intergalactic medium

Axion-like Particles

- Gamma-ray flux classically attenuated by interactions with diffuse photon fields (extragalactic background light)
- ALP-mixing reduces attenuation, introduces spectral features
- Non-detection used to set limits

Limits on Axion-like Particles

Limits on Axion-like Particles

https://cajohare.github.io/AxionLimits/

Primordial Black Holes

- Form around matter overdensities in early Universe
- Possible contributor to dark matter content of Universe

 10^{55}

$$M \sim \frac{c^3 t}{G} \sim 10^{15} \left(\frac{t}{10^{-23} \text{ s}}\right) \text{g}$$

Mass related to time of formation

Limits on PBH burst rate

arXiv:2111.01198

- Survey instruments have a major advantage
- Competitive limits from upcoming Cherenkov Telescope Array Observatory

Astrophysical Searches for Dark Matter

(not to scale)

Lin 2019 arXiv:1904.07915

Astrophysical searches diverse and capable of probing broad phase space

Including regions not discussed in this lecture!