Dark Matter Axion and ALPs

Where do they come from?

- CP violation in QCD
- The strong CP problem
- Peccei Quinn symmetry breaking & the axion
- Axion production in the early universe

CP violation in the quark sector

 $K^0 - \overline{K^0}$ Oscillation via quark mixing

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = \begin{bmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & 0.00351^{+0.00015}_{-0.00014} \\ 0.22520 \pm 0.00065 & 0.97344 \pm 0.00016 & 0.0412^{+0.0011}_{-0.0005} \\ 0.00867^{+0.00029}_{-0.00031} & 0.0404^{+0.0011}_{-0.0005} & 0.999146^{+0.00021}_{-0.00046} \end{bmatrix}$$

CP violation in the quark sector

For Kaons (negative parity):

 $C \mid K^0, p > = - \mid \overline{K^0}, p >$

$$P \mid K^0, p = 0 > = - \mid K^0, p = 0 > \text{ and } P \mid \overline{K^0}, p = 0 > = - \mid \overline{K^0}, p = 0 >$$

Thus: $CP \mid K^0, p = 0 > = \mid \overline{K^0}, p = 0 > \text{ and } CP \mid \overline{K^0}, p = 0 > = \mid K^0, p = 0 >$

Thus there are two CP Eigenstates:

$$|K_{1/2}^0$$
 , $p=0>=rac{1}{\sqrt{2}}\{|~K^0$, $p=0>\pm|\overline{K^0}$, $p=0>\}$

With

$$CP|K^0_{1/2}$$
 , $p=0>=~\pm|K^0_{1/2}$, $p=0>$

 K_1^0 ALWAYS has to decay into states with *CP=1* K_2^0 ALWAYS has to decay into states with *CP=-1*

B. Majorovits (bela@mpp.mpg.de)

CP violation in the quark sector

Experimentally two states observed: $K_S^0 \rightarrow \pi\pi$ and $K_L^0 \rightarrow \pi\pi\pi$ $\tau_S = 0.9 \cdot 10^{-10} s$, $\tau_L = 0.5 \cdot 10^{-7} s$

1964: Christenson, Cronin, Fitch and Turlay at Brookhaven national Lab also **observed**:

 $\rightarrow K_L^0 \rightarrow \pi \pi$

This is a CP violating decay! (similar CP violating decays appear in bmesons: BELLE/Babar)

→Nobel Prize 1980

corresponding to (CP states) $K_L^0 = K_2^0$ and $K_S^0 = K_1^0$

The Nobel Prize in Physics 1980

Photo from the Nobel Foundation archive. James Watson Cronin Prize share: 1/2

Val Logsdon Fitch Prize share: 1/2

CP violation in the quark sector

 $K^0 - \overline{K^0}$ Oscillation

CP violation in the QCD vacuum

QCD gauge group SU(3)_c is a **non-Abelian**: gauge transformations of the Lie group are **not commutative**!

Consequence: QCD has "large gauge transformations", which come with gauge in-equivalent **ZERO energy states** $|n\rangle$, separated by potential barrier.

 \rightarrow No single $|n\rangle$ (including $|0\rangle$) can be a stable vacuum state due to quantum tunelling

Physical ground state of QCD vacuum is defined by gauge invariant superposition of vacuum states:

 $| m{ heta}
angle = \sum_n e^{i n heta} | n
angle$

For couplings this means: Need to evaluate "possible amplitudes"

 \rightarrow **NEED** to add a general CP violating term to the QCD Lagrangian:

$$\Theta rac{lpha_s}{8\pi} G_{\mu
u a} \widetilde{G}^{\mu
u}_a$$

CP violation in QCD

→ There are **two INDEPENDENT sources for CP violation** in QCD.

Physically only one CP violating phase will appear:

$$\theta_{eff} = \bar{\theta} = \theta - (phase \ of \ CKM \ matrix)$$

leading to additional CP violating term in the QCD Lagrangian:

$$\overline{\Theta}\frac{\alpha_s}{8\pi}G_{\mu\nu a}\widetilde{G}^{\mu\nu}_a$$

With α_s the strong coupling constant and $G_{\mu\nu a}$ and $\tilde{G}_a^{\mu\nu}$ the gluon field and its dual.

Electric Dipole Moment (EDM)

Nonzero EDMs imply P and T (and CP) violation if the system has a non-degenerate ground state. This can be seen as follows:

$$\vec{d} = \left| \vec{d} \right| \frac{\vec{\sigma}}{|\sigma|} \rightarrow \Delta E = \left| \vec{d} \right| \frac{\vec{\sigma}}{|\sigma|} \cdot \vec{E}$$
$$P\left(\vec{\sigma} \cdot \vec{E} \right) = -\left(\vec{\sigma} \cdot \vec{E} \right)$$
$$T\left(\vec{\sigma} \cdot \vec{E} \right) = -\left(\vec{\sigma} \cdot \vec{E} \right)$$

EDM energy Eigenstates are neither P nor T conserving

Together with CPT theorem:
Non vanishing dipole moment is CP violating!

 \rightarrow Consequence of non-vanishing cp violating $\overline{\theta}$:

Finite **electric dipole moment (EDM)** of elementary particles

The strong CP problem:

CP violation in QCD should induce EDM in neutron $d_n = \overline{\theta} \cdot 10^{-16} e \ cm$

Experimental limit: $d_n < 3 \cdot 10^{-26}$ e cm

 $\rightarrow \overline{\Theta} = \Theta - \arg \det M_q < 10^{-10}$

Why do **two INDEPENDENT sources for CP violation** eliminate each other to 1 in 10¹⁰?

Anthropic principle does not help! Universe would look the same with $\overline{\Theta} \sim 0.001$

The Peccei Quinn mechanism

"Make $\overline{\Theta}$ a field that is dynamically driven to 0" Introduce U(1) symmetry with $\overline{\Theta}$ the complex phase

U(1) symmetry is sponatneously borken at Peccei Quinn scale f_a (f_a also sometimes called axion decay constant)

 \rightarrow Massless Nambu-Goldsonte-Boson $a(x) = \overline{\Theta}(x) \cdot f_a$

The Peccei Quinn mechanism

 \rightarrow Explicit symmetry breaking during QCD phase transition

"Topological susceptibility" of QCD vacuum :

- dependence of term $G_{\mu\nu a}\widetilde{G}^{\mu\nu}_{a}$ on $\overline{\Theta}$
- \rightarrow Dependence of field potential on $\overline{\Theta}$:
- → Potential minimum at $V(\overline{\Theta} = \mathbf{0})$ due to "Instanton dynamics"

→ Massive pseudo Nambu-Goldsonte-Boson

The Peccei Quinn mechanism

"Make $\overline{\Theta}$ a field that is dynamically driven to 0"

Axion as massive pseudo Nambu-Goldsonte-Boson

→ generation of mass by chiral symmetry breaking (mass: second derivative of potential at minimum)

$$m_a = 5.7 \mu eV \left(rac{10^{12}}{f_a}
ight)$$
 Correlated to f_a by QCD

Chiral symmetry breaking is process giving π^0 its mass!! \rightarrow Mass generation by "mixing with mesons!"

Coupling to Photons: $g_{a\gamma\gamma} \propto 1/f_a$

Axion Photon mixing

 \rightarrow Axion photon conversion in external B-field

 \ddot{a}

Coupling to Photons: $g_{a\gamma\gamma} \propto 1/f_a$

In general: Presence of axion field modifies Maxwell's equations:

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma} \mathbf{B} \cdot \nabla a ,$$

$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = \mathbf{J} + g_{a\gamma} \left(\mathbf{B} \dot{a} - \mathbf{E} \times \nabla a \right) ,$$

$$\nabla \cdot \mathbf{B} = 0 ,$$

$$\nabla \times \mathbf{E} + \dot{\mathbf{B}} = 0 ,$$

$$- \nabla^2 a + m_a^2 a = g_{a\gamma} \mathbf{E} \cdot \mathbf{B} .$$

Axions are produces as NON-THERMAL local field oscillations,

 \rightarrow particle population without initial momentum \rightarrow NON RELATIVISTIC!

After phase transition: axion field oscillations: frequency proportional to axion mass Quantization of oscillations → huge particle density → Ideal cold Dark Matter candidate

Axions are produces as NON-THERMAL local field oscillations,

 \rightarrow particle population without initial momentum \rightarrow NON RELATIVISTIC!

Energy stored, i.e. particle number density:

depends on initial alignment of $\overline{\Theta}_i$ after symmetry breaking.

Assume: Axions make up all dark matter:

If we can calculate axion relic density \rightarrow prediction for their mass!

V(a)

a

Axion relic density depends on:

• Initial misalignment $\overline{\Theta_i}$

$$\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\sin\theta = 0$$

V(a)

• Energy scale of f_a : Peccei-Quinn symmetry breaking before or after inflation?

Pre-inflationary scenario: Peccei Quinn symmetry breaking occurred before inflation: $\overline{\Theta_i}$ the same everywhere in the observable universe $\rightarrow 0 < |\overline{\Theta_i}| < \pi$

Post-inflationary scenario: Observable universe consists of many patches not in causal contact during Peccei Quinn symmetry breaking

 \rightarrow Today we see average of all $\overline{\Theta_i}$ from many patches now in causal contact

Problem: Topological defects lead to additional axion population \rightarrow large uncertainties

 $\rightarrow \left|\overline{\Theta_i}\right| \sim \pi/2!$

ISAPP School "Neutrinos and Dark Matter" - Bad Liebenzell – 2024

B. Majorovits (bela@mpp.mpg.de)

Axions and ALPs: where do they come from, how to detect them?

Axion Like Particles (ALPs)

Any spontaneously broken U1 symmetry with explicit symmetry breaking: Pseudo Nambu Goldstone Boson → Axion like particle

For axion:

mass correlated by QCD to spontaneous symmetry breaking energy scale f_a

Axion Like Particles (ALPs)

Many other pNGBs:

→ The **Axiverse** from string theory arising from compactification of dimensions (Calabi-Yau manifold of extra dimensions)!

- → No correlation between energy scale of spontaneous symmetry breaking and mass, but coupling to photon suppressed by energy scale of spontaneous symmetry breaking
- → Same mechanism of ALP photon mixing and Primakoff effect!
- \rightarrow Axion searches also good for ALP searches

Dark Matter Axion and ALPs How to detect them?

- Axion couplings and sources
- Cavity experiments
- Dielectric haloscopes
- LC circuits
- NMR experiments
- Solar axion search
- Light shining through the wall
- Some astrophysical constraint

Axion production in the early universe

Axions are produces as NON-THERMAL local field oscillations,

→ particle population without initial momentum → NON RELATIVISTIC! → Production by misalignment as relic-oscillation of $\overline{\Theta}_i$

 $\int \int V(a)$ $\int \int V(a)$ $\int \int \int G = 0$

 $\langle v_{DM} \rangle = 10^{-3}c$

Axion as massive pseudo Nambu-Goldsonte-Boson

→ generation of mass by chiral symmetry breaking (mass: second derivative of potential at minimum)

$$m_a = 5.7 \mu eV \left(rac{10^{12}}{f_a}
ight)$$
 Correlated to f_a by QCD

Chiral symmetry breaking is process giving π^0 its mass! \rightarrow Mass generation by "mixing with mesons!"

Coupling to Photons: $g_{a\gamma\gamma} \propto 1/f_a$

Other axion couplings $\propto 1/f_a$:

Axion Bremsstrahlung

Axioelectrif effect

Oscillating EDM

$$d_n = \overline{\theta} \cdot 10^{-16} e \ cm$$

 $\Rightarrow \frac{\partial \overline{\theta}}{\partial t}$ leads to $\dot{d_n}$
 \Rightarrow Spin coupling $\propto \sigma \cdot E$

Axion Photon mixing

In general: Presence of axion field modifies Maxwell's equations:

$$\begin{split} \boldsymbol{\nabla} \cdot \mathbf{E} &= \rho - g_{a\gamma} \mathbf{B} \cdot \boldsymbol{\nabla} a \ , \\ \boldsymbol{\nabla} \times \mathbf{B} - \stackrel{\frown}{\mathbf{E}} &= \mathbf{J} + g_{a\gamma} \left(\mathbf{B} \dot{a} - \mathbf{E} \times \boldsymbol{\nabla} a \right) \ , \\ \boldsymbol{\nabla} \cdot \mathbf{B} &= 0 \ , \\ \boldsymbol{\nabla} \times \mathbf{E} + \dot{\mathbf{B}} &= 0 \ , \\ - \boldsymbol{\nabla}^2 a + m_a^2 a &= g_{a\gamma} \mathbf{E} \cdot \mathbf{B} \ . \\ \dot{a} \quad \text{Oscillation of axion field} \end{split}$$

 ∇a Gradient in axion field

 $\rightarrow \dot{a}$ Sources E – field oscillation!

 \ddot{a}

Primakoff Effect: SVVVV Real photon $E = mc^2 = h\mathbf{v}$ $C_{ay} \propto g_{ay} \cdot f_a$ B-Field a(t) $E \cdot B$

"Waves on water surface"

"Field of water waves couples" to air

 \rightarrow Sound!

Higher air pressure: → stronger coupling to air

Axion and ALPs experiments: categorization in source of axions

DM axions: Haloscopes

Detect axions from galactic DM Halo

Model dependence:

 \rightarrow Assume axions make up DM (100%)

 \rightarrow Halo density distribution

 \rightarrow Velocity distribution

Solar axions: Helioscopes

Production of axions/ALPs in the sun:

Inverse Primakoff effect \rightarrow thermal distribution depends on solar modeling

Production in lab: Laboratory experiments

Use photon sources (lasers) to measure effects

Axion "size":

Local DM velocity distribution $\langle v_{DM} \rangle = 10^{-3}c$ $\lambda_{deBroglie} = \frac{h}{p} \sim \frac{h}{m_a \langle v_{DM} \rangle} \sim \frac{h}{\frac{hv_a}{c^2} 10^{-3}c}$ $= 10^3 \frac{c}{v_a} = \frac{3 \cdot 10^{11} m/s}{v_a} =$ $300m \cdot \left(\frac{1 \ GHz}{v_a}\right) \sim 75m \cdot \left(\frac{\mu eV/c^2}{m_a}\right)$

→ Experiment fits into particle!

Axion-experiment "coherence time":

axion mass vs. frequency Local DM velocity distribution $m_a = \frac{hv_a}{c^2}$ $\langle v_{DM} \rangle = 10^{-3}c$ Interaction time of axions for experiment determined by $\lambda_{deBroglie}$: $dt \sim \frac{\lambda_{deBroglie}}{\langle v_{DW} \rangle} \sim \frac{300 \, m}{10^{-3} c} \cdot \left(\frac{1 \, GHz}{v_{a}}\right) = 10^{-3} s \cdot \left(\frac{1 \, GHz}{v_{a}}\right)$ \rightarrow Number of oscillation phases during propagation through experiment: $dt \cdot v_a \sim 10^6$

\rightarrow Many oscillations periods during transition

Axion local DM number density:

$$\begin{aligned} \text{Local DM density} & \text{De Broglie wavelength:} \\ \rho_{DM} \sim 0.3 \frac{GeV/c^2}{cm^3} & \lambda_{deBroglie} \sim 7500 \ cm \cdot \left(\frac{\mu eV/c^2}{m_a}\right) \\ \lambda_{deBroglie}^3 \sim 4 \cdot 10^{12} \ cm^3 \cdot \left(\frac{\mu eV/c^2}{m_a}\right)^3 \\ \lambda_{deBroglie}^3 \sim 4 \cdot 10^{12} \ cm^3 \cdot \left(\frac{\mu eV/c^2}{m_a}\right)^3 \\ 1 \ cm^3 \sim 2.5 \cdot 10^{-13} \ \lambda_{deBroglie}^3 \left(\frac{m_a}{\mu eV/c^2}\right)^3 \\ = 3 \cdot 10^{14} \left(\frac{\mu eV/c^2}{m_a}\right) \frac{4 \cdot 10^{12}}{\lambda_{deBroglie}^3} \left(\frac{\mu eV/c^2}{m_a}\right)^3 \sim \frac{10^{27}}{\lambda_{deBroglie}^3} \left(\frac{\mu eV/c^2}{m_a}\right)^4 \end{aligned}$$

→ Highly degenerate Bose-Einstein condensate!

Axion-Photon Coupling:

Oscillations of E-Field!

→ Use of resonance effects!

Cavity HALOSCOPES

High Q-factor cavities in strong B-field:

- → Coherent E-field oscillation
- → If at resonant frequency: cavity is "pumped"
- → Power can be detected

Total power expected from resonant DM axion to photon conversion:

$$\boldsymbol{P_{sig}} = \boldsymbol{g_{a\gamma}}^2 \left(\frac{\boldsymbol{\rho_a}}{\boldsymbol{m_a}}\right) \boldsymbol{B}^2 \boldsymbol{V} \boldsymbol{Q_L} \boldsymbol{C} \qquad \qquad \boldsymbol{C} = \frac{\left|\int_{V} d^3 x \, \overline{\boldsymbol{E}(v)} \cdot \overline{\boldsymbol{B}}\right|^2}{\int_{V} d^3 x \, \boldsymbol{\varepsilon} \, |\boldsymbol{E}(v)|^2}$$

V: Volume of cavity, Q_L : Loaded Quality factor of cavity (if axion signal width narrower), C: Overlap integral of B-field with axion induced E-field of mode

Total power expected from resonant DM axion to photon conversion:

$$P_{sig} = 7 \cdot 10^{-23} W \left(\frac{\mu eV/c^2}{m_a}\right) \left(\frac{B}{8T}\right)^2 \left(\frac{V}{200l}\right) \left(\frac{Q_L}{10^5}\right) \left(\frac{C}{0.35}\right)$$

V: Volume of cavity, Q_L : Loaded Quality factor of cavity (if axion signal width narrower), C: Overlap integral of B-field with axion induced E-field of mode

Sensitivity of experiment: Use "Dickes radiometer equation":

Sensitivity of experiment: Use "Dickes radiometer equation":

Scan rate:

$$\frac{dm_a}{dt} \sim 0.4 \ \mu eV/yr \left(\frac{B}{8T}\right)^4 \left(\frac{V}{136l}\right)^2 \left(\frac{Q_L}{3 \cdot 10^4}\right)^2 \left(\frac{0.2 \ K}{T_{sys}}\right)^2 \left(\frac{m_a}{3 \mu eV}\right)^2$$

Cavity HALOSCOPE: ADMX

Scan mass range: need to tune

→ Use dielectric low loss tuning rod
 → Change resonance frequency of cavity

Cavity HALOSCOPE: ADMX

MAX-PLANCK-INSTITU

Cavity HALOSCOPE: ADMX

Cavity HALOSCOPE: ADMX

Superconducting and dielectric cavities:

Increase of cavity Q-value:

- Avoid high frequency losses:
 use superconducting wall lining Problem: Superconductor *Tc*(*B*)
 → limits *B* –field → use HTS!
- Minimize field at cavity walls: Use (low-loss) dielectric cylinders

Tc superconductor

Superconducting and multiple cavities:

ADMX-EFR (Extended Frequency Range): 2 - 4 GHz ($9 - 16 \mu eV$)

S. Knirck at Patras 2024 workshop

48

ISAPP School "Neutrinos and Dark Matter" - Bad Liebenzell – 2024

B. Majorovits (bela@mpp.mpg.de)

Dish antenna

Broadband approach

Works independent of frequency (axion mass)! $P_{sig} \sim B^2 A$

For axion search: Need large area and Extremely sensitive detector BRASS @ Uni Hamburg/DESY BREAD @ Fermilab

B=10 T $T_{sys} = 8K$ $P_{sens} = 10^{-23} W$ $\rightarrow A = 1.000m^2$

B. Majorovits (bela@mpp.mpg.de)

Dish antenna BREAD experiment

Broadband Reflector Experiment for Axion Detection

Use "lighthouse" geometry

Photon emission from cylinder walls
→ Fits into solenoid magnet

A=0.5 m², B=3.9 T, T_{sys}= 400 to 600 K, t ~ 30 days

B. Majorovits (bela@mpp.mpg.de)

Dish antenna BREAD experiment

Broadband Reflector Experiment for Axion Detection

Taken from G. Hohshino at PATRAS 2024

Dielectric haloscopes:

"Quasi broadband" approach

Dielectric haloscopes:

"Quasi broadband" approach

Two effects:

- 1. Coherent emission from all surfaces
- 2. Resonant enhancement of emission at surfaces
- Set disk distances to tune resonant effects
- Changing distances changes sensitive frequency range

Prototype booster \rightarrow Obtain boost factor from E-field measurements

Measure electric field Calculate boost factor from measurement

$$\left|\beta^2 \propto \left|\int_{V_a} dV E\right|^2$$

"Simple" 3-disk 300mm prototype booster at room temperature:

Improve existing limits by ~3 orders of magnitude Resonant and broadband at the same time

"Simple" 3-disk 200mm "closed" booster at room temperature:

Closed boundary conditions: finite number of modes

- \rightarrow Easier to model
- ightarrow Boost factor can be determined from 1D model
- \rightarrow Seperation rings can be exchanged \rightarrow Tune frequency
- ightarrow Use 1.6 T dipole magnet at CERN

Identification of correct mode vie "bead pull measurements"

Axions and ALPs: where do they come from, how to detect them?

MAgnetized disk and Mirror Axion eXperiment MAX Preliminary Frequency [GHz] 18.51 18.53 18.55 18.57 19.17 19.19 19.21 19.23 MADMAX CB200 MADMAX CB200 Configuration 2 Configuration 1 10^{-10}

Improve existing limits by factor ~2
Good understanding of boost factor determination:
Measuremet + Modelling
→ Proof of concept!

Magnet: large bore (1.35m) high-field (9.1 T) dipole magnet needed

- ightarrow Being developed in cooperation with CEA-Itrfu
- \rightarrow First of its kind!

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY

A PUBLICATION OF THE IEEE COUNCIL ON SUPERCONDUCTIVITY

VOLUME 33

OCTOBER 2023

NUMBER 7

(ISSN 1051-8223)

ITASE9

For more, see C. Lorin et al., "Development, Integration, and Test of the MACQU Demo Coil Toward MADMAX Quench Analysis," Art no. 4500711.

- Toroidal 8-coil magnet ~6T L=~20m, 600mm bore,
- Locations: probably DESY
- sensitivity to axions with $m_a \sim 10 \text{meV}$ $g_{a\nu\nu} \sim 3 \cdot 10^{-13}$

NUSTAR as axion telescope

Observed center of solar disk for 6.4 hoursduring 2020 solar minimum in 2020Signal region: $r < 0.1 R_o$ Bkg. Region: $0.15 R_o < r < 0.3 R_o$ Remove wedges containing X-ray bright points

E. Todarelli at Partas workshop 2024

NUSTAR as axion telescope

E. Todarelli at Partas workshop 2024

Axions produced in sun Convert axions to photons in solar B-field

Lab experiments:

Lab experiments:

Light shining through the Wall

- Maximize magnet length
- Optical generation and regenaration cavities with high Finesse: "recycle light"
- Optical cavity technology from gravitational wave detectors!

ALPS II at DESY

- 2x strings of 12 HERA dipole magnets:
 5.3 T, 106 m
- Cryogenic infrastructure
- High power laser (HPL) system (30 W)
- World record storage time: 7.17 + 0.01 ms
- Heterodyne detection system (Δf ~ 1 µHz)
- 3 clean rooms at the different stations of the experiment

ALPS II at DESY

First data since Feb. 2024 Improve previous limits by > order of mag.

Limits and projections in perspective

Nuclear Magnetic Resonance:

Axion coupling with nucleus

- → Oscillating electric dipole moment
- → Precession of nuclear spin in material sample in presence of an electric field
- → Resonant transverse magnetization
- → Measure via precision magnetometry
- → Modify B_{ext} to scan different masses (defines sensitivity)

MAX-PLANCK-INSTITU

Limits on axion coupling from stellar evolution:

axion couplings with nuclei/electrons/gammas In "hot media/plasmas":

- \rightarrow emission of axions
- → Additional cooling of stellar cores, supernovae (progenitors), pulsars, ... due to axion emission
- \rightarrow Stellar evolution influenced depending on coupling strengths
- \rightarrow Set limits on coupling strength $\rightarrow f_a$

Limits from stellar evolution:

Hertzsprung Russel diagram

Count population

- → Information on duration of given stage of evolution
- ightarrow Density depends on cooling rate
- \rightarrow For example tip of red giant branch

Primakoff energy loss rate proportional to $\frac{T^7}{\rho}$

 \rightarrow axion emission rate depends on sequence in stellar evolution Globular cluster: Gravitationally bound system of stars that formed at the same time:

Limits from stellar evolution:

Horizontal branch stars (HB): Helium burning stars after Red Giant Branch (RGB) stage: very hot

→ Axion couplings could significantly shorten lifetime

Count number of stars in HB and compare to RGB expectations based on standard cooling.

Limits from stellar evolution:

Most sensitive analysis (Raffelt, MPP): Length of neutrino signal from SN87a:

Core collapse SN: creation of a proto-neutron start with short life time.

During life time of neutron star with T~10MeV:

Neutrino emission (almost 20 neutrinos observed during several seconds)

Life time of neutron star would be shortened by emission of axions due to "axion nuclear Bremsstrahlung":

→ Length of neutrino burst: limit on axion Bremsstrahlung

$$\rightarrow f_a > 10^8 \text{ GeV} \rightarrow m_a < 1 \text{ eV}$$

Hints from stellar evolution:

Some systems show cooling anomalies, i.e. more energy loss than expected:

Pulsating white dwarf G117-B15A with P=215s: Frequency is decreasing due to cooling: Expected: $\dot{P}_{th} = (2-6) \cdot 10^{-15} s s^{-1}$ Measured: $\dot{P}_{obs} = (12.0 \pm 3.5) \cdot 10^{-15} s s^{-1}$ (two more variable white dwarfs with slightly too efficient cooling found: R548, PG1351)

Possible loss mechanism in white dwarfs: "axion electron Bremsstrahlung"

Hints from transparency of the universe:

Some astrophysical sources can emit very high energy gamma rays $\gg 1 TeV$. Especially for blazars (AGN with jet pointing towards earth): can be detected on earth using Cherenkov telescopes \rightarrow MAGIC, HESS, CTA

Photons can interact with infrared band of Extra Galactic Background Light (EBL) resulting from stars, interstellar dust emission, etc.

- \rightarrow High energy gamma rays are absorbed (pair creation)
- \rightarrow Optical depth τ not zero
- \rightarrow Flux is attenuated

$$\Phi_{obs}(E_{\gamma}) = \Phi_s(E_{\gamma}) \cdot e^{-\tau(E_{\gamma}, Z_S)}$$

 Φ_s and Φ_{obs} : fluxes emitted by source and observed at earth, z_s is the red shift of the source .

Hints from transparency of the universe:

Transparency is given by:

$$\tau(E_{\gamma}, z_s) = \int_0^{z_s} \int_{E_{th}}^{\infty} \sigma_{\gamma\gamma}(E_{\gamma}, E) \cdot n_{EBL}(z, E) \ dE \ dl(z)$$

with l(z) the path of the photons, taking into consideration cosmological evolution (expansion), $n_{EBL}(z, E)$ the EBL density at redshift z and energy E and $\sigma_{\gamma\gamma}(E_{\gamma}, E)$ the angle averaged pair creation cross section.

Photons can evade EBL scattering by: $\gamma \rightarrow ALP \rightarrow \gamma$ Photon to ALPs conversion in magnetic field of source or intergalactic medium

Hints from transparency of the universe:

Source: **blazers**: few mG on 10pc scale, intergalactic medium: μG on hundred kpc scale, back conversion in (inter)galactic magnetic field: μG over more than 10kpc,

Depending on line of sight:

Calculate oscillation probabilities as function of direction.

→Investigation of energy dependent flux from blazars, compare to expectations taking into account $\tau(E_{\gamma}, z_s)$

→ For ALP scenario: expected flux as function of energy will be different, depending on line of sight (different back-oscillation probabilities).

Analysis of high energy spectra from 12 high z_s sources consistent with ALPs with $g_{a\gamma\gamma} \sim 2 \cdot 10^{-11} \text{ GeV}^{-1}$ for few hundred neV ALP mass.

Axions and ALPs: where do they come from, how to detect them?