ISAPP School 2024 · KIT / Bad Liebenzell GEANT4 Simulations for Rare Event Searches

Holger Kluck · HEPHY · holger.kluck@oeaw.ac.at

3/3: Radioactive Backgrounds for Shallow Sites (e.g. reactor based neutrino experiments) and Deep Underground Experiments (e.g. Dark Matter Searches)

Background Sources

Background sources: sources of primary particles in the MC simulation

Cosmogenic background

- Primary cosmic rays (p, ^AX) on surface
- Secondary cosmic rays (n, μ) produced by nuclear spallation in the atmosphere
- Radioactive activation / transmutation of elements by cosmic rays
- Radiogenic background caused by natural radioactivity
 - EM background (α , β , γ) from
 - Natural radioactive decay chains (²³²Th, ²³⁵U, ²³⁸U)
 - Other natural radionuclides, e.g. ⁴⁰K
 - Anthropogenic radionuclides, e.g. ⁹⁰Sr, ¹³⁷Cs
 - Neutron background from
 - (α ,n) reactions on e.g. ¹⁴N
 - Spontaneous fission of e.g. ²³⁸U
 - μ-induced spallation of high-Z nuclides^{*}

Background Sources

Background sources: sources of primary particles in the MC simulation

Cosmogenic background

 \rightarrow dominant at shallow sites,

e.g. neutrino experiments at nuclear reactors

 Radiogenic background caused by natural radioactivity

→dominant at deep underground sites e.g. direct Dark Matter searches

*Nuclide: any type of atomic nucleus _z^AX

Background Mitigation

External (ambient) background

= originate outside of the detector

- Can be shielded by placing an absorber between background source and detector
- May be actively rejected by operating an auxiliary detector (=veto, tuned to the background) in anti-coincidence with the main detector
- Only long-rage background radiation is detectable: γ, n, μ, energetic β

Internal background

= originate inside the detector

- Can not be shielded
- Select building materials with low radioactive contamination (= high radiopurity) during so-called assay or screening measurement
- Radiochemical purification of the building materials may be needed
- Also **short-range** background radiation is detectable: α , low-energy β

Prompt Cosmogenic Background

Primary and secondary cosmic rays can be

- Simulated from first principle with dedicated codes, e.g. <u>CORSIKA</u>
- Sampled from parameterisations of measured fluxes of secondary particles, e.g. [<u>T. K. Gaisser, 2016</u>] for muons
 → feed into Primary Particle Generators in Geant4
- Use existing Primary Particle Generators like <u>CRY</u> or develop your own, e.g. [<u>H. Kluck, 2013</u>].

Atmospheric Neutrons

- At ground, atmospheric neutrons can reach up to ~10 GeV
- Thermal neutrons at ~10 meV
- Actual spectrum depends on atmospheric conditions, and hence on the location:
- ← IBM T. J. Watson Research Center in Yorktown Heights, NY

[M. S. Gordon et al., IEEE Trans. Nucl. Sci., 51.6 (2004) 3427-3434]

Cosmogenic Activation

Activation of materials due to production of radionuclides via atmospheric n (and to a lesser extend due to μ) can be

- Directly simulated in Geant4 via <u>ParticleHP</u> physics
- Simulate only the decay of the radionuclides in Geant4; scale the decay spectra with the production rates calculated with external, specialized tools (TALYS, ACTIVIA)
- Decay is delayed w.r.t. the prompt cosmic rays

Cosmogenic activation in CaWO₄ calculated with ACTIVIA

H. Kluck et al., J. Phys.: Conf. Ser. 2156 (2021) 012227

Atmospheric Muons

- At ground, **atmospheric muons** can reach up to >10 TeV
- Low energy part ~<10 GeV is affected by:
 - Atmospheric condition
 - Geomagnetism
 - Solar activity
- Spectrum can be described by Gaisser's parametrisation

[T. K. Gaisser et al., Cosmic Rays and Particle Physics (2nd Ed.), Cambridge, 2016]

CRY

Physics Simulation Packages

NADS Java Issues and FAO	LLNL has developed self-contained physics simulations that can be interfaced to any
Legal Disclaimer	To receive email notification for bug fixes and new versions, please click on the appr
Learn about the Department	CRY
of Energy's Vulnerability Disclosure Program	Generates correlated cosmic-ray particle showers at one of three elevations (sea level particles. Provides basic correlations between paticles within the shower, latitude, and
Index	Documentation: <u>User manual</u> , <u>Physics description</u> . Downloads (version 1.7): <u>Install from source</u> Add me to the CRY mailing list.
🔁 Home	·

- Geant4 has no built-in particle generator for atmospheric n/μ
- In **this lecture**, we will assume initial spectrum is flat and **use GPS**
- For more realistic spectrum: <u>CRY</u>
- Advantages:
 - Easy to include (next slide)
 - Full shower, i.e. several primaries per event
 - μ, n, p, e⁻, e⁺, pions
- Disadvantages:
 - No overburden
 - Only three altitudes
- Only option for even more details: selfdeveloped code

Using GPS for Atmospheric Particles

• Shooting <particle> with <energy> from a sphere of <radius> inwards on a volume /qps/pos/type Surface /gps/pos/shape Sphere /gps/pos/radius <radius> /gps/pos/centre 0. 0. 0. mm /gps/particle <particle> /gps/energy <energy> /gps/ang/type iso /gps/ang/surfnorm false /gps/ang/mintheta 0 deg /gps/ang/maxtheta 90 deg

Average Muon Energy Loss / Stopping Power

[D. E. Groom et al., Atom. Data Nucl. Data Tab., 78.2 (2001) 183-356]

- Minimum ionising muons loss
 ~2 MeV cm² g⁻¹
 e.g. for Ge (ρ=5.3 g cm⁻³):
 ~10.6 MeV cm⁻¹
- In general, stopping power $-\left\langle \frac{dE}{dX} \right\rangle = a(E) + b(E) \cdot E$ with material dependent electronic

contribution *a* and radiative contribution *b*

Muon Energy Fluctuation

- PDF of muon energy loss is asymmetric with a heavy tail towards higher energies
 → Average energy loss ⟨Δ⟩ is not the most probable energy loss Δ_p
- The actual energy loss can be fitted with a Landau function

[R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022 (2022) 083C01]

Hands-on

- Copy ./mac/vis_run.mac to ./mac/vis_run_atm.mac and modify the GPS commands
 - To use a Sphere as surface source
 - Centred around our geometry
 - With a diameter large enough to enclose the "shell" volume
 - Select mu- of 100 GeV as particle
 - Isotropic distributed between 0° and 90°
 - Simulate 10 events
- Run the simulation, open the produced scene-0.heprep.zip to check if the particles are generated as expected
- Copy ./mac/run.mac to ./mac/run_atm.mac and replace the GPS commands with the ones from above
- Set "/event/verbose" and "/tracking/verbose" to 0 and run the simulation for 10000 events
- Open the produced cube.root and create a histogram of Edep between 0 and 1GeV
 - does the spectrum looks like expected?

Hands-on

/gps/pos/type Surface /gps/pos/shape Sphere /gps/pos/radius 25 cm /gps/pos/centre 0. 0. 0. mm /gps/particle mu-/gps/energy 100. GeV /gps/ang/type iso /gps/ang/type iso /gps/ang/surfnorm false /gps/ang/mintheta 0 deg /gps/ang/maxtheta 90 deg

Deep-underground Laboratories

- Rock, concrete etc. above the experiment shields against atmospheric μ (and p, n)
- Shielding power of this **overburden** is given as column density X $X = \rho \cdot l$ along the μ track length l
- Given relative to the shielding power of a water column of 1 m height in **meter water equivalent**:

 $1 \text{ m w.e.} = 10^2 \text{ g cm}^{-2}$

[G. Heusser, Annu. Rev. Nucl. Part. Sci., 45 (1995) 543-590]

Deep-underground Laboratories

- \rightarrow **Reduction of µ-flux** by up to ~10⁸ is possible (Jinping lab)
- \rightarrow Deepest lab in Europe: LSM; largest lab in Europe: LNGS
- → Simulation of shielding power needs be-spoken primary particle generator

that considered the topography of the rock overburden e.g. [H. Kluck, 2013]

Radioactive Decay

- α -, β ⁻-, β ⁺- and Electron Capture (EC)-decay $\rightarrow \underline{G4RadioactiveDecay}$
- If daughter nucleus is in excited state, deexcitation via γ^{*}-emission or Internal Conversion (IC=e⁻ emission)
 → G4PhotoEvaporation
- Subsequent <u>atomic relaxation</u> (fluorescence, Auger electron-emission)
- Information about decay channels and nuclear level scheme:
 - IAEA Live Chart of Nuclides
 - R. B. Firestone, *Table of Isotopes*^{**}, 1999, Wiley-VCH
- → Very helpful to check correctness of simulation, e.g. Q-value

Natural radioactive decay chains of ²³²Th, ²³⁵U, ²³⁸U

*Gamma-ray: em radiation emitted through nuclear de-excitation; **Isotope: nuclides belonging to a given element, i.e. same atomic number Z, but different atomic mass A

Secular Equilibrium

- Activity of parent nuclide = activity of daughter nuclide
- If parent nuclide has long halflife and short-lived daughter nuclide is removed (e.g. radiochemical purification)
 →Equilibrium is broken
- Use

/grdm/nucleusLimits A A' Z Z' command to break decay chain

(α,n) reactions

 (α,n) reactions can be

- Directly simulated in Geant4 (with input from TALYS via the TENDL data library)
 → G4ParticleHP
- Simulate only the neutron propagation in Geant4 and obtain neutron spectra and yield from specialised codes
 - SOURCES4 (proprietary code)
 - <u>NeuCBOT</u> (open source)
- Cross sections for (α,n) reactions often inconsistent
 - \rightarrow Simulation is only as good as input data

For example, measured cross sections for $^{27}Al(\alpha,n)^{30}P$

Cross Section (barns)

[IAEA, Experimental Nuclear Reaction Data (EXFOR)]

Hands-on

- Assume the Cu of "shell" (m=23.7 kg) is contaminated with 500 uBq/kg of ⁵⁸Co from cosmogenic activation, calculate how many events need to be simulated for 100 d measuring time
- Copy ./mac/vis_run.mac to ./mac/vis_run_Cu.mac and adapt the GPS commands by
 - Selecting ⁵⁸Co as primary particle
 - Placing it inside the "shell" volume by using the "/gps/pos/confine" command
- Run the simulation with 10 events, open the produced scene-0.heprep.zip to check if the particles are generated as expected
- Copy ./mac/run.mac to ./mac/run_Cu.mac and replace the GPS commands with the ones from vis_run_Cu.mac
- Set "/event/verbose" and "/tracking/verbose" to 0 and run the simulation for the number of events equivalent to 100 d measuring time
- Open the produced cube.root and create a histogram of Edep between 0 and 2 MeV
 - does the spectrum looks like expected?

Hands-on

/run/initialize

#Place 58Co ions

/gps/pos/type Volume

/gps/pos/shape Para

/gps/pos/halfx 12 cm

/gps/pos/halfy 12 cm

/gps/pos/halfz 12 cm

/gps/pos/paralp 0

/gps/pos/parthe 0

/gps/pos/parphi 0

/gps/pos/centre 0. 0. 0. mm

/gps/pos/confine shell

/gps/particle ion

/gps/ion 27 58

/gps/energy 0 MeV

/gps/ang/type iso

#500 uBq/kg * 23.7 kg * 3600 s/h * 24 h/d * 100 d

Questions, Comments, Feedback

Additional Information

Gaisser Parameterisation

$$\frac{\mathrm{d}N_i(E_i, X)}{\mathrm{d}X} = -\frac{N_i(E_i, X)}{\lambda_i} - \frac{N_i(E_i, X)}{d_i} + \sum_{j=i}^J \int_E^\infty \frac{F_{ji}(E_i, E_j)}{E_i} \frac{N_j(E_j, X)}{\lambda_j} \,\mathrm{d}E_j.$$

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) \quad (\sim 100\%)$$

$$K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) \quad (\sim 63.5\%).$$

$$\begin{aligned} \frac{\mathrm{d}N_{\mu}}{\mathrm{d}E_{\mu}} &\simeq S_{\mu}(E_{\mu}) \, \frac{N_0(E_{\mu})}{1 - Z_{NN}} \left\{ \mathcal{A}_{\pi\mu} \, \frac{1}{1 + \mathcal{B}_{\pi\mu} \cos\theta E_{\mu}/\epsilon_{\pi}} \right. \\ &+ 0.635 \, \mathcal{A}_{K\mu} \, \frac{1}{1 + \mathcal{B}_{K\mu} \cos\theta E_{\mu}/\epsilon_K} \right\}. \end{aligned}$$

- The Gaisser parameterisation describes the development of particle cascades with a set of coupled equations
- For muons, mainly the decay of pions and kaons are feeding the cascade
- Given as function of ${\rm E}_{\mu}$ at ground level and zenith angle

Zenith Angles

- Due to Earth's curvature, the **zenith angle** at *ground* θ is different from the zenith angle at the *production vertex* θ^*
- Production height is $h_0 \sim 17 \text{ km}$
- In general, track length also depends on altitude of experiment

Gaisser Parameterisation II

$$\begin{aligned} \frac{\mathrm{d}N_{\mu}}{\mathrm{d}E_{\mu}} &\simeq S_{\mu}(E_{\mu}) \, \frac{N_0(E_{\mu})}{1 - Z_{NN}} \left\{ \mathcal{A}_{\pi\mu} \, \frac{1}{1 + \mathcal{B}_{\pi\mu} \cos\theta E_{\mu}/\epsilon_{\pi}} \right. \\ &+ 0.635 \, \mathcal{A}_{K\mu} \, \frac{1}{1 + \mathcal{B}_{K\mu} \cos\theta E_{\mu}/\epsilon_K} \left\} \, . \end{aligned}$$

$$\frac{\mathrm{d}N_{\mu}}{\mathrm{d}E_{\mu}} \approx \frac{0.14 \, E_{\mu}^{-2.7}}{\mathrm{cm}^2 \, \mathrm{sec} \, \mathrm{sr} \, \mathrm{GeV}} \left\{ \frac{1}{1 + \frac{1.11 \, E_{\mu} \, \mathrm{cos} \, \theta}{115 \mathrm{GeV}}} + \frac{0.054}{1 + \frac{1.11 E_{\mu} \, \mathrm{cos} \, \theta}{850 \mathrm{GeV}}} \right\}.$$

- Below ~200 GeV, the suppression S_μ due to muon decay and energy loss in the atmosphere has to be considered
- Above, it can be neglected
 - Relativistic time dilation
 - Small energy loss relative to initial energy
 - \rightarrow Gaisser's Parameterisation

Muon Range

- To stop a 1 TeV-muon in concrete^{*}:
 - $\rho = 2.3 \, \mathrm{g \, cm^{-3}}$
 - $a = 2.605 \text{ MeV cm}^2 \text{ g}^{-1}$
 - $b = 3.752 \cdot 10^{-6} \text{ cm}^2 \text{ g}^{-1}$
 - \Rightarrow X = 1.5 · 10⁵ g cm⁻² \Rightarrow d = $\frac{x}{a}$ = 65 km
- Energy loss in 10 m w.e. $E = \frac{dE}{dX} \cdot X = 6.6 \text{ GeV}$ i.e. <1% of initial energy

• Get the **muon range** via the *Continous* Slowing Down Approximation (CSDA): assume *a* and *b* are constant in energy:

$$X(E) = \int_{E_0}^{E} \left(\frac{dE'}{dX}\right)^{-1} dE'$$

- CSDA overestimate the muon range for E>1 TeV as it ignores discrete but high energetic scatterings
- No significant shielding against muons at shallow sites

* From table IV-2 of [D. E. Groom et al., Atom. Data Nucl. Data Tab., 78.2 (2001) 183-356]; caution: a="lonization", b=("Brems"+"Pair prod"+"Photonucl")/T

Photopeak

- If the full energy E_γ of a γ-ray is absorbed in the detector via the photoelectric effect
 → photopeak at E_γ
- \bullet Similar if an α is absorbed

[Allen McC via Wikipedia]

Escape Peak

- If E_γ > 2*511 keV
 →Pair creations of e⁺e⁻
 →Creation of positronium
 →Annihilation, 2 γ-rays of 511 keV each
- If both γ -rays get absorbed \rightarrow photopeak at E_{γ}
- If only one γ-ray gets absorbed
 → Single-escape peak at E_v-511 keV
- If no γ -ray gets absorbed \rightarrow **Double-escape peak** at E_v-1022 keV
- Similar, if after photo absorption, a fluorescence X-ray E_x escape
 → Peak at E_γ-E_x

Allen McC via Wikipedia

Compton

- Compton scattering: incoherent scattering of a γ-ray with an atomic electron, transferring some energy to the electron
- If scattered γ-ray leaves the detector, only the transferred energy is visible
- Maximum transferred energy for backscattering

$$E_{\max} = E_{\gamma} \left(1 - \frac{1}{1 + \frac{2E_{\gamma}}{m_{e}c^{2}}} \right)$$

 \rightarrow Compton edge at E_{max}

 \rightarrow Compton continuum between 0 and E_{max}

[Allen McC via Wikipedia]

Leakage

- If the detector dimensions are smaller then the absorption length, the incident particle may deposit only a part of its energy and escape the detector with the remaining energy (~ energy may leak out of the detector)
- For example, to contain a 1 MeV- γ -ray in a CaWO₄ detector: $\lambda^{-1} = \mu \cdot \rho$ $= 6.531 \cdot 10^{-2} \text{ cm}^2 \text{g}^{-1} \cdot 6.06 \text{ g cm}^{-3}$ $= 0.396 \text{ cm}^{-1}$ $\rightarrow \lambda = 2.53 \text{ cm}$
- Set Geant4's range cut to a value smaller then the detector dimension, so that the leakage can be properly simulated

Beta spectrum

- Beta decay ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + \overline{\nu_{e}} + e^{-}$
- Continuous spectrum
- Endpoint of the spectrum = Q-value neutrino mass

[IAEA Live Chart of Nuclides]

Include CRY

```
• MyPGA::MyPGA() {
    Setup=new CRYSetup(...);
    GenPrimaries = new CRYGenerator(Setup);
}
```

```
    MyPGA::GeneratePrimaries(G4Event *evt) {
        std::vector<CRYParticle*> primaries;
        GenPrimaries->genEvent(&primaries);
        for(auto* p : primaries) {
            //Get pos, energy, etc. from p and fill
            //it into vertex and particle
```

```
...
auto* vertex = new G4PrimaryVertex (...)
auto* particle = new G4PrimaryParticle(...)
vertex->SetPrimary(particle);
evt->AddPrimaryVertex(vertex);
```

- Call it from ParticelGeneratorAction (PGA) (similar to Geant4's GPS)
- Multiple primaries per event possible → loop over it
- Need to "translate" CRY data types to Geant4 data types