ISAPP School 2024, Bad Liebenzell

Accelerator-based Dark Matter searches

Dark matter as a thermal relic – outline

Dark matter as a thermal relic – outline

Dark matter as a thermal relic – outline

I. Searches for WIMPs

Weakly Interacting Massive Particle (WIMP)

 $\chi \bar{\chi} \leftrightarrows f \bar{f} \qquad \chi \bar{\chi} \to f \bar{f} \qquad \chi \bar{\chi} \not\to \dots$ Color- and electrically neutral 0.01 • Thermal relic from freeze-out: 0.001 0.0001 10-6 10-6 Comoving Number Density Increasing $\langle \sigma_A v \rangle$ $\Omega \simeq \frac{0.6 \times 10^{-26} \text{cm}^3/\text{s}}{\langle \sigma_{\text{ann}} v \rangle} \stackrel{!}{=} 0.26$ $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$ $\Rightarrow \langle \sigma_{\rm ann} v \rangle \simeq 3 \times 10^{-26} {\rm cm}^3 {\rm /s}$ 10-10 N_{EQ} 10-17 10-18 10-19 $\sim \frac{1}{(20 \,\mathrm{TeV})^2}$ 10-20 1 10 100 x=m/T (time \rightarrow)

Marco's lecture

1000

 $1\,\mathrm{TeV}$

Weakly Interacting Massive Particle (WIMP)

Color- and electrically neutralThermal relic from freeze-out:

$$\Omega \simeq \frac{0.6 \times 10^{-26} \text{cm}^3/\text{s}}{\langle \sigma_{\text{ann}} v \rangle} \stackrel{!}{=} 0.26$$
$$\langle \sigma_{\text{ann}} v \rangle = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$$
$$\Rightarrow \langle \sigma_{\text{ann}} v \rangle \simeq 3 \times 10^{-26} \text{cm}^3/\text{s}$$
$$\sim \frac{1}{(20 \text{ TeV})^2} \text{ Nicely fulfilled by:}$$
$$\text{Nicely fulfilled by:}$$
$$\text{ weak-scale (to TeV) mass}$$
$$\text{ weak coupling strength}$$

Indirect detection

Elisa's lecture

Belina's lecture

This lecture

Amount of DM in probed environments

 $\rho_{\rm probe}^2$

 ρ_{probe}

Large Hadron Collider (LHC)

Proton-proton collisions at 13.6 TeV CM energy

CERN

Large Hadron Collider (LHC)

Proton-proton collisions at 13.6 TeV CM energy

CERN

Large Hadron Collider (LHC)

schematic detector head-on view:

schematic detector head-on view:

schematic detector head-on view:

DM production

schematic detector head-on view:

DM production

schematic detector head-on view:

DM production + initial state radiation (ISR)

schematic detector head-on view:

DM production + initial state radiation (ISR)

schematic detector head-on view:

schematic detector head-on view:

DM production
+ initial state radiation (ISR)

معمومور

 χ

 χ

p

p

Most of the time, nothing interesting happens \Rightarrow trigger recording of events

Hard scattering ($|q| \sim \text{GeV-TeV}$) : quarks in protons collide

• Parton distributions $f(x, \mu_F)$

- Parton distributions
- Hard scattering

- Parton distributions
- Hard scattering
- Initial state radiation

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

T Monte Carlo event generators

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

T Monte Carlo event generators:

e.g. Pythia, Herwig, Sherpa, Powheg; MadGraph, MCFM, Whizard

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

T Monte Carlo event generators:

e.g. Pythia, Herwig, Sherpa, Powheg; MadGraph, MCFM, Whizard

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation
- Jet clustering

Measured objects in an event: jets (B-tag, τ -tag), γ , e^{\pm} , μ^{\pm} , MET

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation
- Jet clustering
- Apply search cuts

Signal over background?

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation
- Jet clustering
- Apply search cuts
 - Signal over background?

MadAnalysis, CheckMate, SModelS, ...

Leading background for MET searches:

- Z+jets, $Z \rightarrow \nu \nu$
- W+jets, $W \rightarrow \ell \nu$
- $t\bar{t}, t \to bW \to b\ell\nu$
- QCD mismeasured jets

Leading background for MET searches:

- $Z+jets, Z \rightarrow \nu\nu$ irreducible
- W+jets, $W \rightarrow \ell \nu$
- $t\bar{t}, t \to bW \to b\ell\nu$
- QCD mismeasured jets

instrumental

Leading background for MET searches:

- Z+jets, $Z \rightarrow \nu \nu$
- W+jets, $W \rightarrow \ell \nu$
- $t\bar{t}, t \to bW \to b\ell\nu$
- QCD mismeasured jets

irreducible
} depends on search
instrumental

Leading background for MET searches:

Leading background for MET searches:

irreducible depends on search

instrumental

$$\sigma_{pp \to \nu \nu g} (p_{\rm T}^{\rm jet} > 250 \,{\rm GeV}) \sim \text{few pb}$$

$$\Rightarrow B \sim 100 \,{\rm fb}^{-1} \times 1000 \,{\rm fb} \sim 10^5$$

$$\frac{S}{\sqrt{B}} \simeq 2 \Rightarrow S \sim 10^3$$

systematics become dominant

WIMP dark matter searches

 $\langle \sigma v \rangle \sim 10^{-26} \mathrm{cm}^3 \mathrm{/s}$

WIMP dark matter searches

 $\langle \sigma v \rangle \sim 10^{-26} \mathrm{cm}^3 \mathrm{/s}$

Effective field theory (EFT)

Effective field theory (EFT)

$$q \longrightarrow \chi \sim \frac{1}{\Lambda^2} (\bar{q}q)(\bar{\chi}\chi), \quad \frac{1}{\Lambda^2} (\bar{q}\gamma^\mu \gamma^5 q)(\bar{\chi}\gamma_\mu \gamma^5 \chi), \dots$$
$$\bar{q} \longrightarrow \chi$$

Problem at LHC: Typical limit on Λ around TeV ~ energies of collisions \Rightarrow EFT not valid [Busoni et al 1307.2253, Buchmueller et al 1308.6799, ...]

Effective field theory (EFT)

$$q \longrightarrow \chi \sim \frac{1}{\Lambda^2} (\bar{q}q)(\bar{\chi}\chi), \quad \frac{1}{\Lambda^2} (\bar{q}\gamma^\mu \gamma^5 q)(\bar{\chi}\gamma_\mu \gamma^5 \chi), \dots$$
$$\bar{q} \longrightarrow \chi$$

Problem at LHC: Typical limit on Λ around TeV ~ energies of collisions \Rightarrow EFT not valid [Busoni et al 1307.2253, Buchmueller et al 1308.6799, ...]

$$\frac{1}{\Lambda^2} = \frac{g_{\chi}g_q}{M^2} \qquad \Lambda^2 \sim \hat{s} \quad \Rightarrow \begin{cases} M^2 \lesssim \hat{s} & \text{perturbative} \\ M^2 \gg \Lambda^2 & g \gg 1 \end{cases}$$

Beyond effective field theory – simplified models

- Y could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$

- Y could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$
- The LHC DM Working Group compiled lists of simplified models [Boveia et al |603.04|56]

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

- Y could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$

$$\mathcal{L} \supset g_q Z'^{\mu} \sum_{q} \bar{q} \gamma_{\mu} \gamma^5 q + g_{\chi} Z'^{\mu} \bar{\chi} \gamma_{\mu} \gamma^5 \chi \quad \text{axial-vector}$$
$$\mathcal{L} \supset g_q Z'^{\mu} \sum_{q} \bar{q} \gamma_{\mu} q + g_{\chi} Z'^{\mu} \bar{\chi} \gamma_{\mu} \chi \quad \text{vector}$$

- Y could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$

$$\mathcal{L} \supset g_q a \sum_q y_q \bar{q} \gamma^5 q + g_\chi a \bar{\chi} \gamma^5 \chi$$
 pseudo-scalar
 $\mathcal{L} \supset g_q \phi \sum_q y_q \bar{q} q + g_\chi \phi \bar{\chi} \chi$ scalar

- Y could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$

Consistency within s-channel mediator models

- Not all choices are theoretically consistent
- E.g. simplified models respecting the symmetries of the broken SU(3) x U(1)_{em}, but not SU(3) x SU(2) x U(1)_Y

[Bell et al 1512.00476]

Spin-I mediators with different couplings to up- and down-quarks:

Consistency within s-channel mediator models

- Not all choices are theoretically consistent
- Additional structure required, e.g. 2HDM + a [Abe et al 1810.09420]
 - \Rightarrow point to new signatures

LHC Dark Matter Working Group: Next-generation spin-0 dark matter models

Tomohiro Abe^{1,2}, Yoav Afik³, Andreas Albert⁴, Christopher R. Anelli⁵, Liron Barak⁶, Martin Bauer⁷, J. Katharina Behr⁸, Nicole F. Bell⁹, Antonio Boveia^{10,a}, Oleg Brandt¹¹, Giorgio Busoni⁹, Linda M. Carpenter¹⁰, Yu-Heng Chen⁸, Caterina Doglioni^{12,a}, Alison Elliot¹³, Motoko Fujiwara¹⁴, Marie-Helene Genest¹⁵, Raffaele Gerosa¹⁶, Stefania Gori¹⁷, Johanna Gramling¹⁸, Alexander Grohsjean⁸, Giuliano Gustavino¹⁹, Kristian Hahn^{20,a}, Ulrich Haisch^{21,22,23,a,*}, Lars Henkelmann¹¹, Junji Hisano^{2,14,24}, Anders Huitfeldt²⁵, Valerio Ippolito²⁶, Felix Kahlhoefer²⁷, Greg Landsberg²⁸, Steven Lowette^{29,a}, Benedikt Maier³⁰, Fabio Maltoni³¹, Margarete Muehlleitner³², Jose M. No^{33,34}, Priscilla Pani^{8,35}, Giacomo Polesello³⁶, Darren D. Price³⁷, Tania Robens^{38,39}, Giulia Rovelli⁴⁰, Yoram Rozen³, Isaac W. Sanderson⁹, Rui Santos^{41,42}, Stanislava Sevova⁴³, David Sperka⁴⁴, Kevin Sung²⁰, Tim M.P. Tait^{17,a}, Koji Terashi⁴⁵, Francesca C. Ungaro⁹, Eleni Vryonidou²³, Shin-Shan Yu⁴⁶, Sau Lan Wu⁴⁷, Chen Zhou⁴⁷

- Y could be scalar or fermion
- Three free parameters (at least): m_χ, m_Y, λ
- Dark matter gauge singlet \Rightarrow Y same quantum numbers as Y
- Dark matter stabilised by Z_2 symmetry: both X and Y odd (SM particles are even)
- $m_Y > m_\chi$
- Examples:

$$\mathcal{L} \supset \lambda Y^{\dagger} \bar{\chi} P_R q + \text{h.c.}$$
 Scalar mediator
 $\mathcal{L} \supset \lambda \bar{Y} P_R q S + \text{h.c.}$ Fermion mediator

t-channel mediator models – signatures

Searches for supersymmetry (squark production)

t-channel mediator models – signatures

t-channel mediator models – signatures

Higgs portal dark matter

Higgs portal dark matter

Summary on WIMP dark matter searches at LHC

- WIMP invisible, detectable via missing energy
- Proton collisions: steeply falling parton luminosity
- Irreducible background from neutrinos
- EFT not suitable for LHC \Rightarrow simplified models (or more complex models)
- Often mediator searches more promising
- MET signal still important for establishing dark matter

II. Searches for Feebly Interacting Massive Particles (FIMPS)

FIMP dark matter production?

WMP freeze-out

 $\langle \sigma v \rangle \sim 10^{-26} \mathrm{cm}^3 \mathrm{/s}$

FIMP dark matter production?

[[]Kahlhoefer 1801.07621]

However, if some part of new physics sector thermalises, those particles may be produced Feeble coupling to dark matter \Rightarrow long-lived particles

- Y could be scalar or fermion
- Three free parameters (at least): m_χ, m_Y, λ
- Dark matter gauge singlet \Rightarrow Y same quantum numbers as Y
- Dark matter stabilised by Z_2 symmetry: both X and Y odd (SM particles are even)
- $m_Y > m_\chi$
- Examples:

$$\mathcal{L} \, \supset \, \lambda \, Y^\dagger ar{\chi} P_R q \, + \mathrm{h.c.}$$
 Scalar mediator

Assumption in WIMP regime: Y decays promptly, $c\tau_Y \ll 1 \text{ mm}$

Freeze-out condition:

Feeble couplings:

Feeble couplings:

Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1 \text{ m}$

Displaced vertices (+MET) $4 \text{ mm} \lesssim c \tau_Y \lesssim 30 \text{ cm}$

Disappearing tracks $10 \text{ cm} \lesssim c\tau_Y \lesssim 1 \text{ m}$

Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1 \text{ m}$

Non-thermalized dark matter: long-lived particle constraints

Non-thermalized dark matter: viable parameter space

'Just' thermalised case

Conversion-driven freeze-out (CDFO):

[Garny et al 1705.09292; D'Agnolo et al 1705.08450]

Current LHC constraints

HL-LHC projections

Summary on FIMP dark matter searches at LHC

- FIMPs not directly produced in collisions
- But from decay of other new physics states
- Feeble coupling \Rightarrow long-lived particle
- Prominent low-background searches, statistically limited
- Promising channels at HL-LHC

III. Searches for light dark matter

Dark matter as a thermal relic

Intensity frontier e^+e^-

• 'Low'-energy e⁺e⁻-colliders: BarBar, Belle-II

• Fixed target experiments Electron beams: E137, E141 (SLAC), E774 (Fermilab), NA64e (CERN), HPS (JLab) Proton beams: CHARM, NA62 (CERN), nu-Cal

. . .

Dark photon model

Massive dark photon A'_{μ} coupling to hyper charge:

$$\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \to \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$

Induces interaction to matter current:

$$\mathcal{L}_{\rm int} \supset -e\epsilon J^{\mu}A'_{\mu}$$

 \Rightarrow dark photon interacts with SM fermions just as a photon but suppressed by ϵ .

Dark photon model

Massive dark photon A'_{μ} coupling to hyper charge:

$$\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \to \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$

Induces interaction to matter current:

$$\mathcal{L}_{\rm int} \supset -e\epsilon J^{\mu}A'_{\mu}$$

 \Rightarrow dark photon interacts with SM fermions just as a photon but suppressed by ϵ .

Interaction to dark matter, e.g.:

$$\mathcal{L}_{A'\chi} = -g_{\chi}A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$$

Dark photon production channels

Dark photon decay channels

Dark photon decay channels

Limited by resolution of $m_{\ell^+\ell^-}$

Dark photon model

Massive dark photon A'_{μ} coupling to hyper charge:

$$\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \to \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$

Induces interaction to matter current:

$$\mathcal{L}_{\rm int} \supset -e\epsilon J^{\mu}A'_{\mu}$$

 \Rightarrow dark photon interacts with SM fermions just as a photon but suppressed by ϵ .

Interaction to dark matter, e.g.:

$$\mathcal{L}_{A'\chi} = -g_{\chi}A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$$

Dark matter searches

• Missing energy strategy:

• Dark matter detection:

Dark matter searches

10 F

Summary on light dark matter searches

- Common benchmark: dark photon, kinetic mixing
- Lifetime range from prompt to long-lived
- Intensity frontier: B-factories and fixed target experiments
- Prompt searches background-limited
- Long-lived searches luminosity- and baseline-limited
- Fixed target experiments: dark matter search beyond missing energy