ISAPP School 2024, Bad Liebenzell

Accelerator-based Dark Matter searches

Dark matter as a thermal relic – outline

Dark matter as a thermal relic – outline

Dark matter as a thermal relic – outline

I. Searches for WIMPs

Weakly Interacting Massive Particle (WIMP) from the Early Universe

 $\chi \bar{\chi} \hookrightarrow f \bar{f}$ $\chi \bar{\chi} \rightarrow f \bar{f}$ $\chi \bar{\chi} \rightarrow \ldots$ • Color- and electrically neutral 0.01 in in the Early Universe. • Thermal relic from freeze-out: 0.001 0.0001 10^{-6} 10^{-6} Comoving Number Density Increasing $\langle \sigma_{A} v \rangle$ 10^{-7} $\frac{3}{\epsilon}$ $\frac{0.6 \times 10^{-26} \text{cm}^3/\text{s}}{1}$ 10^{-8} ! 10^{-9} $\Omega \simeq$ $\frac{16}{\langle \sigma_{\rm ann} v \rangle} = 0.26$ 10^{-10} $\langle \sigma_{\rm ann} v \rangle$ 10^{-11} $10 - 12$ $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} \rm cm^3/sec$ 10^{-13} 10^{-14} 10^{-16} $\Rightarrow \langle \sigma_{ann} v \rangle \simeq 3 \times 10^{-26} \text{cm}^3/\text{s}$ 10^{-10} $\rm N_{_{EQ}}$ $10 - 17$ 10^{-18} 10^{-19} 1 10^{-20} 10 100 $\mathbf{1}$ 1000 \sim $(20 \,\mathrm{TeV})^2$ $x = m/T$ (time \rightarrow)

[⇒]Ω^X ∼ O(few 0.1) (WIMP) *Marco's lecture*

1 TeV

Weakly Interacting Massive Particle (WIMP) from the Early Universe

• Color- and electrically neutral in in the Early Universe. • Thermal relic from freeze-out:

 $\frac{3}{\epsilon}$ $W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ וז וז INICely
مادع علومید rumilea • weak-scale (toTeV) mass $\langle \sigma_{\rm ann} v \rangle$ $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$ $\Omega \simeq$ $\frac{0.6 \times 10^{-26} \text{cm}^3/\text{s}}{1}$ $\frac{16}{\langle \sigma_{\rm ann} v \rangle} = 0.26$! \Rightarrow $\langle \sigma_{\rm ann} v \rangle \simeq 3 \times 10^{-26} \text{cm}^3/\text{s}$ \sim 1 $(20 \,\mathrm{TeV})^2$ Nicely fulfilled by: • weak coupling strength

Indirect detection

Elisa's lecture

 $X \setminus \qquad \qquad \angle$ SM SM

Indirect detection Direct detection

Belina's lecture

This lecture

Amount of DM in probed environments

| {z }

 $\rho^2_{\rm probe}$ $\rho_{\rm probe}$

Large Hadron Collider (LHC)

Proton-proton collisions at 13.6 TeV CM energy

CERN

Large Hadron Collider (LHC)

Proton-proton collisions at 13.6 TeV CM energy

CERN

Large Hadron Collider (LHC)

schematic detector head-on view:

schematic detector head-on view:

schematic detector head-on view:

DM production

 χ

 χ

schematic detector head-on view:

WIMPs at the LHC in the LHC

EXP

D^M areduction at the LHC
m
m **s** at the LHC Ps at the LHC. Ps at the LHC **Here we are we added the LHC** and \overline{C} MPs at the LHC at the LHC respectively. We consider the internal control of the internal control of the internal control of the use of the internal control of the control of the use of the control of the control of the use of the use of the use of *induced the LHC*
Sec. 21 coupling the LHC

schematic detector head-on view: ${\bf schematic\ d} \\\ {\bf head-on}$ 100] of MG5aMC, which we interface with ${\bf schematic} {\bf head-oi}$ for the internal tensor reduction.
To gain statistical tensor reduction.
To gain statistical tensor reduction. late the succeeding parton shower with Pythia 8 and 2 and 2 minutes with Pythia 8 ϵ 5 ϵ 6 ϵ 6 The detector simulation is performed within Check-

ic **DM** production *t*
 t
 t initial state radiation (ISR) DM production
+ initial state radiation (ISR)

in the LHC

EXP

D^M areduction at the LHC
m
m **s** at the LHC Ps at the LHC. Ps at the LHC **Here we are we added the LHC** and \overline{C} MPs at the LHC at the LHC respectively. We consider the internal control of the internal control of the internal control of the use of the internal control of the control of the use of the control of the control of the use of the use of the use of *induced the LHC*
Sec. 21 coupling the LHC WIMPs at the LHC

${\bf schematic\ d} \\\ {\bf head-on}$ 100] of MG5aMC, which we interface with ${\bf schematic} {\bf head-oi}$ for the internal tensor reduction.
To gain statistical tensor reduction.
To gain statistical tensor reduction. late the succeeding parton shower with Pythia 8 and 2 and 2 minutes with Pythia 8 ϵ 5 ϵ 6 ϵ 6 The detector simulation is performed within Checkschematic detector head-on view:

ic **DM** production *t*
 t
 t initial state radiation (ISR) DM production
+ initial state radiation (ISR)

at the LHC
m
m **s** at the LHC Ps at the LHC. Ps at the LHC **Here we are we added the LHC** and \overline{C} MPs at the LHC at the LHC respectively. We consider the internal control of the internal control of the internal control of the use of the internal control of the control of the use of the control of the control of the use of the use of the use of *induced the LHC*
Sec. 21 coupling the LHC WIMPs at the LHC

${\bf schematic\ d} \\\ {\bf head-on}$ 100] of MG5aMC, which we interface with ${\bf schematic} {\bf head-oi}$ for the internal tensor reduction.
To gain statistical tensor reduction.
To gain statistical tensor reduction. late the succeeding parton shower with Pythia 8 and 2 and 2 minutes with Pythia 8 ϵ 5 ϵ 6 ϵ 6 The detector simulation is performed within Checkschematic detector head-on view:

in the LHC

EXP

D^M areduction at the LHC
m
m **s** at the LHC Ps at the LHC. Ps at the LHC **Here we are we added the LHC** and \overline{C} MPs at the LHC at the LHC respectively. We consider the internal control of the internal control of the internal control of the use of the internal control of the control of the use of the control of the control of the use of the use of the use of *induced the LHC*
Sec. 21 coupling the LHC WIMPs at the LHC

${\bf schematic\ d} \\\ {\bf head-on}$ 100] of MG5aMC, which we interface with ${\bf schematic} {\bf head-oi}$ for the internal tensor reduction.
To gain statistical tensor reduction.
To gain statistical tensor reduction. late the succeeding parton shower with Pythia 8 and 2 and 2 minutes with Pythia 8 ϵ 5 ϵ 6 ϵ 6 The detector simulation is performed within Checkschematic detector head-on view:

ic **DM** production *t*
 t
 t initial state radiation (ISR) DM production
+ initial state radiation (ISR)

Most of the time, nothing interesting happens \Rightarrow trigger recording of events

Hard scattering ($|q|$ ~ GeV–TeV) : quarks in protons collide

• Parton distributions $f(x,\mu_F)$

- Parton distributions
- Hard scattering

- Parton distributions
- Hard scattering
- Initial state radiation

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

Monte Carlo event generators:

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

Monte Carlo event generators:

e.g. Pythia, Herwig, Sherpa, Powheg; MadGraph, MCFM, **Whizard**

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions

Monte Carlo event generators:

e.g. Pythia, Herwig, Sherpa, Powheg; MadGraph, MCFM, **Whizard**

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation
- Jet clustering

 ${\rm jets}$ $(B\text{-tag}, \tau\text{-tag}), \gamma, e^{\pm}, \mu^{\pm}, {\rm MET}$ Measured objects in an event:

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation
- Jet clustering
- Apply search cuts

Signal over background?

- Parton distributions
- Hard scattering
- Initial state radiation
- Final state radiation
- Hadronization & decay
- Secondary interactions
- Detector simulation
- Jet clustering
- Apply search cuts
	- Signal over background?

MadAnalysis, CheckMate, SModelS, …

matter pro improve significantly beyond an integrated luminosity of the significant significant significant significant s
integrated luminosity of the significant significant significant significant significant significant significan due to systematic uncertainties. For DM masses below **MIMP** dan *^h* ! is open and constitutes another relevant search channel at the LHC. These searches have been performed by the ATLAS [114, 115] and CMS [116] collaborations. WIMP dark matter production cross section

matter pro improve significantly beyond an integrated luminosity of the significant significant significant significant s
integrated luminosity of the significant significant significant significant significant significant significan due to systematic uncertainties. For DM masses below **MIMP** dan *^h* ! is open and constitutes another relevant search channel at the LHC. These searches have been performed by the ATLAS [114, 115] and CMS [116] collaborations. WIMP dark matter production cross section

matter pro improve significantly beyond an integrated luminosity of the significant significant significant significant s
integrated luminosity of the significant significant significant significant significant significant significan due to systematic uncertainties. For DM masses below **MIMP** dan *^h* ! is open and constitutes another relevant search channel at the LHC. These searches have been performed by the ATLAS [114, 115] and CMS [116] collaborations. WIMP dark matter production cross section

matter pro due to systematic uncertainties. For DM masses below **MIMP** dan *^h* ! is open and constitutes another relevant search channel at the LHC. These searches have been performed by the ATLAS [114, 115] and CMS [116] collaborations. WIMP dark matter production cross section

matter pro due to systematic uncertainties. For DM masses below **MIMP** dan *^h* ! is open and constitutes another relevant search channel at the LHC. These searches have been performed by the ATLAS [114, 115] and CMS [116] collaborations. WIMP dark matter production cross section

Leading background for MET searches:

- $Z + \text{jets}, Z \rightarrow \nu\nu$
- $W + \text{jets}, W \to \ell \nu$
- $t\bar{t}$, $t \to bW \to b\ell\nu$
- QCD mismeasured jets

Leading background for MET searches:

- $Z + \text{jets}, Z \rightarrow \nu\nu$ irreducible
- $W + \text{jets}, W \to \ell \nu$
- $t\bar{t}$, $t \to bW \to b\ell\nu$
- QCD mismeasured jets

instrumental

Leading background for MET searches:

- $Z + \text{jets}, Z \rightarrow \nu\nu$
- $W + \text{jets}, W \to \ell \nu$
- $t\bar{t}$, $t \to bW \to b\ell\nu$
- QCD mismeasured jets

irreducible instrumental $\left.\rule{0pt}{12pt}\right\}$ } depends on search

Leading background for MET searches:

Leading background for MET searches:

irreducible depends on search

$$
\sigma_{pp \to \nu\nu g} (p_{\rm T}^{\rm jet} > 250 \text{GeV}) \sim \text{few pb}
$$

\n
$$
\Rightarrow B \sim 100 \text{ fb}^{-1} \times 1000 \text{ fb} \sim 10^5
$$

\n
$$
\frac{S}{\sqrt{B}} \simeq 2 \Rightarrow S \sim 10^3
$$

systematics become dominant

WIMP dark matter searches

 $\langle \sigma v \rangle \sim 10^{-26} \text{cm}^3/\text{s}$ *o* \sim pb

WIMP dark matter searches

 $\langle \sigma v \rangle \sim 10^{-26} \text{cm}^3/\text{s}$ *o* \sim pb

Effective field theory (EFT)

Effective field theory (EFT)

$$
\frac{q}{\bar{q}} \sqrt{\sum_{\chi} \chi} \sim \frac{1}{\Lambda^2} (\bar{q}q)(\bar{\chi}\chi) \, , \, \frac{1}{\Lambda^2} (\bar{q}\gamma^\mu \gamma^5 q)(\bar{\chi}\gamma_\mu \gamma^5 \chi) \, , \, ...
$$

Problem at LHC: Typical limit on Λ around TeV \sim energies of collisions \Rightarrow **EFT not valid** [Busoni et al 1307.2253, Buchmueller et al 1308.6799, ...]

Effective field theory (EFT)

$$
\frac{q}{\bar{q}} \sqrt{\sum_{\chi} \chi} \sim \frac{1}{\Lambda^2} (\bar{q}q)(\bar{\chi}\chi) \, , \, \frac{1}{\Lambda^2} (\bar{q}\gamma^{\mu}\gamma^5 q)(\bar{\chi}\gamma_{\mu}\gamma^5 \chi) \, , \, ...
$$

Problem at LHC: Typical limit on Λ around TeV \sim energies of collisions \Rightarrow **EFT not valid** [Busoni et al 1307.2253, Buchmueller et al 1308.6799, ...]

$$
\frac{1}{\Lambda^2} = \frac{g_\chi g_q}{M^2} \qquad \quad \Lambda^2 \sim \hat{s} \;\; \Rightarrow \; \left\{ \begin{array}{lcl} M^2 \lesssim \hat{s} & \text{perturbative} \\ M^2 \gg \Lambda^2 & \text{${g} \gg 1$} \end{array} \right.
$$

Beyond effective field theory – simplified models

- *Y* could be scalar or vector
- Four free parameters (at least) m_χ, m_Y, g_q, g_χ

- *Y* could be scalar or vector
- Four free parameters (at least) m_χ, m_Y, g_q, g_χ
	- The LHC DM Working Group compiled lists of simplified models $\sum_{i=1}^{N}$ LHC DM Working Group THE LITE DIT YVUI KITE GIUUP complied uses or simplified models Eboveia *et al* 1603.04156]

Recommendations on presenting LHC searches for missing transverse energy signals using simplified s -channel models of dark matter

Antonio Boveia, 1,* Oliver Buchmueller, 2,* Giorgio Busoni, 3 Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn, 9,* Ulrich Haisch, 10,11,* Philip C. Harris, 1 Jan Heisig, ¹² Valerio Ippolito, ¹³ Felix Kahlhoefer, ^{14,*} Valentin V. Khoze, ¹⁵ Suchita Kulkarni, ¹⁶ Greg Landsberg, ¹⁷ Steven Lowette, ¹⁸ Sarah Malik, ² Michelangelo Mangano, ^{11,*} Christopher McCabe, 19,* Stephen Mrenna, 20 Priscilla Pani, 21 Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg, 14 William Shepherd, 23 Tim M.P. Tait, 24,* Lian-Tao Wang, 25 Steven Worm²⁶ and Kathryn Zurek²⁷

- *Y* could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$

$$
\mathcal{L} \supset g_q Z'^{\mu} \sum_q \bar{q} \gamma_{\mu} \gamma^5 q + g_\chi Z'^{\mu} \bar{\chi} \gamma_{\mu} \gamma^5 \chi \quad \text{axial-vector}
$$

$$
\mathcal{L} \supset g_q Z'^{\mu} \sum_q \bar{q} \gamma_{\mu} q + g_\chi Z'^{\mu} \bar{\chi} \gamma_{\mu} \chi \qquad \text{vector}
$$

- *Y* could be scalar or vector
- Four free parameters (at least) $m_{\chi}, m_{Y}, g_{q}, g_{\chi}$

$$
\mathcal{L} \supset g_q a \sum_q y_q \bar{q} \gamma^5 q + g_\chi a \bar{\chi} \gamma^5 \chi \qquad \text{pseudo-scalar}
$$

$$
\mathcal{L} \supset g_q \phi \sum_q y_q \bar{q} q + g_\chi \phi \bar{\chi} \chi \qquad \text{scalar}
$$

- *Y* could be scalar or vector
- Four free parameters (at least) m_χ, m_Y, g_q, g_χ

Consistency within s-channel mediator
• Not all choices are theoretically consistent
• E.g. simplified models respecting the symmetries of the broken Consistency within s-channel mediator models **Complementarity with other LHC searches** Consistancy within s channal modiator me

- Not all choices are theoretically consistent \bullet Not all choices are theoretically consistent $\frac{1}{2}$ symmetric conducts and the broken group SU(3) $\frac{1}{2}$, but are not gauge in the subset of $\frac{1}{2}$
- **Consistency within s-channel mediator models**
• Not all choices are theoretically consistent
• E.g. simplified models respecting the symmetries of the broken SU(3) x U(1)_{em},
but not SU(3) x SU(2) x U(1)_Y [Bell et al **Consistency within s-channel mediator movel .**

Not all choices are theoretically consistent

• E.g. simplified models respecting the symmetries of the broken SU(3) but not SU(3) x SU(2) x U(1)_Y [Bell et al 1 **Consistency within s-channel mediator models**

• Not all choices are theoretically consistent

• E.g. simplified models respecting the symmetries of the broken SU(3) x U(1)_{em},

but not SU(3) x SU(2) x U(1)_Y

[Bell et but not $SU(3) \times SU(2) \times U(1)$ \bullet E.g. simplified moments \sum

searches for missing energy with other LHC searches. [Bell *et al* 1512.00476]

Spin-1 mediators with different couplings to up- and down-quarks: Spin-1 s-channel mediators with different couplings to up- and down-quarks.

Consistency within s-channel mediator models

- Not all choices are theoretically consistent
- Additional structure required, *e.g.* 2HDM+*a* [Abe *et al* 1810.09420]
	- \Rightarrow point to new signatures

LHC Dark Matter Working Group: Next-generation spin-0 dark matter models

Tomohiro Abe 1,2 , Yoav Afik ³, Andreas Albert ⁴, Christopher R. Anelli ⁵, Liron Barak ⁶, Martin Bauer ⁷, J. Katharina Behr ⁸, Nicole F. Bell ⁹, Antonio Boveia ^{10,a}, Oleg Brandt ¹¹, Giorgio Busoni⁹, Linda M. Carpenter¹⁰, Yu-Heng Chen⁸, Caterina Doglioni^{12,a} , Alison Elliot¹³, Motoko Fujiwara¹⁴, Marie-Helene Genest¹⁵, Raffaele Gerosa¹⁶, Stefania Gori ¹⁷, Johanna Gramling ¹⁸, Alexander Grohsjean ⁸, Giuliano Gustavino ¹⁹, Kristian Hahn ^{20,a}, Ulrich Haisch ^{21,22,23,a,*}, Lars Henkelmann ¹¹, Junji Hisano ^{2,14,24}, Anders Huitfeldt²⁵, Valerio Ippolito²⁶, Felix Kahlhoefer²⁷, Greg Landsberg²⁸, Steven Lowette ^{29,a}, Benedikt Maier ³⁰, Fabio Maltoni ³¹, Margarete Muehlleitner ³², Jose M. No $33,34$, Priscilla Pani $8,35$, Giacomo Polesello 36 , Darren D. Price 37 , Tania Robens^{38,39}, Giulia Rovelli⁴⁰, Yoram Rozen³, Isaac W. Sanderson⁹, Rui Santos^{41,42}, Stanislava Sevova 43 , David Sperka 44 , Kevin Sung 20 , Tim M.P. Tait $^{17,\mathrm{a}}$, Koji Terashi 45 , Francesca C. Ungaro⁹, Eleni Vryonidou²³, Shin-Shan Yu⁴⁶, Sau Lan Wu⁴⁷, Chen Zhou⁴⁷

 \mathbf{L} *t* e *g* Signatures beyond MET improve signatly beyond an integrated luminosity of the state of the state of the state of the state of the st
integrated luminosity of the state of the stat For DM masses below *^m^h/*² the invisible Higgs decay *^h* ! is open and constitutes another relevant search

\mathbf{L} *t* e *g* Signatures beyond MET improve signatly beyond an integrated luminosity of the state of the state of the state of the state of the st
integrated luminosity of the state of the stat For DM masses below *^m^h/*² the invisible Higgs decay *^h* ! is open and constitutes another relevant search

t e *g* Signatures beyond MET improve signatly beyond an integrated luminosity of the state of the state of the state of the state of the st
integrated luminosity of the state of the stat For DM masses below *^m^h/*² the invisible Higgs decay *^h* ! is open and constitutes another relevant search

t e *g* Signatures beyond MET improve signatly beyond an integrated luminosity of the state of the state of the state of the state of the st
integrated luminosity of the state of the stat For DM masses below *^m^h/*² the invisible Higgs decay *^h* ! is open and constitutes another relevant search

Simplified models: t-channel mediator

- *Y* could be scalar or fermion
- \bullet Three free parameters (at least): m_χ, m_Y, λ
- Dark matter gauge singlet \Rightarrow *Y* same quantum numbers as *Y*
- Dark matter stabilised by Z_2 symmetry: both X and Y odd (SM particles are even)
- $m_Y > m_\chi$
- Examples:

 $\mathcal{L} \supset \lambda Y^{\dagger} \bar{\chi} P_R q + \text{h.c.}$ Scalar mediator $\mathcal{L} \supset \lambda \bar{Y} P_R q S + \text{h.c.}$ Fermion mediator

 \blacksquare *t* e *t* litied models: f *t* Simplified models: t-channel mediator implified
implified
and integrated signified

2
22.3 Simplified models respectively. We consider the internal state of the internal state of the internal state of the internal state
and the internal state of the internal state decay width use of the internal state of the internal state of th
 ing the loop-induced *^h* coupling discussed in Sec. III ^A \blacksquare *t* e *t* litied models: f *t* Simplified models: t-channel mediator implified
implified
and integrated signified

2
22.3 Simplified models respectively. We consider the internal state of the internal state of the internal state of the internal state
and the internal state of the internal state decay width use of the internal state of the internal state of th
 ing the loop-induced *^h* coupling discussed in Sec. III ^A other search channel. Here we interpret searches for monojet signatures and Higgs invisible decays with the Higgs investigation of the Higgs investigation of the N **FRIG. 7. Representative Feynman diagrams for the process of the process of the process of the process** ppperture internal modiator *t* e *t* litied models: f *t* Simplified models: t-channel mediator implified
implified
and integrated signified

t-channel mediator 22.3 t-channel mediato respectively. We consider the interaction of the in ing the loop-induced induced in Sec. III And the loop-induced in Sec. III And the loop-induced in Sec. III And
Coupling discussed in Sec. III And the loop-induced in Sec. III And the loop-induced in Sec. III And the loopother search channel. Here we interpret searches for monoton signatures and the theorem in the the $\text{I}(\text{C})$ included $-\text{S}(\text{S})$ and $\text{C}(\text{C})$ *p index* models <u>expresent up to finite internal (s) in the internal (s) $\frac{1}{2}$ in the internal (s) in the internal (s) in the internal </u> *t* e *t* **nel mediator r** *t t* t-channel mediator models – signatures pp

ppp to find the final (s) with up to find the space internal (s) is a space of the space in the space improved an integration of the significant luminosity of the significant

Searches for supersymmetry (squark production)

respectively. We consider the interaction of the in ing the loop-induced induced in Sec. III And the loop-induced in Sec. III And the loop-induced in Sec. III And
Coupling discussed in Sec. III And the loop-induced in Sec. III And the loop-induced in Sec. III And the loopmonoton signatures and the theorem in the the $\text{I}(\text{C})$ included $-\text{S}(\text{S})$ and $\text{C}(\text{C})$ *p index* models <u>expresent up to finite internal (s) in the internal (s) $\frac{1}{2}$ in the internal (s) in the internal (s) in the internal </u> *t* e *t* **nel mediator r** *t t* t-channel mediator models – signatures improved an integration of the significant luminosity of the significant

t-channel mediator models – signatures other search channel. Here we interpret searches for monoton signatures and the theorem in the the $\text{I}(\text{C})$ included $-\text{S}(\text{S})$ and $\text{C}(\text{C})$ *p index* models <u>exiges in the final</u>

Higgs portal dark matter

Higgs portal dark matter

Summary on WIMP dark matter searches at LHC

- WIMP invisible, detectable via missing energy
- Proton collisions: steeply falling parton luminosity
- Irreducible background from neutrinos
- EFT not suitable for LHC \Rightarrow simplified models (or more complex models)
- Often mediator searches more promising
- MET signal still important for establishing dark matter

II. Searches for Feebly Interacting Massive Particles (FIMPS)

FIMP dark matter production?

FIMP dark matter production?

[[]Kahlhoefer 1801.07621]

However, if some part of new physics sector thermalises, those particles may be produced Feeble coupling to dark matter \Rightarrow long-lived particles

Simplified models: t-channel mediator

- *Y* could be scalar or fermion
- \bullet Three free parameters (at least): m_χ, m_Y, λ
- Dark matter gauge singlet \Rightarrow *Y* same quantum numbers as *Y*
- Dark matter stabilised by Z_2 symmetry: both X and Y odd (SM particles are even)
- $m_Y > m_\chi$
- Examples:

$$
\mathcal{L} \supset \lambda Y^{\dagger} \bar{\chi} P_R q + \text{h.c.}
$$
 Scalar mediator

A s the top-content of the proton is negligible, the proton is negligible, the reified models: t-channel mediator 100 fb¹ due to systematic uncertainties. Simplified models: t-channel mediator

other search channel. Here we interpret searches for monojet signatures and Higgs invisible decays within the Assumption in WIMP regime: *Y* decays promptly, $c\tau_Y\ll 1\,\mathrm{mm}$

Assumption in WIMP regime: $\,Y$ decays promptly, $\,c\tau_Y\ll 1\,\rm{mm}$ \mathbf{D} as a thermal relic problem in the set of \mathbf{D} VIMP regime: Y decays promptly, $c\tau_Y\ll 1\,\mathrm{mm}$

Assumption in WIMP regime: Y decays promptly, $c\tau_Y\ll 1\,\mathrm{mm}$ \mathbf{D} as a thermal relic problem in the set of \mathbf{D}

Assumption in WIMP regime: Y decays promptly, $c\tau_Y\ll 1\,\mathrm{mm}$ \mathbf{D} as a thermal relic problem in the set of \mathbf{D}

Assumption in WIMP regime: *Y* decays promptly, $c\tau_Y \ll 1 \text{ mm}$

Freeze-out condition:

Feeble couplings:

Long-lived particle signatures relic density. In this region a solution with small ex-Long-lived particle signatures Long-lived particle signatures \mathbf{I}

Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1$ m

 $4 \text{ mm} \lesssim c \tau_Y \lesssim 30 \text{ cm}$

Disappearing tracks $10 \text{ cm} \lesssim c \tau_Y \lesssim 1 \text{ m}$

> Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1$ m

SciPost Physics Community Reports Submission Non-thermalized dark matter: long-lived particle constraints

Non-thermalized dark matter: viable parameter space

'Just' thermalised case

Conversion-driven freeze-out (CDFO):

[Garny *et al* 1705.09292; D'Agnolo *et al* 1705.08450]

Current LHC constraints

HL-LHC projections

Summary on FIMP dark matter searches at LHC

- FIMPs not directly produced in collisions
- But from decay of other new physics states
- Feeble coupling \Rightarrow long-lived particle
- Prominent low-background searches, statistically limited
- Promising channels at HL-LHC

III. Searches for light dark matter

Dark matter as a thermal relic

Intensity frontier e^+e^-

• 'Low'-energy ete-colliders: BarBar, Belle-II

 $\mathcal{B}% _{T}=\mathcal{A}_{T}\!\left(a,b\right) ,\ \mathcal{A}_{T}=C\!\left(a,b\right) ,\ \mathcal{A}_{T}=C\!\left(a,b\right) ,$

Dark photon model

Massive dark photon A'_μ coupling to hyper charge:

$$
\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \to \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}
$$

Induces interaction to matter current:

$$
{\cal L}_{\rm int}\supset -e\epsilon J^\mu A'_\mu
$$

 \Rightarrow dark photon interacts with SM fermions just as a photon but suppressed by ϵ .

Dark photon model

Massive dark photon A'_μ coupling to hyper charge:

$$
\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \to \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}
$$

Induces interaction to matter current:

$$
{\cal L}_{\rm int}\supset -e\epsilon J^\mu A'_\mu
$$

 \Rightarrow dark photon interacts with SM fermions just as a photon but suppressed by ϵ .

Interaction to dark matter, e.g.:

$$
\mathcal{L}_{A'\chi}=-g_\chi A'_\mu \bar{\chi} \gamma^\mu \chi
$$

duction c $9!S$ $\sum_{i=1}^{n} a_i$ **Dark photo** Dark photon production channels
 $$ *Dark photon production channels* The dark photon production channels
The dark particles via kinetic mixing particles with mixing particles via the mixing material of the mixing ma
Later via kinetic mixing mixing mixing mixing mixing mixing mixing mixing m **Park photon production** Dark photon produ **Dark photon decays Dark photon decays** Dark photon production channels

Dark photon decay channels • The dark photon couples democratically to charged particles via kinetic mixing • The dark photon couples democratically to charged particles via kinetic mixing

Dark photon decay channels • The dark photon couples democratically to charged particles via kinetic mixing • The dark photon couples democratically to charged particles via kinetic mixing

Dark photon searches **Dark photon decays** hes **because the contract of the set of the se**

Limited by resolution of $m_{\ell^+\ell^-}$ Limited by resolution of $m_{\ell^+\ell^-}$ Limited by resolution of $m_{\ell^+\ell^-}$

Dark photon model

Massive dark photon A'_μ coupling to hyper charge:

$$
\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \to \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}
$$

Induces interaction to matter current:

$$
{\cal L}_{\rm int}\supset -e\epsilon J^\mu A'_\mu
$$

 \Rightarrow dark photon interacts with SM fermions just as a photon but suppressed by ϵ .

Interaction to dark matter, e.g.:

$$
\mathcal{L}_{A'\chi}=-g_\chi A'_\mu \bar{\chi} \gamma^\mu \chi
$$

Dark matter searches **natter searches** natter searches k matter searche The dark photon couples democratically to charged particles with the mixture \mathbb{R}^n

• Missing energy strategy:

• Dark matter detection:

Dark matter searches

 $10E$

Summary on light dark matter searches

- Common benchmark: dark photon, kinetic mixing
- Lifetime range from prompt to long-lived
- Intensity frontier: B-factories and fixed target experiments
- Prompt searches background-limited
- Long-lived searches luminosity- and baseline-limited
- Fixed target experiments: dark matter search beyond missing energy