

Search for eV sterile neutrino with the KATRIN experiment

ISAPP 24, Bad Liebenzell

Shailaja Mohanty (shailaja.mohanty@kit.edu) for the KATRIN collaboration Institute for Astroparticle Physics | September 26, 2024

www.kit.edu

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

 Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)
- Theoretical motivation:

- Singlet fermions naturally appear in the dark sector
- Members of dark sector could mix with active neutrinos via neutrino portal coupling
- Sterile neutrinos can live at any mass scale: GeV...,

keV..., *eV* ...

Lecture by J.Kopp

Non-standard or Sterile Neutrino

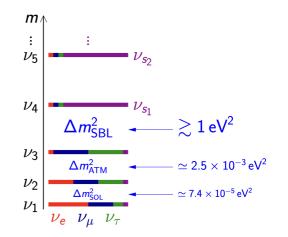
Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)
- Theoretical motivation:
- - Singlet fermions naturally appear in the dark sector
 - Members of dark sector could mix with active neutrinos via neutrino portal coupling
 - Sterile neutrinos can live at any mass scale: GeV...,

```
keV..., eV ...
```

Lecture by J.Kopp

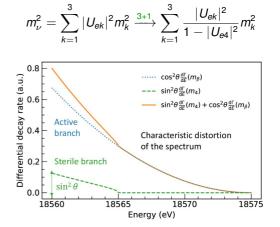
- Experimental hints for eV scale :
 - Appearance LSND (3σ) and MiniBooNE (4.8σ) excess observations Explained by ($\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$)
 - Disappearance SAGE and GALLEX: Gallium anomaly (2.9 σ deficit) Explained by $\nu_e \rightarrow \nu_s$
 - The Gallium anomaly reaffirmed by BEST experiment


Lecture by T.Lasserre

Interpretation

- SBL anomalies could be explained by an additional neutrino flavor (v_s)
- There must be at least one additional mass squared difference, $3\nu + 1$ framework $\Delta m_{SBI}^2 \approx (1-2) \text{ eV}^2$
- Allowed by solar, atmospheric and long baseline experiments, achieved with $|U_{e4}|^2 \ll 1$

$R_{\beta}(E, m_{u}^{2}, m_{4}^{2}, |U_{e4}|^{2})$

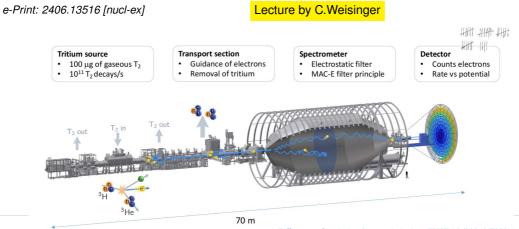

Active branch

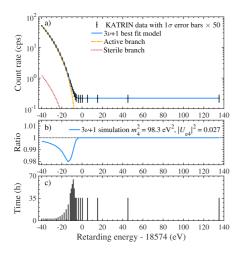
$$= \cos^2 \theta \cdot R_{\beta}(E, m_{\nu}^2) + \sin^2 \theta \cdot R_{\beta}(E, m_4^2)$$
Sterile branch

 $= (1 - |U_{e4}|^2) \cdot R_{\beta}(E, m_{\nu}^2) + |U_{e4}|^2 \cdot R_{\beta}(E, m_4^2)$

Sterile neutrino branch leads to a kink at $E_0 - m_4$

Differential decay rate:





KATRIN Experiment

- Kinematics-based neutrino mass experiment (expected sensitivity is better than 0.3 eV (90% CL) with 1000 days of measurement time)
- Current result: m_β < 0.45 eV (90%) CL, from 259 days of data only

Sterile Signal in β -decay Spectrum

Measured integral spectrum N_{exp}(qU) is fitted to the model N_{model}(qU, Θ):

$$N_{ ext{model}}(qU, \Theta) = A \cdot \int R_{eta}(E, \Theta) \cdot f(E, qU) + Bg$$

- 6 model parameters:
 - A Signal amplitude
 - E₀ effective endpoint energy
 - m² effective mass of electron anti-neutrino
 - Bg Background rate
 - m₄² sterile neutrino mass
 - $|U_{e4}|^2$ sterile neutrino mixing

Dataset and Bias-free Analysis

Data Combination Approach:

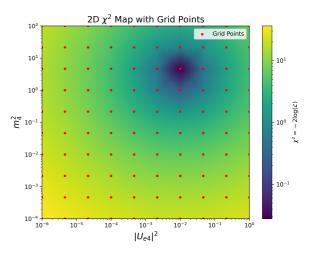
- Summed β -spectrum counts at identical set points.
- Combined spectra from different detector pixels.

Modeling and Likelihood:

- Maximum-likelihood fit with Gaussian/Poisson likelihoods.
- Minimize χ² = -2 log(L) with respect to nuisance parameters (Θ = (m²_ν, E₀, A, B, ..)).

Systematic Uncertainties:

- Pull terms in likelihood for experimental parameters.
- Calibration measurements for external estimates.


Unblinding Procedure

- Code validation on Monte Carlo twins.
- Tritium spectrum, response model, systematics treatment and budget (pull term approach) same as active neutrino mass analysis.
- Two Independent Analysis Teams with Independent Codes:
 - KaFit (exact model evaluation).
 - Netrium (uses neural nets for swift model interpolation).

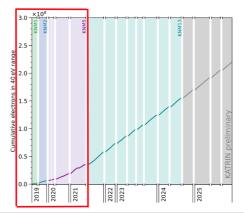
Analysis Method

- Extend β- spectrum model from 3 active to 3+1 (active + sterile) framework
- Grid Scan: $50 \times 50 [\log(|U_{e4}|^2), \log(m_4^2)]$ plane
- Contours are drawn at $\Delta \chi^2 = \chi^2 \chi^2_{BF}$ = 5.99 (95% CL, 2 dof)
- Energy range: [*E*₀ − 40, *E*₀ + 135] eV
- \blacksquare Sensitive to $\mathit{m}_{4}^{2} \leq$ 1600 eV^{2} and $|\mathit{U}_{e4}|^{2} \leq$ 0.5
- Two complementing analyses
 - Case-I Fixed neutrino mass: m_{ν}^2 = 0 ($m_{1,2,3} \ll m_4$)
 - Case-II Free neutrino mass: m²_ν as nuisance parameter

Results from First Two Science Runs

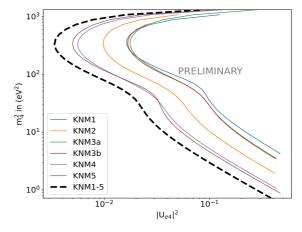
- 5.24 \times 10⁶ electrons for 40 eV below E₀, 1265 hours of data 10^{3} Best fit: $-m_4^2 = 59.9 \text{ eV}^2$, $|U_{e4}|^2 = 0.011$, 10^{2} $m_4^2 (eV^2)$ $m_{v}^2 = 0.0 \text{ eV}^2$ $-\Delta \chi^2_{null} = 0.66$ Active neutrino mass set free m_{ν}^2 free $m_{\rm u}^2 = 0 \, {\rm eV}^2$ Best fit: KNM1 KNM1 $- m_4^2 = 87.4 \text{ eV}^2, |U_{e4}|^2 = 0.019,$ ---KNM2 ---KNM2 $m_{\nu}^2 = 0.57 \text{ eV}^2$ -KNM1+2 --- KNM1+2 $-\Delta\chi^2_{null}=1.69$ 10^{-2}
- Signal-to-background ratio of up to 235

Figure: Phys. Rev. D 105 (7 2022)


 $|U_{e^4}|^2$

 10^{-1}

Data Collection Status


- KNM1 to KNM5: 20 % of expected KATRIN data
- Significant experimental development: Shifted Analyzing Plane (SAP) background reduction method Lokhov et al., EPJ C 82 (2022) 3, 258

Sensitivity Projection From Five Science Runs

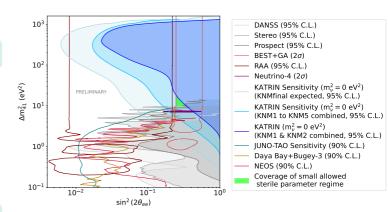
- **Case-I**: m_{ν}^2 = 0 eV²
- 40 eV fit range, $|U_{e4}|^2 \in [0, 0.5]$
- Stat. only + all systematics 95% CL
- Gain in overall sensitivity with increased statistics
 S. Mohanty, PoS EPS- HEP2023 (2024)

Campaign	KNM1	KNM2	KNM3a	KNM3b	KNM4	KNM5	KNM1-5
No. of signal electrons ($\times 10^6$)	2.0	4.3	1.1	1.4	10.2	16.8	35.8

Impact of Systematics

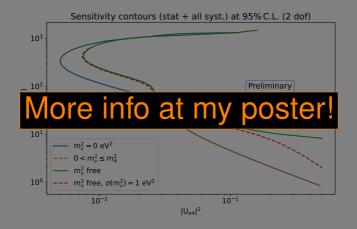
Calculating 68% CL uncertainty on
$$|U_{e4}|^2$$
: $\sigma_{syst} = \sqrt{\sigma_{Stat+Syst}^2 - \sigma_{Stat}^2}$

- Statistically dominated uncertainties
- Largest systematic contribution: Penning Bg (low m²₄), Column Density (high m²₄)


Comparison to Other Experimental Results

Translation of parameters:

 $\sin^2(2\theta) = 4|U_{e4}|^2(1-|U_{e4}|^2)$


- Large △m²₄₁ solutions of RAA and BEST+GA anomalies excluded
- Current KATRIN data extends exclusion bounds from SBL oscillation experiments for $\Delta m_{41}^2 \ge 10 \text{ eV}^2$
- Probing large parameter space for light sterile neutrino anomalies

Analysis has been applied to the real data and results to be released soon!

Impact of active neutrino on sterile neutrino search

Institute for Astroparticle Physics

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments

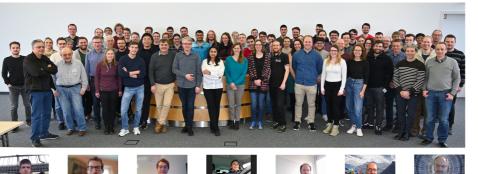
- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments
- Sensitivity projection for five science runs (KNM1...5):
 - Increased dataset boosts sensitivity, potential to probe large parameter space of Short BaseLine anomalies and complementary to oscillation experiments
 - Sensitivity dominated by statistical uncertainties

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments
- Sensitivity projection for five science runs (KNM1...5):
 - Increased dataset boosts sensitivity, potential to probe large parameter space of Short BaseLine anomalies and complementary to oscillation experiments
 - Sensitivity dominated by statistical uncertainties

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments
- Sensitivity projection for five science runs (KNM1...5):
 - Increased dataset boosts sensitivity, potential to probe large parameter space of Short BaseLine anomalies and complementary to oscillation experiments
 - Sensitivity dominated by statistical uncertainties

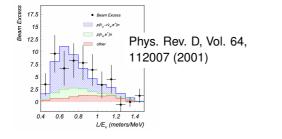
Outlook:

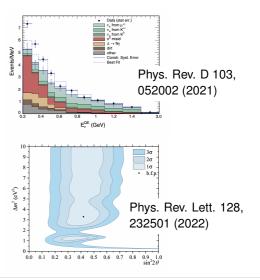
- Analysis on data for first five science runs ongoing
- Stay tuned for upcoming release!



Thank You

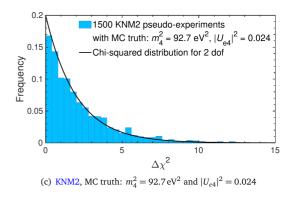
Institute for Astroparticle Physics


Backups


Institute for Astroparticle Physics

Experimental hints

- Appearance LSND (3σ) and MiniBooNE (4.8σ) excess observations. Explained by (ν_μ → ν_s → ν_e)
- Disappearance SAGE and GALLEX: Gallium anomaly (2.9 σ deficit). Explained by $\nu_e \rightarrow \nu_s$
- The Gallium anomaly reaffirmed by BEST experiment



Testing applicability of Wilks' Theorem

- Generate O(10³) twins with statistical fluctuations for particular choice of MC truth
- Perform fitting for sterile parameter values on a grid and for MC truth for each sample (m²_ν = 0)
- Evaluate $\Delta \chi^2 = \chi^2_{\rm MC \ truth} \chi^2_{\rm best \ fit}$ for each sample
- Compare distribution of $\Delta \chi^2$ values to χ^2 -distribution with 2 dof

