

Search for eV sterile neutrino with the KATRIN experiment

ISAPP 24, Bad Liebenzell

Shailaja Mohanty (shailaja.mohanty@kit.edu) for the KATRIN collaboration Institute for Astroparticle Physics | September 26, 2024

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

■ Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β**- decay**, 0νββ-decay)

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β**- decay**, 0νββ-decay)
- *Theoretical motivation:*

DM exists \implies uncharged particles under SM gauge group \implies singlet fermions

- Singlet fermions naturally appear in the dark sector
- **Members of dark sector could mix with active neutrinos** via neutrino portal coupling
- Sterile neutrinos can live at any mass scale: GeV...,

keV..., *eV* ...

Lecture by J.Kopp

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β**- decay**, 0νββ-decay)
- *Theoretical motivation:*
- DM exists \implies uncharged particles under SM gauge group \implies singlet fermions
	- Singlet fermions naturally appear in the dark sector
	- **Members of dark sector could mix with active neutrinos** via neutrino portal coupling
	- Sterile neutrinos can live at any mass scale: GeV...,

keV..., *eV* ...

Lecture by J.Kopp

- *Experimental hints for eV scale* :
	- *Appearance* LSND (3σ) and MiniBooNE (4.8σ) excess observations Explained by $(\nu_\mu \to \nu_s \to \nu_e)$
	- *Disappearance* SAGE and GALLEX: Gallium anomaly (2.9 σ deficit) Explained by $\nu_e \rightarrow \nu_s$
	- The Gallium anomaly reaffirmed by BEST experiment

Lecture by T.Lasserre

Interpretation

- SBL anomalies could be explained by an additional neutrino flavor (ν*s*)
- There must be at least one additional mass squared difference,

 $3\nu + 1$ framework $\Delta m^2_{\textit{SBL}} \approx (1-2) \, \text{eV}^2$

Allowed by solar, atmospheric and long baseline experiments, achieved with $|U_{e4}|^2 \ll 1$

$R_{\beta}(E, m_{\nu}^2, m_4^2, |U_{e4}|^2)$ $= (1 - |U_{e4}|^2) \cdot R_{\beta}(E, m_{\nu}^2) + |U_{e4}|^2 \cdot R_{\beta}(E, m_{4}^2)$

Active branch Sterile branch $=$ cos² $\theta \cdot R_{\beta}(E, m_{\nu}^2) + \sin^2 \theta \cdot R_{\beta}(E, m_4^2)$

Sterile neutrino branch leads to a kink at $E_0 - m_4$

Single β**-decay**

Differential decay rate:

KATRIN Experiment

- Kinematics-based neutrino mass experiment (expected sensitivity is better than 0.3 eV (90% CL) with 1000 days of measurement time)
- Current result: $m_β$ < 0.45 eV (90%) CL, from 259 days of data only

Sterile Signal in β**-decay Spectrum**

 \blacksquare Measured integral spectrum $N_{\text{exp}}(qU)$ is fitted to the **model** $N_{model}(qU, \Theta)$:

$$
N_{\text{model}}(qU, \Theta) = A \cdot \int R_{\beta}(E, \Theta) \cdot f(E, qU) + Bg
$$

- 6 model parameters:
	- A Signal amplitude
	- \blacksquare E₀ effective endpoint energy
	- m 2 effective mass of electron anti-neutrino
	- Bg Background rate
	- m_4^2 sterile neutrino mass
	- |*Ue*4| 2 sterile neutrino mixing

Dataset and Bias-free Analysis

• Data Combination Approach:

- Summed β -spectrum counts at identical set points.
- Combined spectra from different detector pixels.

Modeling and Likelihood:

- **Maximum-likelihood fit with Gaussian/Poisson** likelihoods.
- Minimize $\chi^2 = -2\log(\mathcal{L})$ with respect to nuisance parameters ($\Theta = (m_{\nu}^2, E_0, A, B, ...)$).

Systematic Uncertainties:

- **Pull terms in likelihood for experimental** parameters.
- Calibration measurements for external estimates.

Unblinding Procedure

- Code validation on Monte Carlo twins.
- Tritium spectrum, response model, systematics treatment and budget (pull term approach) same as active neutrino mass analysis.
- **Two Independent Analysis Teams with Independent Codes:**
	- KaFit (exact model evaluation).
	- Netrium (uses neural nets for swift model interpolation).

Analysis Method

- Extend β spectrum model from 3 active to 3+1 (active + sterile) framework
- Grid Scan: $50 \times 50 \left\lfloor \log(|U_{e4}|^2), \log(m_4^2) \right\rfloor$ plane
- Contours are drawn at $\Delta\chi^2=\chi^2-\chi^2_{\textit{BF}}$ = 5.99 (95% CL, 2 dof)
- Energy range: $[E_0 40, E_0 + 135]$ eV
- Sensitive to $m_4^2 \leq 1600$ eV² and $|U_{e4}|^2 \leq 0.5$
- Two complementing analyses
	- **Case-I Fixed neutrino mass:** $m_{\nu}^2 = 0$ ($m_{1,2,3} \ll m_4$)
	- Case-II Free neutrino mass: m_{ν}^{2} as nuisance parameter

Results from First Two Science Runs

- 5.24 \times 10⁶ electrons for 40 eV below E₀, 1265 hours of data **Best fit:**
	- $m_4^2 = 59.9 \text{ eV}^2$, $|U_{e4}|^2 = 0.011$, $m_{\nu}^2 = 0.0 \text{ eV}^2$
	- $-$ Δ χ^2_{null} = 0.66
- Active neutrino mass set free **Best fit:**
	- $m_4^2 = 87.4 \text{ eV}^2$, $|U_{e4}|^2 = 0.019$, $m_{\nu}^2 = 0.57 \text{ eV}^2$ $-$ Δ χ^2_{null} = 1.69
- Signal-to-background ratio of up to 235

Figure: *Phys. Rev. D 105 (7 2022)*

Data Collection Status

- KNM1 to KNM5: 20 % of expected KATRIN data
- **Significant experimental development: Shifted Analyzing Plane (SAP) background reduction method** *Lokhov et al., EPJ C 82 (2022) 3, 258*

Sensitivity Projection From Five Science Runs

- **Case-I**: $m_{\nu}^2 = 0 \text{ eV}^2$
- 40 eV fit range, |*Ue*4| ² ∈ [0, 0.5]
- Stat. only $+$ all systematics 95% CL
- Gain in overall sensitivity with increased statistics *S. Mohanty, PoS EPS- HEP2023 (2024)*

Impact of Systematics

\n- Calculating 68% CL uncertainty on
$$
|U_{e4}|^2
$$
: $\sigma_{syst} = \sqrt{\sigma_{Stat+Syst}^2 - \sigma_{Stat}^2}$
\n

- Statistically dominated uncertainties
- Largest systematic contribution: Penning Bg (low m_4^2), Column Density (high m_4^2)

Comparison to Other Experimental Results

■ Translation of parameters:

 $\sin^2(2\theta) = 4 |U_{e4}|^2 (1 - |U_{e4}|^2)$

- Large Δm^2_{41} solutions of RAA and BEST+GA anomalies excluded
- Current KATRIN data extends exclusion bounds from SBL oscillation experiments for $\Delta m^2_{41} \ge 10$ eV²
- **Probing large parameter space for light** sterile neutrino anomalies

Analysis has been applied to the real data 10⁻²
Analysis has been applied to the real data
and results to be released soon!

Impact of active neutrino on sterile neutrino search

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
	- No significant sterile-neutrino signal observed
	- **Improved exclusion limits w.r.t. complementary experiments**

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
	- No significant sterile-neutrino signal observed
	- **Improved exclusion limits w.r.t. complementary experiments**
- Sensitivity projection for five science runs (KNM1...5):
	- **Increased dataset boosts sensitivity, potential to probe large parameter space of Short BaseLine anomalies and** complementary to oscillation experiments
	- Sensitivity dominated by statistical uncertainties

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
	- No significant sterile-neutrino signal observed
	- **Improved exclusion limits w.r.t. complementary experiments**
- Sensitivity projection for five science runs (KNM1...5):
	- **Increased dataset boosts sensitivity, potential to probe large parameter space of Short BaseLine anomalies and** complementary to oscillation experiments
	- Sensitivity dominated by statistical uncertainties

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
	- No significant sterile-neutrino signal observed
	- **Improved exclusion limits w.r.t. complementary experiments**
- Sensitivity projection for five science runs (KNM1...5):
	- **Increased dataset boosts sensitivity, potential to probe large parameter space of Short BaseLine anomalies and** complementary to oscillation experiments
	- Sensitivity dominated by statistical uncertainties

Outlook:

- Analysis on data for first five science runs ongoing
- Stay tuned for upcoming release!

Thank You

Backups

Experimental hints

- *Appearance* LSND (3σ) and MiniBooNE (4.8σ) excess observations. Explained by $(\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e})$
- *Disappearance* SAGE and GALLEX: Gallium anomaly $(2.9\sigma$ deficit). Explained by $\nu_e \rightarrow \nu_s$
- The Gallium anomaly reaffirmed by BEST experiment

Testing applicability of Wilks' Theorem

- Generate $\mathcal{O}(10^3)$ twins with statistical fluctuations for particular choice of MC truth
- **Perform fitting for sterile parameter values on a** grid and for MC truth for each sample ($m_{\nu}^2=0$)
- Evaluate $\Delta\chi^2 = \chi^2_{\rm MC\,truth} \chi^2_{\rm best\,fit}$ for each sample
- Compare distribution of $\Delta\chi^2$ values to χ^2 -distribution with 2 dof

