

KIT - The Research University in the Helmholtz Association **www.kit.edu**

Dark Matter

Dark Matter

Dark Matter: ~ 85% of all matter in the Universe, unknown nature

Dark Matter candidates:

- ❖ **W**eakly **I**nteracting **M**assive **P**articles (WIMPs), mass ≈ 10 GeV few TeV
- ❖ SuperWIMPs, WIMPzillas, "fuzzy" Dark Matter, Axions, ALPs … etc…

Paths for Dark Matter detection

3 Dr. Alexey Elykov **Institute For Astroparticle Physics Institute for Astroparticle Physics**

Neutrinos

- ❖ Properties are still largely unknown
- ❖ Can shed light on fundamental open questions
- ❖ Large range of energies
- ❖ **Astrophysical messengers (history & evolution)**
	- ➢ Sun
	- ➢ Supernovae
	- ➢ Cosmic-rays
	- \triangleright Galactic & extragalactic
- ❖ Geoneutrinos

Dark Matter & Neutrinos - Detection

Dark Matter & Neutrinos - Detection

Can ROCKS help us uncover the history of our Galaxy & composition of our Universe?

Olivine

Raw Muscovite Mica

How to Build a Direct Detection Experiment?

- ❖ Low recoil energy threshold (≤ keV)
- ❖ Low backgrounds
- ❖ Large exposure (target mass × integration time)
- ❖ Feasible to construct & operate

Solid State Nuclear Track Detectors (SSNTDs)

- ❖ **SSNTDs natural & synthetic crystals**
	- \triangleright Geology & geophysics
	- ➢ Radiation damage
	- ➢ Cosmochemistry
	- ➢ Material science
	- ➢ Astrophysics
- ❖ Ionizing radiation produces **damage tracks**
- ❖ Chemical etching
- ❖ Imaging with microscopy

Etch pits in Olivine - courtesy of U. Glasmacher

1963 : Fission tracks in synthetic mica as viewed by TEM (DOI: 10.1029/JZ068i016p04847)

Track & Damage Features Formation

Ion explosion spike - Fleischer et al. (1975)

"Track" formation along the path of the particle

Neutron induced damage

- ❖ Effects are the result of atomic displacement
- Charged particle ionizes lattice

← Primary knock-on atom (PKA) causes further displacements

Track & Damage Features Formation

- ❖ **Energy loss in solid materials due to :**
	- \triangleright Electronic stopping (off electron clouds)
	- \triangleright Nuclear stopping (off nuclei)

$$
x_T(E_R)=\int_0^{E_R}\left|\frac{dE}{dx_T}\right|^{-1}dE
$$

 \triangleright Nuclear recoils down to 0.1 - 1 keV

11 Dr. Alexey Elykov **Institute For Astroparticle Physics**

Ancient Natural Crystals - Paleo-detectors

SKIT Karlsruhe Institute of Technology

- ❖ Natural minerals good SSNTDs
	- \triangleright Need to be insulators or poor semiconductors
- ❖ **Tracks** nuclear recoils induced by Dark Matter & Neutrinos
- ❖ Once created, tracks are preserved for Myr/Gyr
- ❖ Accessible, relatively cheap

- ❖ **Small samples** but **Myr/Gyr exposure**
	- $100 g x 1 Gyr = 10$ kilotonne x 10 yr
- ❖ Neutrinos guaranteed signal/background

Ancient Natural Crystals - Paleo-detectors

KIT Karlsruhe Institute of Technology

- ❖ Natural minerals good SSNTDs
	- \triangleright Need to be insulators or poor semiconductors
- ❖ **Tracks** nuclear recoils induced by Dark Matter & Neutrinos
- ❖ Once created, tracks are preserved for Myr/Gyr
- ❖ Accessible, relatively cheap

- ❖ **Small samples** but **Myr**/**Gyr exposure**
	- \geq 100 g x 1 Gyr = 10 kilotonne x 10 yr
- ❖ **Neutrinos** guaranteed signal/background

Paleo-detectors in the Past

1995 : Limits on Dark Matter Using Ancient Mica (DOI: 10.1103/PhysRevLett.74.4133)

People tried this in the past!

VOLUME 56, NUMBER 12 PHYSICAL REVIEW LETTERS 24 MARCH 1986 **Search for Supermassive Magnetic Monopoles Using Mica Crystals** P. B. Price and M. H. Salamon Department of Physics, University of California, Berkeley, California 94720 (Received 18 November 1985) Nuclear tracks from Cold Dark Matter interactions in mineral crystals: a computational study J.I. Collar *, F.T. Avignone III Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA Received 26 July 1994; revised form received 8 November 1994 **Limits on Dark Matter Using Ancient Mica**

> D.P. Snowden-Ifft,* E.S. Freeman, and P.B. Price* Physics Department, University of California at Berkeley, Berkeley, California 94720 (Received 20 September 1994)

Paleo-detectors Now

AKIT Karlsruhe Institute of Technology

Digging for dark matter: Spectral analysis and discovery potential of paleo-detectors

Thomas D. P. Edwards, Bradley J. Kavanagh, Christoph Weniger, Sebastian Baum, Andrzej K. Drukier, Katherine Freese, Maciej Górski, and Patrick Stengel Phys. Rev. D 99, 043541 - Published 27 February 2019

Measuring Changes in the Atmospheric Neutrino Rate over Gigayear Timescales

Johnathon R. Jordan, Sebastian Baum, Patrick Stengel, Alfredo Ferrari, Maria Cristina Morone, Paola Sala, and Joshua Spitz Phys. Rev. Lett. 125, 231802 - Published 30 November 2020

Paleodetectors for Galactic supernova neutrinos

Sebastian Baum, Thomas D. P. Edwards, Bradley J. Kavanagh, Patrick Stengel, Andrzej Katherine Freese, Maciej Górski, and Christoph Weniger Phys. Rev. D 101, 103017 - Published 13 May 2020

Rocks, water, and noble liquids: Unfolding the flavor conte neutrinos

Report

Sebastian Baum, Francesco Capozzi, and Shunsaku Horiuchi Phys. Rev. D 106, 123008 - Published 9 December 2022

nature

Explore content \times About the journal \times Publish with us \times Subscribe

ancient minerals

collisions with dark matter.

Hunt for dark matter turns to

Kilometres beneath Earth's surface, some minerals could bear the scars of

❖ **Worldwide interest - novel emerging research field**

Paleo-detectors Now

Paleo-detectors Now

- ❖ **Worldwide interest novel emerging research field**
- ❖ **White paper in "***Physics of the Dark Universe"* **(editor's invitation)**
	- \geq 67 authors, 46 institutions, 113 pages

Physics of the Dark Universe Volume 41, August 2023, 101245

Mineral detection of neutrinos and dark matter. A whitepaper

Sebastian Baum¹ & &, Patrick Stengel² &, Natsue Abe³, Javier F. Acevedo⁴, Gabriela R. Araujo ^{5 a}, Yoshihiro Asahara ⁶, Frank Avignone ⁷, Levente Balogh ⁸, Laura Baudis⁵, Yilda Boukhtouchen⁹, Joseph Bramante⁹¹⁰, Pieter Alexander Breur⁴, Lorenzo Caccianiga¹¹, Francesco Capozzi¹², Juan I. Collar¹³, Reza Ebadi¹⁴¹⁵, Thomas Edwards¹⁶, Klaus Eitel¹⁷, Alexey Elykov¹⁷, Rodney C. Ewing¹⁸, Katherine Freese^{19 20}, Audrey Fung⁹, Claudio Galelli²¹, Ulrich A. Glasmacher²², Arianna Gleason⁴, Noriko Hasebe²³, Shigenobu Hirose²⁴, Shunsaku Horiuchi^{25 26}, Yasushi Hoshino²⁷, Patrick Huber²⁵^a, Yuki Ido²⁸, Yohei Igami²⁹, Norito Ishikawa³⁰,

❖ **MDvDM Jan. 2024** - Virginia Tech, USA

19 Dr. Alexey Elykov **Institute For Astroparticle Physics** Institute for Astroparticle Physics

AIT

hidden layers

❖ **Renewed interest worldwide**

 \triangleright Unprecedented advances in nm-scale microscopy & manipulation

output layer

- \triangleright Computational advances simulations, data processing
- \triangleright Machine learning

depths in the material. (DOI: 10.1557/jmr.2016.418) ²⁰¹¹ : TEM imaged tracks in apatite from 2.2 GeV Au ions (DOI: 10.1103/PhysRevB.83.064116)

2016 : Ion track morphology at different

input layer

20 Dr. Alexey Elykov **Institute Physics** Institute for Astroparticle Physics

NKIT Karlsruhe Institute of Technology

Apollo 16 - Lunar sample

2021 : STEM images from a lunar sample. Solar energetic particle induced tracks are present in olivine and plagioclase. (b) STEM images. c) Tracks are highlighted in red and blue for the olivine and plagioclase grains, respectively. (DOI: 10.1111/maps.13732)

Asteroid 25143 Itokawa Lunar sample

2014 : Dark-field STEM image of solar flare induced tracks in an asteroid particle. (DOI: 10.1186/1880-5981-66-71)

2014 : Dark-field STEM image of the disordered rim in a lunar olivine grain. (DOI: 10.1186/1880-5981-66-71)

22 Dr. Alexey Elykov **Institute For Astroparticle Physics Institute for Astroparticle Physics**

A brightfield TEM image from a thin section of an olivine grain from lunar soil 71501.

2024 : ~10 MeV Au ions in Olivine (MgFeSiO4) sample, imaged with TEM, aimed at mimicking MeV-scale neutrino-induced nuclear recoils (presented on 12.07.2024) **FoV 1.5 μm**

Dark Matter & Neutrino Induced Track Spectra

DOI: 10.1016/j.dark.2023.101245

Dark Matter Discovery Reach

- ❖ Nuclear recoil energy thresholds down to 0.1 1 keV
- ❖ Mineral, readout method & resolution dependent
- ❖ Leverage high-exposure or/and high-resolution
	- \triangleright Probe large range of Dark Matter candidates
- ❖ Competitive & complementary to large-scale detectors

 Two scenarios : High resolution (σ_x = 1 nm, M_sample = 10 mg, dotted lines), High exposure (σ *x = 15 nm, M sample = 100 g, dashed lines). The projections were produced using https://github.com/sbaum90/paleoSens.git*

Ultra-heavy Dark Matter

Ultra-Heavy Dark Matter searches in geological Quartz

- ❖ Self-interacting dark matter into ultra heavy composite states with low number density
- ❖ Use geological Quartz Myr exposure compensates for low number density
- ❖ Use electron microscopy to image slices of Quartz

DOI: 10.1103/PhysRevD.104.123015

Dark Matter Flux Variation

- ❖ Unique ability to study **time varying signals** over Myr to Gyr
	- \triangleright Complementary to modern large-scale detectors
	- \triangleright Dark Matter halo substructure e.g. sub-halos, "Dark Disk"

	Smooth DM halo

	DM disk Earth would pass every ~45 Myr
 $\frac{1}{2}$

	DM disk Earth would pass every ~45 Myr

	DM subbols, Farth appetition during the past
- ❖ **Smooth DM halo**
- ❖ **DM disk** Earth would pass every ∼45 Myr
- ❖ **DM subhalo** Earth encountered during the past Gyr

600

Illustration of the time-dependence of the number of damage tracks which would be recorded in a gram-sized paleo-detector of age T for three different DM signals.

Cosmic Rays & Atmospheric Neutrinos

- ❖ Potentially background free regions
- \div Track with lengths on \sim µm-scale

❖ Explore variation of atmospheric ν over Myrs

DOI: 10.1103/PhysRevLett.125.231802

Dr. Alexey Elykov **Institute For Astroparticle Physics**

Some Challenges & Open Questions

Rock
Rock
Rock

How to Image Minute Tracks?

❖ **Optical microscopy**

- \triangleright Chemical etch + optical (phase contrast) imaging
- \triangleright Fluorescence microscopy of color centers

❖ **X-ray microscopy**

- \triangleright Soft X-ray scattering
- \triangleright Hard X-ray microscopy (synchrotron/FEL) (ptychography)

❖ **Scanning Probe Microscopy**

 \triangleright Atomic Force Microscopy

❖ **Focused Beam Microscopy**

- \triangleright Scanning Electron Microscopy
- \triangleright Focused Ion Beam Microscopy (FIB+SEM, HIM ...)
- **Data Throughput** \geq Scanning/Transmission Electron Microscopy

Spatial Resolution

How to Image Minute Tracks?

- ❖ **Numerous potential imaging methods:**
	- \triangleright X-rays, SEM/FIB, TEM, HIM, AFM
	- \triangleright color centers, else...
- ❖ **Resolution:** nm & µm-scale
- ❖ **Imaging in 3D:**
	- \triangleright Need to cut sample to small lamellae (nm- μ m-size)
	- \geq 3D might not have enough resolution
- ❖ **Electron/ion energy** destructive to sample/tracks
- ❖ How to read out data & analyze?

A transmission electron microscope image from a thin (100 nm) section of an olivine grain from lunar soil 71501. (DOI : 10.1111/maps.13516)

Where to Find Minerals?

- ❖ **Boreholes, mines** where?
	- ➢ **Deep** enough to protect from cosmogenic backgrounds
	- ➢ **Not too deep** temperature will anneal crystals
- ❖ **Accessible** with reasonable effort
- ❖ **Geologically stable** over Myr/Gyr
- ❖ Low radioactivity environment (U, Th)

Backgrounds & Solutions

❖ **Natural crystal defects**

 \triangleright Complicating readout but should be distinguishable

❖ **Cosmogenic**

 \triangleright muons, fast neutrons

❖ Radioactive decays (238∪, a-decay)

Differential rate of tracks for different sources of nuclear recoils within Gypsum. Used : https://github.com/sbaum90/paleoSpec

❖ **Neutrons** - SF, (ɑ, n)

Backgrounds & Solutions

❖ **Natural crystal defects**

 \triangleright Complicating readout but should be distinguishable

❖ **Cosmogenic**

- \triangleright muons, fast neutrons
	- Use minerals from deep underground
- **❖ Radioactive decays** (238**U**, a-decay)

Differential rate of tracks for different sources of nuclear recoils within Gypsum. Used : https://github.com/sbaum90/paleoSpec

❖ **Neutrons** - SF, (ɑ, n)

Backgrounds & Solutions

- ❖ **Natural crystal defects**
	- \triangleright Complicating readout but should be distinguishable
- ❖ **Cosmogenic**
	- \triangleright muons, fast neutrons
		- Use minerals from deep underground
- ❖ **Radioactive decays** (²³⁸U, ɑ-decay)
	- Select radiopure minerals
	- "Cluster" track morphology
- ❖ **Neutrons** SF, (ɑ, n)
	- Select radiopure minerals

Differential rate of tracks for different sources of nuclear recoils within Gypsum. Used : https://github.com/sbaum90/paleoSpec

Some Feasibility Studies Ongoing & Planned

36

Paleo-detectors around the World

Atomic Force Microscopy (AFM)

❖ Chemically etch surface - scan - sputter (~nm) - chemically etch - scan …

Data Acquisition

- ❖ Scan **10 mg** sample with ~**1 nm** resolution
- ❖ Data throughput can reach petabyte/day
- ❖ Custom FPGA/GPU-based data acquisition & processing
- ❖ Triggering on areas/information of interest

Currently - Preliminary Studies

❖ Silicon & mica samples to be scanned with AFM, x-ray, electron microscopy

DOI: 10.1016/j.dark.2023.101245

Paleo-detectors around the World

DMICA: exploring **D**ark Matter in natural muscovite **MICA**

- ❖ Employ methodology established by Snowden et al. (1995)
	- \triangleright Chemical etching
	- \triangleright Pit depth measurement optical profiler instead of AFM
	- \triangleright Processed a mica of 524,765 μ m² aims to scan \sim 1 t \times y exposure

Shigenobu Hirose et al. IDM 2024

Paleo-detectors around the World

- ❖ **Passive low energy nuclear recoil detection with color centers PALEOCCENE**
	- ➢ Large-scale light-sheet microscopy with mesoSPIM (mesospim.org)
	- \triangleright Non-destructive, resolution < 10 µm
	- \triangleright Suitable crystals CaF2, LiF, etc...

Gabriela R. Araujo et al.

cm

 0 Rad

cm

40 Dr. Alexey Elykov **Institute For Astroparticle Physics Institute for Astroparticle Physics**

Paleo-detectors around the World

❖ **Passive low energy nuclear recoil detection with color centers - PALEOCCENE**

5 MRad

 \triangleright Large-scale light-sheet microscopy with mesoSPIM (mesospim.org)

100 kRad

- \triangleright Non-destructive, resolution < 10 µm
- \triangleright Suitable crystals CaF2, LiF, etc...

41 Dr. Alexey Elykov **Institute For Astroparticle Physics**

 \triangleright Large-scale light-sheet microscopy with mesoSPIM (mesospim.org)

❖ **Passive low energy nuclear recoil detection with color centers - PALEOCCENE**

400

x-Pixel

600

800

- \triangleright Non-destructive, resolution < 10 µm
- \triangleright Suitable crystals CaF2, LiF, etc...

Paleo-detectors around the World

Paleo-detectors at KIT

❖ **KIT - Unique combination of different facilities & expertise**

- \triangleright Cutting edge nm-scale & μ m-scale microscopy
- \triangleright Dark Matter & Neutrino physics
- \triangleright Numerical simulations, data acquisition & analysis
- \triangleright ML identification of minute structures in images

❖ **Previous work: HEiKA 2019 - 2020**, **K. Eitel & U. Glasmacher**

➢ "*Searching for Dark Matter particle signatures with salt minerals as Palaeo-Detectors*"

- ❖ **Current work**
	- ➢ Multiple mineral samples irradiated & "blank"
	- ➢ Ongoing studies together with U. Heidelberg, KIT microscopy, UZH
	- \triangleright Combine microscopy techniques to image tracks

Paleo-detectors at KIT

- ❖ **KIT Unique combination of different facilities & expertise**
	- \triangleright Cutting edge nm-scale & μ m-scale microscopy
	- \triangleright Dark Matter & Neutrino physics
	- \triangleright Numerical simulations, data acquisition & analysis
	- \triangleright ML identification of minute structures in images
- ❖ **Previous work: HEiKA 2019 2020**, **K. Eitel & U. Glasmacher**
	- ➢ "*Searching for Dark Matter particle signatures with salt minerals as Palaeo-Detectors*"

❖ **Current work**

- \triangleright Multiple mineral samples irradiated & "blank"
- ➢ Ongoing studies together with U. Heidelberg, KIT microscopy, UZH
- \triangleright Combine microscopy techniques to image tracks

Mineral & Track Imaging - TEM (example)

- ❖ Resolution << 1 nm
- ❖ No 3D information
	- \triangleright Will require mechanical/ion beam, cutting & creation of ~100 nm thick lamellae
- ❖ Destructive effects of electrons on nm-sized tracks?
- ❖ Easy to probe ion tracks what about low-energy recoils?

 2016: The variation in ion track size and morphology of three different ion tracks produced by 2.3 GeV 208 Pb ions. dE/dx is dominated by electronic loss. (DOI: 10.1038/srep27196)

2017: STEM-HAADF images and reconstruction of an ion track. (DOI: 10.1557/jmr.2016.418)

44 Dr. Alexey Elykov **Institute For Astroparticle Physics Institute for Astroparticle Physics**

Mineral & Track Imaging - nanoCT (example)

- ❖ X-ray energy: 5.4 keV, FoV: 16 or 65 μm
- ❖ Non-destructive
- ❖ Characterization of 3D samples resolution down to 50 nm
- ❖ Thickness less than twice the X-ray absorption length
- ❖ Might not resolve nm-scale tracks, but can resolve substructure & µm-sized tracks?

Cu sample scanned in absorption contrast with high resolution (resolution = 50 nm).

Mineral & Track Imaging - nanoCT

First calibration studies

- \triangleright Devise best practices for sample preparation
- ❖ Full 3D profile of the imaged sample
- \div 64 nm resolution per pixel for O(10)um samples
	- \triangleright Image inner structure prior to high res imaging natural damage, cracks
	- \triangleright Can resolve substructure & μ m-sized tracks/damage features?

Mineral & Track Imaging - nanoCT

- ❖ Imaging < 1 µm features in crudely prepared Muscovite samples can definitely improve
- ❖ Preliminary results are interesting & promising

Imaging - Electron Microscopy/FIB

❖ Sub-sample cutting/preparation for nanoCT imaging

Mineral & Track Imaging - TEM

First calibration studies

- ❖ Cutting out a lamella from a sample crystal & thinning to ~80 nm
- ❖ Image with TEM
- \div ~3 nm per pixel
- ❖ Challenging to image non conductive samples

Summary - Challenging Project

- ❖ **Suitable minerals** not only theoretically
	- \triangleright Sensitivity, attainable, chemistry, backgrounds, etc...
- ❖ **Geology** tracks survival over Myr-Gyr?
- ❖ **Readout** & imaging techniques (< 10 nm resolution)
- ❖ **Data acquisition** & processing (~ mg samples)
- ❖ **Data analysis** ML techniques

Mineral-detectors may compete with large-scale experiments

Projected WIMP Dark Matter discovery reach. The grey region is excluded by modern experiments while the green region is the so-called neutrino floor (neutrino expectation) for xenon-based detectors. Used : https://github.com/sbaum90/paleoSens

Summary - Paleo-detectors

Breakthrough potential for Dark Matter & Neutrino physics

- ❖ **Paleo-detectors** ancient minerals store information about nuclear recoils
	- \triangleright Myr/Gyr exposure probe of DM, v , cosmic rays
- ❖ Applications for "**mundane**" neutron/neutrino detection & more!
- ❖ Nuclear recoils down to 0.1 1 keV

Growing community & interest around the world

- **Interdisciplinary:** microscopy, geology, physics, ML & more
- ❖ **If you're interested in mineral-based detectors contact us!**

A brightfield TEM image from a thin section of an olivine grain from lunar soil 71501

The experiment was already conducted by nature,

we just need to read out the data!

alexey.elykov@kit.edu

Dr. Alexey Elykov Institute for Astroparticle Physics