

ISAPP Summer School 2024

26th September 2024

Yujin Lee

Department of Physics, Chung-Ang University

On behalf of COSINE Collaboration

Motivation

Tests of DAMA/LIBRA Results

DAMA/LIBRA Experiment

- Search for the annual modulation of Dark Matter in the Galactic halo
- 25×9.7 kg NaI(Tl) detectors, 2.86 ton \times yr (DAMA/NaI + DAMA/LIBRA)
- Claims the detection of the Dark Matter modulation signal at 13.7σ C.L. in the energy region (2-6 keV)

- Modulation amplitude: (0.01014 \pm 0.00074) cpd/kg/keV
 - Phase = (142.4 ± 4.2) days
 - Period = (0.99834 ± 0.00067) year

Motivation Tests of DAMA/LIBRA Results

• DAMA/LIBRA Experiment

- Search for the annual modulation of Dark Matter in the Galactic halo
- 25×9.7 kg NaI(Tl) detectors, 2.86 ton×yr (DAMA/NaI + DAMA/LIBRA)

COSINE-100 Experiment

Collaboration & Experimental Site

- Collaboration of DM-ICE and KIMS
- 17 institutes, ~60 members

COSINE-100 Experiment

Collaboration & Experimental Site

- Collaboration of DM-ICE and KIMS
- 17 institutes, ~60 members
- Data taking from Oct. 2016 to Mar. 2023

in Yangyang underground laboratory (Y2L), Korea

COSINE-100 Experiment

Experimental Setup

COSINE-100 Experiment

Experimental Setup

JINST 13, T02007 (2018)

0

4π Muon Counter 37 Plastic scintillator panel 2-inch H7195 PMTs

26th September 2024

COSINE-100 Experiment

Experimental Setup

Eur. Phys. J. C. 78, 107 (2018)

26th September 2024

COSINE-100 Experiment

Experimental Setup

26th September 2024

Improvement of Detector Understanding

26th September 2024

Improvement of Detector Understanding

26th September 2024

Improvement of Detector Understanding

26th September 2024

WIMP Extraction

Spectral Analysis with 3-year Data

WIMP Extraction

Spectral Analysis with 3-year Data

Spin-Independent (SI) Interaction

Disfavor DAMA/LIBRA's claim (3 σ)

WIMP Extraction

Spectral Analysis with 3-year Data

Spin-Independent (SI) Interaction section (pb) 30000 COSINE-100 1.7-year 10⁻¹ 20000 Counts - DAMA/LIBRA (DAMA QF) 10-2 10000 COSINE-100 3-year **Cross** 10^{-3} MINARY Prelimina 10^{-4} ົດ **WIMP-proton** 10 Energy [keVee] 10^{-6} 10 10^{-8} 10^{2} 10^{3} 10 WIMP Mass(GeV/c²)

Disfavor DAMA/LIBRA's claim (3 σ)

Spin-Dependent (SD) Interaction

with Na (Z = 11) & I (Z = 53)

- Proton-odd targets
 - \rightarrow Sensitive in SD model
- Na Low-mass target
 - \rightarrow Sensitive in low-mass WIMP search

with Full COSINE-100 Dataset (~6 years)

with Full COSINE-100 Dataset (~6 years)

Calibration to Test DAMA's Claim

Linear Calibration for Electron Recoil

Calibration for Nuclear Recoil

WIMP signal: 6.7 – 20 keVnr DAMA/LIBRA: 2 – 6 keVee COSINE-100: 0.85 – 3.12 keVee

with Full COSINE-100 Dataset (~6 years)

Event Rates and Modulation Fit

Electron Recoil (1-3 keVee)

2018

2017

2019

WIMP signal: 6.7 – 20 keVnr DAMA/LIBRA: 2 – 6 keVee COSINE-100: 0.85 – 3.12 keVee

2018

2019

2020

Year

2021

2022

2023

-0.1

2017

2022

2023

2021

2020 Year

with Full COSINE-100 Dataset (~6 years)

Electron Recoil (1-3 keVee) Nuclear Recoil (6.7-20 keVnr)

E (keVee)	A (counts/day/kg/keVee)		Е	A (counts/day/kg/3.3 keVnr)	
	COSINE-100	DAMA/LIBRA	(keVnr)	COSINE-100	DAMA/LIBRA
1-3	0.0004 <u>+</u> 0.0050	0.0191 <u>+</u> 0.0020	6.7-20	0.0013 ± 0.0027	0.0100 ± 0.000
1-6	0.0017 ± 0.0029	0.0105 ± 0.0009			
2-6	0.0053 ± 0.0031	0.0100 ± 0.0007			

with Full COSINE-100 Dataset (~6 years)

Electron Recoil (1-3 keVee) Nuclear Recoil (6.7-20 keVnr)

Disfavors DAMA's result (> 3σ)

26th September 2024

with Full COSINE-100 Dataset (~6 years)

Modulation Amplitude

Disfavors DAMA's result (> 3σ) No modulation detected

26th September 2024

Electron Recoil & Nuclear Recoil

- WIMP Extraction Extracting WIMP-proton interaction in the data
- Annual Modulation Finding sinusoidal modulation in event rates

Electron Recoil & Nuclear Recoil

- WIMP Extraction Extracting WIMP-proton interaction in the data
- Annual Modulation Finding sinusoidal modulation in event rates
- Pulse Shape Discrimination (PSD) Searching nuclear recoil (WIMP-like) signals using
- differences of pulse shapes between nuclear recoil and electron recoil

Accumulated Waveform (2-10 keV)

Surface Recoil due to the Contamination

Electron Recoil & Nuclear Recoil

- WIMP Extraction Extracting WIMP-proton interaction in the data
- Annual Modulation Finding sinusoidal modulation in event rates
- Pulse Shape Discrimination (PSD) Searching nuclear recoil (WIMP-like) signals using
 - differences of pulse shapes between nuclear recoil and electron recoil

Electron Recoil & Nuclear Recoil

26th September 2024

Electron Recoil & Nuclear Recoil

Move to New Deeper Site - Yemilab

Move to New Deeper Site - Yemilab

Detector Upgrade

New crystal encapsulation

The physics operation will start in October !

COSINE-200

Ultra-pure Nal(Tl) Development

• For lowering background compared to DAMA

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	< 0.01	< 0.01
Purified Nal	< 16	0.4	< 0.01	< 0.01

- ~400 kg of low background Nal powder has been produced
- 0.7 kg crystal with 0.2 counts/keV/kg/day achieved

J. Rad. Nucl. Chem. **317**, 1329 (2018) JINST **15**, C07031 (2020) Front. Phys. **11**, 1142849 (2023)

R&D to grow large crystals is going on !

Summary

- COSINE-100 tests DAMA/LIBRA's results with NaI(Tl) detectors
- Data were collected from Oct. 2016 to Mar. 2023 at Y2L
- Detector response and event selection analysis improved understanding of the detector
- Searching dark matter using three methods:
 - 1. WIMP Extraction: Finds WIMP-proton interaction
 - 2. Annual Modulation: Searches WIMP modulation in event rates
 - 3. Pulse Shape Discrimination: Differentiates nuclear and electron recoil to find WIMP-like signals
- COSINE-100U is being prepared with enhanced detector performance
- Low-background NaI(Tl) crystals are being developed for COSINE-200

Disfavored DAMA/LIBRA's results by over 3 σ

Backup

26th September 2024

with Full COSINE-100 Dataset (~6 years)

Fitter Test in 1-3 keVee **Preliminary** 38.2 Example Posterior Preliminary (10⁻³ counts/day/kg/keV_{ee}) 19.1 Measured Measured Injected 0.0 -19.1 0 35 10 15 20 25 30 5 -38.2 Amplitude $(10^{-3} \text{ counts/day/kg/keV}_{ee})$ 0.5 Bias 0.0 $1 - 3 \text{ keV}_{ee}$ Standard Pull Distribution Normal -0.5 **Preliminary** 1.1 Pull RMS 1.0 0.9 0 -38.2 -19.1 0.0 19.1 38.2 -2 0 2 -4 4 Injected (10⁻³ counts/day/kg/keV_{ee}) **Pull Factor** No bias attributed to the fitter

Crystals	Mass (kg)	Light Yield (p.e./keV)	
	106.3 → <mark>99.1</mark>	COSINE-100	COSINE-100U
C1	8.3 → 7.1	14.9 ± 1.5	22.4 ± 0.5
C2	9.2 → <mark>8.7</mark>	14.6 ± 1.5	20.1 ± 0.5
C3	9.2 → <mark>8.7</mark>	15.5 <u>+</u> 1.6	20.4 ± 0.4
C4	18.0 → <mark>16.9</mark>	14.9 <u>+</u> 1.5	20.7 ± 0.4
C5	18.3 → 17.2	7.3 <u>+</u> 0.7	16.8 <u>+</u> 0.5
C6	12.5 → 11.7	14.6 <u>+</u> 1.5	19.6 <u>+</u> 0.3
C7	12.5 → <mark>11.6</mark>	14.0 ± 1.4	20.2 ± 0.5
C8	18.3 → 17.2	3.5 <u>+</u> 0.3	16.2 ± 0.4

Searching for low mass WIMP !