First Search for High-Energy Neutrino Emission from Galaxy Mergers

Subhadip Bouri, Priyank Parashari, Mousumi Das, Ranjan Laha arXiv: 2404.06539

> Department of Physics IISc Bangalore

ISAPP School "Neutrinos and Dark Matter – in the lab and in the Universe"

What are the sources of Cosmic Ray?

(≥10¹⁵eV) cosmic rays ?

What are the sources of the

universe, the high-energy

highest energy particles in our

Fig: Cosmic flux versus particle energy at the top of Earth's atmosphere (credit: wikipedia)

Neutrinos and gamma rays, a partnership to explore the extreme universe

Image courtesy: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

How IceCube detects neutrinos?

courtesy:2202.00694

Courtesy: IceCube collaboration

 $u_l + {
m N}
ightarrow l + hadrons \,\,$ (Charged Current interaction) $u_l + N
ightarrow
u_l + hadrons \,\,$ (Neutral Current interaction)

Similar types of interactions happen for anti-neutrinos.

Current status of the high-energy astrophysical neutrino sources

Fig: The high energy neutrino flux observed by IceCube. TXS 0506+056 and NGC 1068 are confirmed high-energy astrophysical neutrino sources till now. We also observe a high-energy diffuse astrophysical neutrino (in all flavors) flux. Currently, we do not know what sources contribute entirely to the high-energy diffuse astrophysical neutrino flux. [courtesy: 2211.09972]

Proposed Neutrino Sources

- Blazars [arXiv: 1904.06371, 2004.09686, 2007.12706, 2309.03115]
- Gamma-ray bursts [arXiv: 1101.1448, 1412.6510, 1601.06484, 1702.06868]
- Radio bright AGN [arXiv: 2103.12813]
- Pulsar wind nebulae [arxiv: 2003.12071]
- Choked Jet Supernovae [arXiv: 1706.02175, 1809.09610]
- Fast radio bursts [arXiv: 1712.06277, 2212.06702]

And many more classes of sources...

What if the galaxy mergers are emitting high-energy neutrinos?

What if the galaxy mergers are emitting high-energy neutrinos?

Theoretical papers:

1.Kazumi Kashiyama and Peter Meszaros [arXiv:1405.3262]2.Chengchao Yuan et al. [arXiv: 1712.09754]3.Chengchao Yuan et al. [arXiv: 1810.04155]

Fig: Schematic figure showing the merger of two galaxies. The shock is in the core region where interactions occur and neutrinos as well as electromagnetic radiation are produced.

We look into the statistical correlation between the 10 years IceCube skymap and six galaxy mergers catalogs

Analysis Formalism

• Single Source Analysis

Fig: schematic representation of Single source analysis

Analysis Formalism

Stacking Analysis

Fig: Schematic representation of Stacking analysis, search for collective neutrino emission from a catalog/class of sources

• If the background hypothesis is true, the probability distribution for TS_{max} is approximately a χ^2 distribution.

PDF
$$(TS_{max}) \approx \chi_1^2 (TS_{max})$$

Results: Single Source analysis

Fig: Distribution of square root of maximized TS values for all galaxy mergers from our likelihood analysis with 10 years of IceCube muon-track data. The normal distribution favours the null hypothesis implying highenergy astrophysical neutrinos are not coming from galaxy mergers. (Our work)

Results: Stacking Analysis

Fig: All six-flavor neutrino energy fluxes vs. neutrino energy combining all the galaxy mergers in the six catalogs for the luminosity distance weighting scheme. The spectral index of signal neutrinos is Γ . (our work)

Conclusion

- We analyze the significance of each galaxy merger location in the six catalogs and find that none of the galaxy mergers in all six catalogs have a large global significance.
- Our stacking analyses show no significant correlation between our selected galaxy mergers and IceCube neutrinos with the current data set. For luminosity distance weighting, with $\Gamma = -2$, the upper limits can contribute no more than 19.69%, 17.08% and 16.88% of the total astrophysical diffuse flux observed by IceCube measured from muon-neutrino events, combined electron and tau neutrino cascade channels, and starting track events, respectively.
- We conclude that known galaxy mergers from the six catalogs do not contribute significantly to the diffuse neutrino flux detected by IceCube. Our study implies strong constraints on very high-energy hadronic cosmic-ray acceleration in galaxy mergers. Near future searches of neutrinos from galaxy mergers can either discover their neutrino production or produce even more stringent constraints on their very high-energy hadronic acceleration mechanism.

Conclusion

- We analyze the significance of each galaxy merger location in the six catalogs and find that none of the galaxy mergers in all six catalogs have a large global significance.
- Our stacking analyses show no significant correlation between our selected galaxy mergers and IceCube neutrinos with the current data set. For luminosity distance weighting, with $\Gamma = -2$, the upper limits can contribute no more than 19.69%, 17.08% and 16.88% of the total astrophysical diffuse flux observed by IceCube measured from muon-neutrino events, combined electron and tau neutrino cascade channels, and starting track events, respectively.
- We conclude that known galaxy mergers from the six catalogs do not contribute significantly to the diffuse neutrino flux detected by IceCube. Our study implies strong constraints on very high-energy hadronic cosmic-ray acceleration in galaxy mergers. Near future searches of neutrinos from galaxy mergers can either discover their neutrino production or produce even more stringent constraints on their very high-energy hadronic acceleration mechanism.

Thank you! subhadipb@iisc.ac.in Back Up Slides!

Fig: Upper Limit of the total neutrino flux of the five most significant mergers

Sources of High Energy Astrophysical neutrinos?

Current Issue Fire	st release papers Archive About V Submit manuscript	Science	Current Issue	First release papers	Archive	About 🗸 Submit m	anus
HOME > SCIENCE > VOL. 361, NO, 6398 > NEUTRINO EMISSION FROM THE DIRECTION OF T	HOME > SCIENCE > VOL. 378, NO. 6619 > EVIDENCE FOR NEUTRINO EMISSION FROM THE NEARBY ACTIVE GALAXY NGC 1068						
	சியிப்பன் வேன		ICS		f	y in of 🎭 🛙	ł
Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert		Evidence for neutrino emission from the nearby active galaxy NGC 1068					
ICECUBE COLLABORATION, MARK AARTSEN, MARKUS ACKERMANN, JENNI ADAMS, JUAN ANTONIO AGUILAR, MARKUS AHLERS, MARYON AHRENS, IMEN AL SAMARAI, DAVID ALTMANN, [], AND TIANLU YUAN +321 authors Authors Info & Affiliations		ICECUBE COLLABORATION**, R. ABBASI, M. ACKERMANN, J. ADAMS, J. A. AGUILAR, M. AHLERS, M. AHRENS, J. M. ALAMEDDINE, C. ALISPACH, [], AND P. ZHELNIN 4376 authors Info & Affiliations					
SCIENCE • 13 Jul 2018 • Vol 361, Issue 6398 • pp. 147-151 • D0:: 10.1126/science.aat2890		SCIENCE • 3 Nov 2022 • Vol 378, Issue 6619 • pp. 538-543 • DOI: 10.1126/science.abg3395					
						🛕 🗔 🤫 🌈	

Sources: GRB, FRB, AGN, Radio Pulsars??

Radio bright AGNs can account for at most 30% (95% CL) of the diffuse astrophysical neutrino flux measured by IceCube!

Other sources?

 Galaxy mergers: can host powerful hadronic collision and photohadronic processes when galaxies collide.

• Are neutrinos detected by IceCube coming from Galaxy mergers?

Fig: Galaxy merger [Credit: International Gemini Observatory]

Galaxy mergers: source of Astrophysical neutrino?

- By the shock acceleration of particles in massive galaxy mergers or collisions cosmic rays (CRs) can be accelerated up to the second knee energy 0.1-1 EeV.
- Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product.

Kazumi Kashiyama and Peter Meszaros [arXiv:1405.3262]
 Yuan, Mészáros and Murase , and Donghui Jeong [arXiv:1712.09754]

Wilk's Theorem

• If the background hypothesis is true, the probability distribution for TS_{max} is approximately a χ^2 distribution.

$$PDF(TS_{max}) \approx \chi_1^2(TS_{max})$$

Credit: Mauricio Bustamante (Niels Bohr Institute)

EBL

Courtesy: NASA

Pair production CC

FIG. 1: Pair production cross section plotted as a function of the variable $x = s/(4m_e^2)$. $\sigma_{\rm T}$ is the Thomson cross section.

Courtesy: IceCube collab.

Diffuse galactic gamma ray flux