Feedback System for Hybrid Filling with Large Bunch Current Contrast

T. NAKAMURA^{*}

KEK / J-PARC

This work was carried out while I was previously affiliated with JASRI/SPring-8

Based on collaboration of

T. NAKAMURA, K. KOBAYASHI[#], T. FUJITA, M. MASAKI, H. DEWA

JASRI/ SPring-8

R. SREEDHARAN, R. NAGAOKA

Synchrotron SOLEIL

LEE Jaeyu, KIM Dotae, SHIN Seunghwan⁺

POHANG ACCELERATOR LABORATORY / PLS-II

K. KOBAYASHI, et al., <u>https://www.pasj.jp/web_publish/pasj2015/proceedings/PDF/WEOL/WEOL03.pdf</u> Jaeyu LEE, et al., J Synchrotron Radiat . 2021 Sep 1;28(Pt 5):1417-1422.

A. Gamelin, R. Sreedharan, et.al, "SOLEIL transverse bunch-by-bunch feedback system", This workshop

Programmed and manufactured by Tokyo Electron Device (TED), based on our conceptual design

*<u>nkmr@post.kek.jp</u>,<u>https://research.kek.jp/people/nkmr/</u>,

[#] kkoba@spring8.or.jp

+ Current Instittution : Korea University

I.FAST workshop on bunch-by-bunch feedback systems, KIT, 04/Mar/2024

Most Contents of this talk is overlapping of the talk at

IPAC 18 http://ipac18.org/

<u>https://accelconf.web.cern.ch/ipac2018/papers/tuzgbd2.pdf</u> <u>https://accelconf.web.cern.ch/ipac2018/talks/tuzgbd2_talk.pdf</u>

and

The Joint ARIES Workshop on Electron and Hadron Synchrotrons: Next Generation Beam Position Acquisition and Feedback Systems (2018)

https://indico.cern.ch/event/743699/contributions/3112134/attachments/1747270/2840473/SP8_BBF_ARES_WS_181114.pdf

Single-bunch Instabilities

Mode-coupling instability with low chromaticity for wide aperture *Beam-pipe surface structure *Resistive-wall & tapers of In-Vacuum IDs

Multi-bunch Instabilities

*Resistive-wall of low gap in-vacuum IDs *Cavity Higher Order Modes

Transverse Bunch-by-bunch Feedback System

1) Single Analog Front-end Conventional System

X: Saturation at High Current Bunch / Too Low Gain for Low Current Bunch

2) Single Analog Front-end + Digital Gain Control

X: Lost of ADC Resolution for Low Current Bunch (<- analog signal is so small)

3) One Analog Front-end + Signal Level Control by Fast Variable Attenuator

X : Loss of SN ratio for High current bunch (High Gain is required => High SNR)
X : Complex System (two processor and attenuators)

4) "Multiple (Analog Front-end + ADC)" Switching with Bunch Current

1) Single Front-end

2) Single Front-end + Digital Gain Control

Fixed Analog Gain + Digital Gain Switching

Analog Gain Switching

1) Single Analog Front-end Conventional System

X: Saturation at High Current Bunch / Too Low Gain for Low Current Bunch

2) Single Analog Front-end + Digital Gain Control

X: Lost of ADC Resolution for Low Current Bunch (<- analog signal is so small)

3) One Analog Front-end + Signal Level Control by Fast Variable Attenuator

X: Loss of SN ratio for High current bunch (High Gain is required => High SNR)

X: Complex System (two processor and attenuators)

4) "Multiple (Analog Front-end + ADC)" Switching with Bunch Current

3) Analog Signal Level Control by Fast Variable Attenuator

K. Kobayashi, T. Nakamura, THB006, ICALEPCS'09. (very primitive scheme : T. Nakamura, K. Kobayashi, et al., THPC127, EPAC08)

4) Analog Gain Switching with Multiple "Analog Front-end + ADC"

Front-End with RF Direct Sampling for Transverse Feedback

Front-End with RF Direct Sampling for Transverse Feedback

T. Nakamura, K. Kobayashi, Z. Zhou, https://accelconf.web.cern.ch/e08/papers/thpc128.pdf

Bunch Timing Spread at Hybrid Filling (Localized Filling)

We choose Lowest Carrier frequency for BPM n x fRF = fRF (n=1) ~ 500MHz for wider acceptance for timing Front-end Horizontal for SPring⁸

Bunch Current

Bunch Current

Suppression of Single-bunch instability by Feedback

mode-coupling (fast head-tail) for V (and H : weak)
Chromaticity = 1 (< 3) for wide dynamic aperture</pre>

In-vacuum IDs Open 3.5 mA/bunch => 14 mA/bunch Feedback OFF ON ~ simulation result

In-vacuum IDs Close (Partly ~ user operation) 2.5 mA/bunch => 6 mA/bunch Feedback OFF ON 5 mA/bunch for User operation

For Hybrid Filling for PLS-II: H and V in one processor

Jaeyu Lee, et al., J Synchrotron Radiat . 2021 Sep 1;28(Pt 5):1417-1422.

kicker kicker kicker kicker

Hardware and Brock Diagram

Hardware Block Diagram

http://www.design-gateway.com/SDLink.html

Kazuo KOBAYASHI / SPring-8

New SPring-8 Signal Processor (upside down)

Function Block Diagram (4 ADC x 2 direction version)

Function Block Diagram

Function Block Diagram (4 ADC x 2 direction version)

Gadgets

Selection of ADC with Bunch Current Controlled Selector

Selector Control with anti-chattering

Stretcher

Stretcher

500MHz FIR filter

500MHz FIR filter

Switch yard

Switch yard

Tune Measurement with One Bunch Excitation

Tune Measurement with One Bunch Excitation

Just one bunch is excited, others are feedbacked => small effect to users

Tune Measurement with One Bunch Excitation

Excitation Signal by Internal Signal Source (NCO)

By Kazuo KOBAYASHI / SPring-8

□ <u>Tune observation system with New Signal Processor</u>

By Kazuo KOBAYASHI / SPring-8

Stability limit of Feedback and Multiple-BPM scheme to remove it

Simplify saying, it's Digitalized Analog feedback scheme with Two BPMs

Its Extreme Case for Damping time ~ several turns

Feedback with Multiple BPMs for Stability at High Gain

Kick <= <u>Turn-by-turn Position</u> with a single BPM

1 or 2 BPMs : enough if those have good phase relations each other and kicker T. Nakamura, Proc. of *14th Ann. Meet. Part. Accel. Soc. Japan,* paper TUP090, Aug. 1-3, 2017 Proc. of IPAC18, . tuzgbd2

Feedback with Multiple BPMs for Stability at High Gain

Instability of Feedback at High Gain

Tune Shift by Feedback at High Gain

Instability of Feedback Driven by Closed Loop : Position - Kick

Digital Feedback with Position Data at Multiple Locations (BPMs)

Produced by drift of **Closed orbit**, Amplifier gain, ADC gain and timing

Digital Feedback with Position Data at Multiple Locations (BPMs)

Fast Correction Kicker for Reduction of Transient Beam Oscillation Excitation by Injection Bump Orbit Formation

Fast Correction Kicker for Reduction of Unwanted Main Kicker Effect

Horizontal : Mismatching at Fast Rising/Falling Edge

Vertical : X-Y coupling at Injection Kickers

Rotation of Kicker Magnets are optimized with Remotely Controlled Magnet Base)

SPring-8 (and some of light sources)

C. Mitsuda, K. Fukami, K. Kobayashi, et al., <u>https://accelconf.web.cern.ch/IPAC2014/papers/mopro082.pdf</u>

C. Mitsuda, https://indico.cern.ch/event/635514/contributions/2660454/attachments/1513848/2370449/twiss_2017_v6_pub.pdf

FAST CORRECTION KICKERS

for correction of Horizontal/Vertical Oscillation of STORED BEAM at Injection

Instability Strength Monitoring for In-Vacuum Insertion Devices (ID)

Instability Strength Monitoring for In-Vacuum Insertion Devices (ID)

Trip of **Power Amplifier** with "Reverse Power" by High Current Bunch

Trip of **Power Amplifier** with "Reverse Power" by High Current Bunch

Single-Loop Two-Dimensional Transverse Feedback

Single-Loop Two-Dimensional Transverse Feedback with Previous version Processor

One Position Signal, **One** Processor, for **Horizontal and Vertical feedback**

- * Less components, cost and tuning points
- * No special devices are needed (but SPring-8 Processor for all kick electrodes)

T. Nakamura, et al, EPAC06, "Single-loop Two-Dimensional Transverse Feedback for Photon Factory" E.-H. Lee, et al., Review of Scientific Instruments **85**, 125102 (2014)

PF, TLS, SOLEIL, PLS-II in their early stage

PLS-II Two-Dimensional Feedback

FIR 1
$$\tilde{x} + \tilde{y} \rightarrow G_x \tilde{x} + G_y \tilde{y}$$
FIR 2 $\tilde{x} + \tilde{y} \rightarrow G_x \tilde{x} - G_y \tilde{y}$

with beta function at BPM and Kicker

E.-H. Lee, et al., Review of Scientific Instruments 85, 125102 (2014)

Increase of beam size by BPM noise and High Resolution BPM

T. Nakamura, NANOBEAM 2005, p. 401 in https://lib-extopc.kek.jp/preprints/PDF/2005/0525/0525020.pdf

T. Nakamura, NANOBEAM 2005, p. 401 in https://lib-extopc.kek.jp/preprints/PDF/2005/0525/0525020.pdf

High Resolution BPM by Shorted Stripline Structure

T. Nakamura, DIPAC05, https://accelconf.web.cern.ch/d05/PAPERS/POW027.pdf

SPring-8 Longitudinal Kicker

SPring-8 Longitudinal Kicker

SPring-8 Storage ring (at 6 GeV operation)

* Large Revolution Period (5us) and High Energy (6GeV) => Large kick / revolution

* Limited space for kickers => Short kicker

High Shunt Impedance / Length Kickers are required Higher frequency is chosen :

3 + 1/4 period / bunch spacing (2ns) @500MHz

- * Small Kicker
- * Simple Drive Circuit without QPSK modulator

T. Nakamura, proposed and test with prototype, <u>https://accelconf.web.cern.ch/IPAC2011/papers/mop0007.pdf</u>
M. Masaki, et al, (actual kicker and feedback test with beam) <u>https://www.pasj.jp/web_publish/pasj2015/proceedings/PDF/WEP0/WEP088.pdf</u> https://accelconf.web.cern.ch/ibic2013/papers/tupc18.pdf

Simple drive circuit without QPSK modulator 1.6 GHz = $(3 + 1/4) \times 500$ MHz => (3 + 1/4) period / bunch 3 Waves / Bunch Spacing (2ns) here

Longitudinal Kicker (Comparison)

Standard Kicker widely used

DA Φ NE type Overdamped Cavity 1.4 GHz :

2 + 3/4 period / bunch needs QPSK modulator (2 period drive : 20 % loss)

Shunt Impedance ~ 1.3 – 1.4 k Ω

BESSYII/SLS/Elettra/TLS kicker shape

SPring-8 Longitudinal Kicker

3 + 1/4 period / bunch spacing @500MHz is preferable

FIR filter Coefficients

Least Square Fitting (TDLSF method) for Coefficients

First, ~2002, we developed this method and used in APS(US), SOLEIL(France), HLS (China), TLS(Taiwan), PLS-II(Korea), KEK-PF, and was contacted from IHEP (China)

> Finally, I realized that this method and the frequency domain method that I also developed (or might be re-invented), and I show in previous discussion are equivalent (at least, some cases).

We made the code with Python, C/C++, Fortran version and soon Julia And the conversion code with Python from FIR Phase and gain to Dimtel's definition of Phase and Gain

Least Square Fitting (TDLSF method) for Coefficients $p_1 = B$ $x[n] = A\cos(n\phi + \psi) + B \mid = p_0 + p_1\cos n\phi + p_2\sin n\phi$ $p_1 = A \cos \psi$ $p_2 = -A \sin \psi$ p_m to "measured" data x_k Least Square $\boldsymbol{p_m} = \sum_{k=0}^{N} C_{m,k} \boldsymbol{x_{-k}}$ $\begin{pmatrix} definition of a_k \\ y[0] = \sum_{k=0}^N a_k \mathbf{x}_{-k} \end{pmatrix}$ Fitting With this, we can construct kick data at n = 0 turn $y[0] = \mathbf{G}A\cos(\psi + \boldsymbol{\zeta}) = \mathbf{p}_1\mathbf{G}\cos\boldsymbol{\zeta} + \mathbf{p}_2\mathbf{G}\sin\boldsymbol{\zeta} = \sum_{k=0}^{N} (C_{1,k}\mathbf{G}\cos\boldsymbol{\zeta} + C_{2,k}\mathbf{G}\sin\boldsymbol{\zeta})\mathbf{x}_{-k}$ $a_k = C_{1,k} \mathbf{G} \cos \mathbf{\zeta} + C_{2,k} \mathbf{G} \sin \mathbf{\zeta}$ We have a_k , k = 0, 1, 2, ..., N

Extension to multiple tunes is easy

T. Nakamura, et al. https://accelconf.web.cern.ch/e04/PAPERS/THPLT068.PDF

Frequency Domain Condition for FIR filter

Constraints on Coefficients of FIR filter

Frequency Domain Condition for FIR filter

TDLSF is Equivalent to Following Frequency Domain condition

Gain, Phase and "Flat response" : Equivalent to

$$G(\phi_{j})e^{i\zeta(\phi_{j})} = G(\phi_{i} \pm \Delta)e^{i\zeta(\phi_{i} \pm \Delta)}$$
$$= \sum_{k=0}^{N} a_{k} \exp(-ik(\phi_{i} \pm \Delta))$$
$$G(\Delta)e^{i\zeta(\Delta)} = 0 \qquad \text{with setting } \Delta \ll$$

1

Minimization
$$P = \sum_{k=0}^{N} |a_k|^2$$

Least Square Fitting (TDLSF method) for Coefficients : 1st order

 $x[n] = A\cos((1+\Delta)\phi^{(n)} + \psi) + (1+n\Delta_0)B \qquad \text{for } |\Delta| \ll 1$ $\rightarrow p_{0,1} + p_{0,2}n + p_{1,1}\cos\phi^{(n)} + p_{1,2}\sin\phi^{(n)} + p_{2,1}\phi^{(n)}\cos\phi^{(n)} + p_{2,2}\phi^{(n)}\sin\phi^{(n)}$ $p_{i,j} = \sum_{k=0}^{N} C_{i,j,k} \mathbf{x}_{-k}$ Least Square Fitting $p_{i,j} \text{ to } \mathbf{x}_{k} \text{ turn-by-turn}$ Positions $p_{0,1} = B$ $p_{0,2} = \Delta_0 B$ $p_{1.1} = A \cos \psi$ $p_{1,2} = -A\sin\psi$ $p_{2.1} = -A\Delta\cos\psi$ $p_{2,2} = -A\Delta \sin \psi$ $y[0] = \mathbf{G}A\cos((1+\Delta)\phi_0 + \psi + \boldsymbol{\zeta}) = \mathbf{G}A\cos(\psi + \boldsymbol{\zeta})$ $= p_{1,1}G\cos\zeta + p_{1,2}G\sin\zeta = \sum_{k=1}^{\infty} (C_{1,k}G\cos\zeta + C_{2,k}G\sin\zeta)x_{-k}$ $a_k = C_{1,k} \boldsymbol{G} \cos \boldsymbol{\zeta} + C_{2,k} \boldsymbol{G} \sin \boldsymbol{\zeta}$

We have a_k , k = 0, 1, 2, ..., N

Example

5 Constraints : Target tune **0.15** with **flat response**

G(0) = 0 G(0.15 - 0.01) = G(0.15 + 0.01) = 1 $\zeta(0.15 - 0.01) = \zeta(0.15 + 0.01) = -90 \text{ deg}$

position data

5 tap : -1, -3, -5, -7, -9 turns 9 tap : -1, -2, -3, -4, -5, -6, -7, -8, -9 turns

