



I.FAST Workshop 2024 Bunch-by-bunch feedback systems and related beam dynamics

# Transverse collective effects simulation with bunch-by-bunch feedback system

Vadim Gubaidulin, March 4, 2024 vadim.gubaidulin@synchrotron-soleil.fr



\_ \_ \_ \_ \_

# SOLEIL and SOLEIL II operation

| RADE         SOLEIL (measurements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | SOLEIL II (simulations) |                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Operation mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current threshold (w/o FB) | Operation mode          | Current threshold (w/o FB)                                                                                                     |
| Uniform, 500 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 350 mA (TCBI*)             | Uniform, 500 mA         | ~ 30 mA (TCBI/BII)                                                                                                             |
| Hybrid, 450 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350 mA (TCBI*)             | 32-bunch, 200 mA        | ~ 90 mA (head-tail)                                                                                                            |
| 8-bunch, 100 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 mA / bunch (head-tail)   | Uniform+HC, 500 mA      | >500 mA                                                                                                                        |
| Single-bunch, 20 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 mA / bunch (head-tail)   | 32-bunch+HC, 200 mA     | ~ 90 mA (head-tail)                                                                                                            |
| <ul> <li>In the past combination of TCBI and BII was limiting the current<br/>TCBI - Transverse coupled-bunch instability (due to resistive wall impedance)<br/>BII - Beam-ion instability (due to residual gas ionisation)</li> <li>Design beam currents only reached with FB</li> <li>FB should be able to deal with all instabilities (TCBI, BII, head-tail)</li> <li>Another way would be to increase chromaticity</li> <li>Additionally, for uniform mode, BII can limit the current</li> <li>For other FB application at SOLEIL see talk by A. Gamelin</li> <li>Large parameter space to scan!</li> <li>Chromaticities</li> <li>Impedance models</li> <li>Feedback parameters</li> <li>Beam current</li> <li>ID open/close</li> <li>And many more</li> </ul> |                            |                         | parameter space to scan!<br>nromaticities<br>pedance models<br>eedback parameters<br>eam current<br>open/close<br>nd many more |



## Feedback: simulation point of view

#### **UPGRADE** Semianalytical

Particle tracking

Experiment



- Many approximations
- Understanding of underlying processes
- Very fast
- Large parameter scans
- Transverse feedback models:
  - $\circ$  Ideal damper
  - Karliner-Popov model

#### Faster models

- Complex models
- Resource-demanding
- Time-demanding (hours-weeks)
- Large parameter scans difficult or impossible
- Transverse feedback models:
  - o Ideal/exponential damper
  - $\circ$  FIR filter

- Actual reality
- Sometimes very difficult to relate to physics...

#### More complex models



## Some theory

One tries to solve Sacherer's integral equation

$$\begin{split} (\Omega - Q_{y0}\omega_0 - l\omega_s)R_l(\tau) &= -\kappa g_0(\tau) \sum_{l'=-\infty}^{+\infty} j^{l'-l} \\ &\cdot \int_0^{+\infty} \tau' R_{l'}(\tau') \left[ \mu J_l \left( -\omega_{\xi}\tau \right) J_{l'} \left( -\omega_{\xi}\tau' \right) \mathrm{d}\tau' \right. \\ &+ \left. \sum_{p=-\infty}^{+\infty} Z_y(\omega_p) J_l \left( (\omega_{\xi} - \omega_p)\tau \right) J_{l'} \left( (\omega_{\xi} - \omega_p)\tau' \right) \right], \end{split}$$

Reduces to a "simple" eigenvalue problem

$$\mathcal{M}_{ln,l'n'} = \frac{-j^{l'-l}n!\kappa\tau_b^{|l|-|l'|}}{2^{|l|}(n+|l|)!} \left[ \mu G_{ln}(-\omega_{\xi}, a) I_{l'n'}(-\omega_{\xi}, a) + \sum_{p=-\infty}^{+\infty} Z_y(\omega_p) G_{ln} \left( \omega_p - \omega_{\xi} \right) I_{l'n'} \left( \omega_p - \omega_{\xi}, a \right) \right], \quad (21)$$

https://e-publishing.cern.ch/index.php/CYRCP/article/view/757/563

Here typically an ideal damper is assumed

- Improvement on ideal damper is Karliner-Popov formalism
- Feedback is represented by an "impedance"
- Another improvement would be inclusion of rad. effects

$$Z_F(s - jm\omega_0)$$

$$= \frac{Z_0 \cdot V'(0)}{a} \cdot K(s - jm\omega_0) \cdot e^{-j\frac{mL_0}{R}} \cdot e^{-(s - jm\omega_0)\tau}$$

$$\cdot \frac{(1 - \exp[-(\gamma_m - j\frac{m}{R})L_1]) \cdot (1 - \exp[-(\gamma_m - j\frac{m}{R})L_2])}{\gamma_m - jm/R}$$

10.1016/j.nima.2004.08.068

The dream: the equations actually work and we don't need to simulate every possible parameter

#### Reality:

- Initial scans with these simplified models
- Tracking
- Confirmed with the new machine operation
- Understand why results differ

### Benchmark with theory (DELPHI) for single-bunch

TMCI Q'=0

Uniform mode with 1.2 mA per bunch is below all the threshold with bunch lengthening from long. Impedance

UPGRADE

- 32b mode with 6.25 mA per bunch is not saved by bunch lengthening
- 32b mode head-tail instability is very similar to TMCI - > head-tail modes are not independent from each other



! No bunch lengthening in these benchmark plots !



### **Single-bunch instabilities**

Instability in uniform and 32b@6.25 mA per bunch at nominal chromaticity



- Feedback can still be required for single-bunch instabilities
- Required damping time is ~300-500 turns
- Intrabunch motions is a mix of different head-tail modes



- Increasing chromaticity to suppress instability as 6.25 mA is not efficient
- $I_b = 1.2 \text{ mA, uniform mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close 200 \text{ mA mode}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close 200 \text{ mA mode}$   $I_b = 6.25 \text{ mA, 32 bunch 200 mA mode, ID close 200 \text{ mA mode}$   $I_b =$

- No harmonic cavity included to get worst case scenario
- This single-bunch instability will require a strong feedback < 100 turns damping time</li>
- Damping time here is the one at Q'=0



Possible measures to alleviate feedback requirements:

- Increasing chromaticity
- Getting lower current

"Ideal" damper



- Exponential growth rate
- Impedance-driven
- Linear with beam current
- Can be suppressed by chromaticity
- Both long-range and short-range wakes have to be included in the simulations

- Most unstable mode is at the (revolution frequency,  $\omega/\omega_0$ harmonic – tune)
- Other modes unstable too but strength decays fast







### **Beam-ion instability**



Instability risetime

-

- $\circ~$  linear with vacuum pressure
- $\circ~$  Linear with number of gaps for a given gap length
- $\circ~$  Gap effectiveness is nonlinear with beam current
- $\circ\;$  Instability risetime is nonlinear with beam current

- Instability spectrum:
  - Centered at large rev. frequency harmonics
  - Large spread of frequencies in the spectrum
  - $\circ~$  Frequency depends on beam current



-

## Preliminary feedback performance: Bll

Uniform@500 mA with 100 A.h vacuum conditions

- Feedback quickly stabilises first bunches in a train
- A few most unstable bunches dictate the residual oscillation amplitude
- A solution with low enough feedback strength can be found by increasing the number of gaps
- "Ideal" damper is used





- Starting with simple models and increasing complexity
- One of the goals for instability modelling is to get estimations in two ways: semianalytical and tracking
- Feedback is essential: coupled-bunch instabilities and single-bunch instabilities
  - $\circ~$  Single-bunch instability in timing mode
  - Coupled-bunch and beam-ion in uniform mode
- Single-bunch instability in 32b@200mA is more concerning than TCBI
- (impedance) Challenges are similar to those of 3rd-generation (with closed ID gaps)
- Beam-ion instability appears to be the strongest one in simulations
  - A combination of optimal gap configuration and bunch-by-bunch feedback is necessary
  - $\circ~$  All beam-ion simulations assume pessimistic parameters
  - Information on vaccum pressure vs dose is crucial for correct estimations of the instability



CARLS LOLD

# Thank you!