





#### Radio Frequency Electronics for Scalable Superconducting Quantum Circuit Interfacing

**Robert Gartmann** 

Institute for Data Processing and Electronics



#### www.kit.edu

#### How to: Science

- Vaguely two fields:
  - Theory & Experiment
- Back and forth => discovery
- Model building: Math, Statistics, ...
- Recently more simulations





2 March 13, 2024

Sensors Applications

**SDR RF** 0000

**Conclusion** 

#### **Experimentalists Need Sensors**



- Measurements continuously evolve
- Energy frontiers shifted
- Statistics increasingly important
- Rate, resolution, dead time, noise, …
- What would the ideal sensor be?





[wikimedia.org]



March 13, 2024 3

Sensors 0 0 0 0

SDR Applications 00000 00000

RF 0000 Conclusion 00

## **Croygenic Sensing**

- Inherently low noise & loss
- Inherently tricky to interface
- Nudge system => build sensor TES, KID, <u>SQUID</u>, ...
- Macroscopic quantum phenomena
- Josephson junction: nonlinear inductance
- Commonality: build resonator
- Multiplexing possible







Applications Sensors 0000 00000

RF 00000 0000

SDR

Conclusion 00

### Solution: Flexible Signal Platform

- One-size fits-all possible?
- Different sensors, but common readout
- Demodulation?
- Number of sensors?
- How to tailor to experiment?





March 13, 2024 5

Sensors Applications 000 00000

[wikimedia.org]

RF 00000 0000

**SDR** 

Conclusion 00

### **BULLKID**

(a)

6

- Dark matter search
- Phonon based detection
- KID on silicon wafer
- Low activity environment







[Source]

Sensors March 13, 2024 0000

Applications • • • • • •

RF 00000 0000

**SDR** 

Conclusion 00



#### QUBIC

7



Sky

56 cm

window

half-wave plate

- Cosmic microwave background analysis
- B-mode polarisation MMB based telescope



### **Ambient Radioactivity Monitoring**

- Quasiparticle bursts from absorption
- High energy event upsets resonator
- Triangulate position



**SDR** 





8

March 13, 2024

Applications Sensors 00000

0000

Conclusion

Institute for Data Processing and Electronics (IPE)

RF 00000 0000 00

### Electron Capture in <sup>163</sup>Holmium: ECHo

- Electron Capture in <sup>163</sup>Holmium
  - (L. Gastaldo et al., EJP (2017))
- Sensors: magnetic microcalorimeters
- Neutrino mass cutoff through decay spectrum
- 12.000 pixel parallel readout microwave SQUID multiplexing
- Goals of ECHo-100k: Measurement sensitivity of < 5eV Technology demonstrator





Ho<sup>163</sup> spectrum:



March 13, 2024

Sensors Applications

**SDR** 0 0 0 0 0 RF

0000

# **ECHo: Magnetic Microcalorimeters**



- Implanted absorber metal
- Paramagnetic doping in sensor
- Thermal capacity & weak link means step + decay
- Magnetometer = Thermometer
- Couple flux to coils & SQUIDs





Applications SDR 00000

0000

RF 0000 Conclusion 00

#### **Unified Readout**



- Generic lab electronics can do the job
- Maximum flexibility through interconnects
- Inherent latency and limited throughput
- Decimation tricky



Sensors Applications 0000 00000

RF • • • • • 0000

SDR

Conclusion 00

#### **Software Defined Radio**



- Glorified sound card: play what you want
- Requires computing power

Fast conversion to/from analogue

- Digital signal processing enables ideal transforms
- Parallel processing required potentially low latency

=> FPGA



**SDR RF 0000** 

Conclusion



### **Physical Buildup**

- Electrical engineering = printed circuit boards
- Custom and COTS
- Separate blocks
  - (by function)





**13** March 13, 2024

Sensors Applications

**SDR RF** 0000

Conclusion



## **SDR Scaling**

- Number of channels
  - proportional to bandwidth
- Band =/= bandwidth
- How to increase?
  - Faster converters
  - Independent bands
  - Stitch frequencies together
  - Multiple concurrent systems



#### Software-defined Radio (SDR) system architecture



**14** March 13, 2024

Sensors Applications

**SDR RF** 0000

### SDR Radio Frequency Conversion



RF engineering:

layout and wiring essential

reduce size without crosstalk

- Frequency conversion
- Filtering and channelisation
- Level matching
- Key aspects: AM/PM noise,

intermodulation, distortion, ...



RF 0000 0000

SDR

Conclusion 00

### Step 1: Ingest Signal



GHz frequency ~ cm wavelength lumped element approximation breaks Wave behaviour ensues

nominal impedance imperative else reflections

Controlled dimensions

trace width & angle dictated

System dominated by parasitics!



RF 00000 000

**SDR** 

Conclusion 00

#### **Step 2: Dispatch**

- Gain = linear in-to-out relation breaks at some point
- Single digit spec misleading! "1dB compression point"
- Compression = distortion worst case: clipping
- Result: spectral regrowth





Sensors Applica

Applications SDR

**RF** ○ ● ○ ○ Conclusion

# Karlsruhe Institute of Technology

### **Step 3: Mixing**



#### **Step 4: Reference**

19

March 13, 2024

0000



GHz reference frequencies necessary no fundamental precision oscillator

Multiply by dividing: phase locked loop

00000

00000

Stability essential: phase noise/jitter



[wikimedia.org]



00

000

## **ECHo Deployment Incoming**



#### Current status:

- Ready for operation; fully contained in 19" box!
- Noise level below cryogenics
- Preliminary accuracy:

6.28 eV @ 3.31 keV

Outlook:

- 15x Assembly by 7/2024
- Full-scale FPGA-board
- In-house measurements





Applications Sensors 0000 00000

RF 00000 0000

SDR

Conclusion • 0

#### **Future Developments**



Successful development & deployment

Many users and parties of interest

Path for longterm evolution

**ECHo** PtOube www-Physikalisches Institut BRIQS **()**SOLID

Synergy of RF developments

Sensors Applications

**SDR RF** 00000



# Backup

#### **ECHo Hardware Versions**





Full Scale (V2): 2021 (2024)







400 Resonator 4 GHz

•



#### **ECHo Clock Schematic**







#### **ECHo Firmware**



•

#### **ECHo Data Decimation**







#### **ECHo Band Structure**



٠

### Crosstalk







#### Crosstalk between subbands



- Crosstalk (Band 1-3): -50 dB
- Band 4: Alias filter
- Band 5: Matching network



#### **ECHo Room Temperature Verification**







#### **Sample Wiring Diagram**





•



### **ECHo Experimental Linearity (preliminary)**



#### **ECHo Room Temperature Verification**





#### Measurement procedure:

- Generation of a single tone
- Downconversion of carrier signal
- Signal PSD of noise

#### Results:

- room-temperature loopback shows lower noise than with cryogenic interface
- SDR is not the limiting factor

# **IPE EPS group (SDR branch)**

- Group Lead: P.D. Dr.-Ing. Oliver Sander
- Post-Docs
  - Dr.-Ing. Luis Ardila-Perez
  - Dr.-Ing. Luciano Ferreyro (USAM-KIT)
- Doctoral Students
- Timo Muscheid
- Lukas Scheller
- Marvin Fuchs
- Robert Gartmann
- Torben Mehner
- Manuel Garcia (USAM-KIT)
- Juan Salum (USAM-KIT)
- Previous Members
- Dr.rer.nat. Richard Gebauer(\*)
- Dr.-Ing. Nick Karcher(\*)
- Dr.rer.nat. Francesco Valenti

(\*) Received Helmholtz Awards 2023 for doctoral thesis.







#### **SDR for Qubit Applications**





#### **Heterogeneous Devices**



#### ZynqUS+ MPSoC



hard processors and programmable logic

#### ZynqUS+ RFSoC



•

#### **ECFA Roadmap**

- SDR easily repurposed
- More projects TBD
- DRDT 7.3 & DRDT 5.3.3
- Lots of work ahead!





#### DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDT) < 2030 2030- 2035- 2040-2035 2040 2045 > 2045 2021 2025 2030 2035 Phase-sensitive upconverters DRDT 5.1 Promote the development of advanced quantum sensing technologies TES, MKID, CEB (f < 100 GHz) DRDT 5.2 Investigate and adapt state-of-the-art developments in quantum technologies to particle physics Qubits / QND photon counters, entangled cavities (f > 30 GHz) DRDT 5.3 Establish the necessary frameworks and mechanisms to allow supe Superconducting RF cavities: factor 100-1000 improvement on dark photons exploration of emerging technologies Develop and provide advanced enabling capabilities and infrastructur Space-based networked detectors (DM)

#### [cern.ch]