

Neural Networks for Cosmic Ray Simulations

Pranav Sampathkumar, IAP, KIT

11th KSETA Plenary Workshop 2024

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Motivation

The Problem

● Monte Carlo (MC): **slowest part** of many physics pipelines

Context

● Current Approximations: **Theory based**

Problem statement

● Can **neural networks** be used for **data* driven** approximations ?

● **Scales badly** for high energies

● **Forward physics** is important

here

The Challenges

Performance

● **Faster** than Monte Carlo Simulations

Fidelity

● **Sensible physics** approximations

Physics

● **Different challenges** based on context

● **Better scaling** than traditional approximations

● **Shouldn't affect** existing pipelines. ● Eg, Cosmic ray showers are **larger**

Neural Networks

- A fully connected network is a **collection of matrices** with a nonlinear function
- N layered network has N-1 matrices.
- Use an optimization algorithm

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Generative Adversarial Neural Networks

- **Various types** of **GANs**
- Based on **loss** functions and **architectures**

Generative Adversarial Neural Networks

- **Various types** of **GANs**
- Based on **loss** functions and **architectures**

Autoencoders

- **Encoder**: Compresses data
- **Decoder**: Extracts data
- **Latent Space**: Compressed data

Autoencoders

Variational Autoencoders

Information Distillation GAN

ID - GAN

- **Mix** auto-encoders and **GANs**
- **Distill** the necessary information
- **Encode first** and then **use it with noise** to create new data
- **Generator** does the creation

Figure 6.1.: It consists an encoder (q_{ϕ}) , a decoder (p_{θ}) , a generator (G_{ω}) and a discriminator C_{ψ} . The training of the model is divided into the training of the VAE part and training of the GAN part. The noise vector consists of two different variables s and c.

Bounded-Information Bottleneck Autoencoder

BIB-AE

- **Mix** auto-encoders and GANs
- **Distill** the necessary **information**
- **Encode first** and then **use it with noise** to create new data
- Additional **critics** for physics
- **Decoder** does the creation

Figure 3. Schematic illustration of our BIBAE setup including the Post Processor Network in the final step.

Information GAN

BIB-AE

- **Mix** auto-encoders and **GANs**
- **Distill** the necessary **information**
- **Encode first** and then **use it with noise** to create new data
- Additional **critics** for physics
- **Decoder** does the creation

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Point Clouds

- Be **independent** of **grid**
- Use **unordered list of particles** in **momentum space**
- Helps the **sparsity** of the image
- **Directly generate** the coordinates of N points

GANs on Point Clouds

A **swap between point clouds** doesn't change the information

GAN architectures were developed which account for this swap.

- EPiC-GAN: Equivariant Point Cloud GANs
- MP-GAN: Message passing GANs

Table 2: Evaluation scores for the JetNet30 dataset. The truth values are a comparison between the test and training set, which reflect the size of statistical fluctuations. The MP-GAN scores were calculated with the trained models from Ref. [24] using the same statistics as the EPiC-GAN. Lower is better for all scores.

Flow Based Models

Flow Based Models

Img source: L2LFlows, arXiv:2302.11594v2 18

Diffusion Models

Diffusion Models

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

23

● **Approximate a single step** in shower generation using a neural network

● Takes distributions at height X and gives distributions at height $X + \Delta X$

We get around 5% error.

 $n(X)$ \longrightarrow Model \longrightarrow $n(X + \Delta X)$

- Use the model **iteratively** without using a hidden state
	- The **lack of the hidden state** makes the network **memoryless**
	- **Emulates** the nature of **simple MC process**
	- Trained in sequences of **10 steps**

- Generated the entire shower using our sequential network
- Iteratively generate shower from initial conditions
- Maximum error is **around 10%**

Radio Simulations

- **EM part** of CR showers **produces radio pulses**
- Radio pulses of CR showers **don't have MC fluctuations**
- Can be approached with **more traditional techniques**

Conclusions

- Neural networks for shower simulations: **exciting new field**
- Advancements in novel architectures for **physics use cases**.
- For CR Physics, using a **memory less recurrent neural network** shows promise
- Network is **not linear,** doesn't capture fluctuations when used in a hybrid manner
- Use neural network for radio pulses.

Outlook

- **Hardcode the linearity** into the network
- Stay robust for **early fluctuations**
- Do the same in 3D.
- Get the energy footprint correct for radio pulses.

Thank You

Figure 1: The collider physics coordinate system defining (p_T, η, ϕ) (left). The three jet classes in our dataset (right). Gluon (g) and light quark (q) jets have simple topologies, with q jets generally containing fewer particles. Top quark (t) jets have a complex three-pronged structure. Shown also are the relative angular coordinates η^{rel} and ϕ^{rel} , measured from the jet axis.

