

Neural Networks for Cosmic Ray Simulations

Pranav Sampathkumar, IAP, KIT

11th KSETA Plenary Workshop 2024

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Motivation

The Problem

 Monte Carlo (MC): slowest part of many physics pipelines

Context

 Current Approximations: Theory based

Problem statement

 Can neural networks be used for data* driven approximations ?

• Scales badly for high energies

• Forward physics is important

^{*} data refers to output from simulations

The Challenges

Performance

• Faster than Monte Carlo Simulations

Fidelity

• Sensible physics approximations

Physics

 Different challenges based on context

• Better scaling than traditional approximations

• Shouldn't affect existing pipelines.

 Eg, Cosmic ray showers are larger

Neural Networks

- A fully connected network is a collection of matrices with a nonlinear function
- N layered network has N-1 matrices.
- Use an optimization algorithm

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Generative Adversarial Neural Networks

- Various types of GANs
- Based on loss functions and architectures

Generative Adversarial Neural Networks

- Various types of GANs
- Based on loss functions and architectures

MLEGs Data Source		Detector Effect	Reaction/Experiment	ML Model regular GAN	
[Hashemi et al., 2019]	[Hashemi et al., 2019] Pythia8 [Otten et al., 2019] MadGraph5 aMC@NLO		$Z \rightarrow \mu^+ \mu^-$		
[Otten et al., 2019]			PHES3 $e^+e^- \rightarrow Z \rightarrow l^+l^-, pp \rightarrow t\bar{t}$		
[Butter et al., 2019]	MadGraph5 aMC@NLO		$pp \rightarrow t\bar{t} \rightarrow (bq\bar{q}')(b\bar{q}q')$	MMD-GAN	
[Di Sipio et al., 2019]	ipio et al., 2019] MadGraph5, Pythia8		$2 \rightarrow 2$ parton scattering	GAN+CNN	
[Ahdida et al., 2019]	Pythia8 + GEANT4		Search for Hidden Parti- cles (SHiP) experiment	regular GAN	
[Alanazi <i>et al.</i> , 2020b] [Velasco <i>et al.</i> , 2020]	Pythia8		electron-proton scatter- ing	MMD- WGAN-GP, cGAN	
[Martnez et al., 2020]	Pythia8	DELPHES particle-flow	proton collision	GAN, cGAN	
[Gao et al., 2020]	Sherpa		$pp \rightarrow W/Z + n$ jets	NF	
[Howard et al., 2021]	MadGraph5 + Pythia8	DELPHES	$Z \rightarrow e^+e^-$	SWAE	
[Choi and Lim, 2021]	MadGraph5 + Pythia8	DELPHES	$pp \rightarrow bb\gamma\gamma$	WGAN-GP	

Autoencoders

- Encoder: Compresses data
- **Decoder**: Extracts data
- Latent Space: Compressed data

Autoencoders

Variational Autoencoders

Information Distillation GAN

ID - GAN

- Mix auto-encoders and GANs
- **Distill the necessary** information
- Encode first and then use it with noise to create new data
- Generator does the creation

Figure 6.1.: It consists an encoder (q_{ϕ}) , a decoder (p_{θ}) , a generator (G_{ω}) and a discriminator C_{ψ} . The training of the model is divided into the training of the VAE part and training of the GAN part. The noise vector consists of two different variables s and c.

Bounded-Information Bottleneck Autoencoder

BIB-AE

- Mix auto-encoders and GANs
- Distill the necessary information
- Encode first and then use it with noise to create new data
- Additional critics for physics
- **Decoder** does the creation

Figure 3. Schematic illustration of our BIBAE setup including the Post Processor Network in the final step.

Information GAN

BIB-AE

- Mix auto-encoders and GANs
- Distill the necessary information
- Encode first and then use it with noise to create new data
- Additional critics for physics
- **Decoder** does the creation

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	$\times 1$
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	$\times 56 \times 8$
GPU	WGAN BIB-AE	$\begin{array}{c} 0.264 \pm 0.002 \\ 2.051 \pm 0.005 \end{array}$	$\begin{array}{c} \times 10167 \\ \times 1309 \end{array}$

nhi

Evi

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Point Clouds

- Be independent of grid
- Use unordered list of particles in momentum space
- Helps the **sparsity** of the image
- **Directly generate** the coordinates of N points

GANs on Point Clouds

A swap between point clouds doesn't change the information

GAN architectures were developed which account for this swap.

- EPiC-GAN: Equivariant Point Cloud GANs
- MP-GAN: Message passing GANs

let class	Model	W ₁ ^M	W ₁ ^P	W1EFP	FDND
Jet class	Woder	$(x10^{-3})$	$(x10^{-3})$	$(x10^{-5})$	ITIND
	Truth	0.3 ± 0.1	0.3 ± 0.1	0.3 ± 0.3	0.07 ± 0.01
Gluon	MP-GAN	0.5 ± 0.1	1.3 ± 0.1	0.6 ± 0.3	$\textbf{0.13} \pm \textbf{0.02}$
	EPiC-GAN	0.3 ± 0.1	1.6 ± 0.2	0.4 ± 0.2	1.01 ± 0.07
Linht	Truth	0.3 ± 0.1	0.3 ± 0.1	0.3 ± 0.3	0.02 ± 0.01
Light	MP-GAN	0.5 ± 0.1	4.9 ± 0.3	0.7 ± 0.4	$\textbf{0.36} \pm \textbf{0.02}$
quark	EPiC-GAN	0.5 ± 0.1	4.0 ± 0.4	0.8 ± 0.4	0.43 ± 0.03
	Truth	0.2 ± 0.1	0.3 ± 0.1	0.6 ± 0.5	0.02 ± 0.01
Тор	MP-GAN	0.5 ± 0.1	2.4 ± 0.2	1.0 ± 0.7	0.35 ± 0.04
	EPiC-GAN	0.5 ± 0.1	2.1 ± 0.1	1.7 ± 0.3	$\textbf{0.31} \pm \textbf{0.03}$

Table 2: Evaluation scores for the JetNet30 dataset. The truth values are a comparison between the test and training set, which reflect the size of statistical fluctuations. The MP-GAN scores were calculated with the trained models from Ref. [24] using the same statistics as the EPiC-GAN. Lower is better for all scores.

Flow Based Models

Img source:Wikipedia

Flow Based Models

Simulator	Hardware	Batch size	10 - 100 GeV [ms]	Speedup
Geant4 (30 × 30 × 30)	CPU	/	4081.53 ±169.92	/
L2LFLows	CPU	1	19617.24 ±894.08	×0.2
$(30 \times 10 \times 10)$		10	3130.25 ±104.74	×1.3
1000-10-10-0-10-0-10-0-0-0-0-0-0-0-0-0-		100	1395.52 ± 26.55	×2.9
		1000	1338.13 ± 24.03	×3.1

Img source: L2LFlows, arXiv:2302.11594v2

Diffusion Models

Diffusion Models

Diffuse	Latent Space	pace ——— Denoise ———		enoise	Loss
Î					Î
Data					Data
Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up
CPU	Geant4			3914.80 ± 74.09	×1
	CALOCLOUDS	100	1	3146.71 ± 31.66	×1.2
	CALOCLOUDS II	25	1	651.68 ± 4.21	×6.0
	CALOCLOUDS II (CM)	1	1	84.35 ± 0.22	×46
GPU	CALOCLOUDS	100	64	24.91 ± 0.72	×157
	CALOCLOUDS II	25	64	6.12 ± 0.13	×640
	a a man		64	2 00 . 0 12	

Overview

- Motivation
- Challenges
- Neural Networks
- Generative Neural Networks
- Point Cloud Models
- Our RNN based hybrid model
- Neural networks for radio pulses
- Conclusions

Approximate a single step in shower generation using a neural network

Takes distributions at height X and gives distributions at height X + Δ X

We get around 5% error.

Model

n(X)

- Use the model **iteratively** without using a hidden state
- The lack of the hidden state makes the network memoryless
- Emulates the nature of simple MC process
- Trained in sequences of **10 steps**

- Generated the entire shower using our sequential network
- Iteratively generate shower from initial conditions
- Maximum error is around 10%

Radio Simulations

- EM part of CR showers produces radio pulses
- Radio pulses of CR showers don't have MC fluctuations
- Can be approached with more traditional techniques

Conclusions

- Neural networks for shower simulations: exciting new field
- Advancements in novel architectures for **physics use cases**.
- For CR Physics, using a **memory less recurrent neural network** shows promise
- Network is **not linear,** doesn't capture fluctuations when used in a hybrid manner
- Use neural network for radio pulses.

Outlook

- Hardcode the linearity into the network
- Stay robust for early fluctuations
- Do the same in 3D.
- Get the energy footprint correct for radio pulses.

Thank You

Figure 1: The collider physics coordinate system defining (p_T, η, ϕ) (left). The three jet classes in our dataset (right). Gluon (g) and light quark (q) jets have simple topologies, with q jets generally containing fewer particles. Top quark (t) jets have a complex three-pronged structure. Shown also are the relative angular coordinates η^{rel} and ϕ^{rel} , measured from the jet axis.

Hardware	Simulato	r	NFE	Batch Size	Time /	Shower [ms] Speed	-up	
CPU	Geant4				3914.	.80 ± 74.09		×l	
	CALOCLO	OUDS	100	1	3146.	.71 ± 31.66	×	1.2	
	CALOCLO	ouds II	25	1	651.	$.68 \pm 4.21$	×	6.0	
	CALOCLO	ouds II (CN	M) 1	1	84.	35 ± 0.22	>	<46	
GPU	CALOCLO	DUDS	100	64	24.9	91 ± 0.72	×	157	
	CALOCLO	DUDS II	25	64	6.1	2 ± 0.13	×	540	
	CALOCLO	duds <mark>II (C</mark> M	M) 1	64	2.0	9 ± 0.13	×18	373	
Simulator		$W_1^{N_{\text{hits}}}$ (×10 ⁻³)	$\frac{W_1^{E_{\rm vis}/E_{\rm inc}}}{(\times 10^{-3})}$	$W_1^{E_{\text{cell}}}$ (×10 ⁻³)	$W_1^{E_{\text{long}}}$ (×10 ⁻³)	$W_1^{E_{\text{radial}}}$ (×10 ⁻³)	$\frac{W_1^{m_{1,X}}}{(\times 10^{-3})}$	$W_1^{m_{1,Y}}$ (×10 ⁻³)	$W_1^{m_{1,Z}}$ (×10 ⁻³)
Geant4		0.7 ± 0.2	0.8 ± 0.2	0.9 ± 0.4	0.7 ± 0.8	0.7 ± 0.1	0.9 ± 0.1	1.1 ± 0.3	0.9 ± 0.3
CALOCLOU	DS	2.5 ± 0.3	11.4 ± 0.4	15.9 ± 0.7	2.0 ± 1.3	38.8 ± 1.4	4.0 ± 0.4	8.7 ± 0.3	1.4 ± 0.5
CALOCLOU	ds II	3.6 ± 0.5	26.4 ± 0.4	15.3 ± 0.6	3.7 ± 1.6	11.6 ± 1.5	$\textbf{2.4} \pm \textbf{0.4}$	$\textbf{7.6} \pm \textbf{0.2}$	3.9 ± 0.4
CALOCLOU	DS II (CM)	6.1 ± 0.7	9.8 ± 0.5	16.0 ± 0.7	2.0 ± 1.4	8.3 ± 1.9	3.0 ± 0.4	9.5 ± 0.6	1.2 ± 0.5

