

Investigation of Nuclear Fragmentation and Neutral Pion Production with NA61/SHINE

High-Energy Universe Group Seminar

Johannes Bennemann | 26 October 2023

www.kit.edu

Outline

1. Nuclear Fragmentation

- Motivation
- NA61/SHINE
- Cosmic ray propagation
- Concept of measurement
- Target calculations
- Summary

2. Neutral Pion Production

- Air showers
- Idea of measurement
- Particle identification
- Invariant mass cut
- Pair production cross section
- Corrections
- Results
- Summary

Part I: Nuclear Fragmentation

Cosmic rays

- charged particles
- wide energy range
- mostly protons (90%)
- nuclei up to iron

AMS

V. Bindi "The alpha magnetic spectrometer AMS-02: Soon in space" Nucl. Instrum. Meth. A

- Alpha Magnetic Spectrometer
- Iocated at the ISS
- tracking system
- Cherenkov detector
- transition radiation detector

Abundance of light elements

S. G. Mashnik. "On solar system and cosmic rays nucleosynthesis and spallation processes"

- composition of cosmic rays
- not compatible with stellar nucleosynthesis
- excess of lithium, beryllium and boron

Karlsruhe Institute of Technology

Cosmic ray propagation

Diffusion-loss equation

$$\frac{\partial N_i}{\partial t} = D \nabla^2 N_i + \frac{\partial}{\partial E} (b(E) N_i) + Q_i - \frac{N_i}{\tau_i} + \sum_{i>i} \frac{P_{ji}}{\tau_j} N_j$$

- describes the propagation of cosmic rays
- includes spallation processes
- fragmentation cross sections known with poor precision $\mathcal{O}(20\%)$
 - \implies measurements required

Karlsruhe Institute of Technology

NA61/SHINE

Photo taken by Neeraj Amin

- SPS Heavy Ion and Neutrino Experiment
- Iocated at CERN North Area
- hadron spectrometer
- multiple targets present
- various hadronic beams available

SPS

- Super Proton Synchrotron
- 6.8 km circumference
- provides protons up to 400 GeV
- provides lead ions up to 160 GeV per nucleon
- beryllium target at H2 beamline
- rigidity selection

N. Abgrall et al. "NA61/SHINE facility at the CERN SPS: beams and detector system". JINST 9.06 (), P06005–P06005.

Detector layout

Reconstruction

Karlsruhe Institute of Technology

Cosmic ray propagation

Cassiopeia A; NASA/CXC/SAO

Cosmic ray propagation

Cassiopeia A; NASA/CXC/SAO

6

NGC 6357; Very Large Telescope/ESO

Cosmic ray propagation

Cassiopeia A; NASA/CXC/SAO

NGC 6357; Very Large Telescope/ESO

AMS; AMS-02

Karlsruhe Institute of Technology

Cosmic ray propagation

Cassiopeia A; NASA/CXC/SAO

SPS; Julien Ordan/CERN

NGC 6357; Very Large Telescope/ESO

AMS; AMS-02

Karlsruhe Institute of Technology

Cosmic ray propagation

Cassiopeia A; NASA/CXC/SAO

SPS; Julien Ordan/CERN

NGC 6357; Very Large Telescope/ESO

Target holder; Magdalena Kuich

AMS; AMS-02

Cosmic ray propagation

Cassiopeia A; NASA/CXC/SAO

SPS; Julien Ordan/CERN

NGC 6357; Very Large Telescope/ESO

Target holder; Magdalena Kuich

AMS; AMS-02

NA61; Johannes Bennemann

Concept of measurement

Before target:

- known rigidity
- measure charge (scintillator)
 - \implies momentum of nucleus
- $\hfill \ensuremath{\,^\circ}$ measure time of flight \rightarrow velocity
 - \implies mass of nucleus $m = \frac{p}{\gamma\beta}$

Concept of measurement

Before target:

- known rigidity
- measure charge (scintillator)
 - \implies momentum of nucleus
- $\hfill measure time of flight \rightarrow$ velocity
 - \implies mass of nucleus $m = \frac{p}{\gamma\beta}$

After target:

- known momentum per nucleon
- measure momentum (deflection)
 - \implies number of nucleons
- measure charge $\left(\frac{dE}{dx}\right)$

Target

• interaction length $\lambda_{^{12}\mathrm{C}}$

$$N_{1^2C}(x) = N_{1^2C}(0) \exp\left(-\frac{x}{\lambda_{1^2C}}\right)$$

- partial int. length $\lambda_{^{12}C \rightarrow ^{10}B}$
- How to calculate $N_{10B}(x)$?

Destruction and feed down

Additional difficulties:

- ¹⁰B destroyed within the target (destruction)
- ¹⁰B from fragmentation of other nuclei (feed down)
- old solution: use thin target
 - \implies minimal destruction and feed down
 - \implies low statistics!
- new solution: calculate destruction and feed down
 - \implies thick target possible \rightarrow high statistics
 - \implies requires auxiliary measurements

	¹² C	¹¹ C	¹¹ B	¹⁰ B	1000
$\frac{d}{dx}N_{12}$ C	$^{12}C \rightarrow X$				800 - ¹¹ C
$\frac{d}{dx}N_{11}$ C	$^{12}C \rightarrow ^{11}C$	$^{11}C \rightarrow \!\! X$			600
$\frac{d}{dx}N_{11}$ B	$^{12}C ightarrow ^{11}B$	-	$^{11}B ightarrow X$		Š 400 -
$\frac{d}{dx}N_{10}$ B					200 -
	$rac{d}{dx}N_{^{11}\mathrm{B}}=$	$\frac{1}{\lambda_{^{12}C} \rightarrow ^{^{11}B}} N_{^{12}C}$	$h=rac{1}{\lambda_{11B}}N_{11B}$		0

	¹² C	¹¹ C	¹¹ B	¹⁰ B	1000
$\frac{d}{dx}N_{^{12}C}$	$^{12}C \rightarrow X$				800 - ····C
$\frac{d}{dx}N_{^{11}C}$	$^{12}C \rightarrow ^{11}C$	${}^{11}C \rightarrow \!\! X$			600 -
$\frac{d}{dx}N_{^{11}B}$	$^{12}C \rightarrow ^{11}B$	-	$^{11}B \rightarrow \! X$		³ 400 -
$\frac{d}{dx}N_{10B}$	$^{12}C \rightarrow {}^{10}B$				200 -
$\frac{d}{dx}N_{10B} =$	$=\frac{1}{\lambda_{12}C\to^{10}B}N_{12}C$;			0 - 2 4 6 8 10 x [cm]

Matrix notation

Write interactions as a matrix:

$$M_{ij} = \begin{cases} \frac{1}{\lambda_{j \to i}} & \text{if } j \text{ fragments to } i \\ -\frac{1}{\lambda_i} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Write particle numbers as a vector:

$$\vec{N}(x) = (..., N_{^{12}C}(x), ..., N_{^{10}B}(x), ...)^T$$

Write differential equation as:

$$\frac{d}{dx}\vec{N}(x)=M\vec{N}(x)$$

Solution

Solution

Solution of the differential equation describing interactions inside the target:

 $\vec{N}(x) = \exp(Mx)\,\vec{N}(0)$

- simple formula
- no approximation
- complete description of the target
- can be evaluated by computer algebra systems

Summary

- secondary cosmic rays produced by fragmentation
- Iab experiment to study fragmentation with NA61
- developed an analytical description of the target
- proposed thick target measurement
- optimization of target thickness
- elimination of target uncertainties (systematics)

Cassiopeia A; NASA/CXC/SAO, modified

Part II: Neutral Pion Production

Extensive air showers

- highly energetic particles $E \gtrsim 10^{18} \, {\rm eV}$
- interactions in the atmosphere trigger extensive air showers
- detected by ground-based detectors (e.g. the Pierre Auger Observatory)
- simulated with hadronic interaction models
- observation: more muons than expected e.g. Astrophys. Space Sci. 367 (2022) 3, 27 arXiv:2105.06148

Artist's impression of an air shower over a particle detector at the Pierre Auger Observatory, seen against a starry sky. By A. Chantelauze, S. Staffi, L. Bret

Air shower development

- nuclear reactions produce pions
- π^+ , π^- and π^0 in 1:1:1 ratio
- $\frac{2}{3}$ of energy stays in hadronic shower
- ¹/₃ of energy goes to electromagnetic shower
- hadronic shower energy available for μ production: $E_{had} = \left(\frac{2}{3}\right)^n E_0$

Idea of measurement

- problem: detector has no electromagnetic calorimeter
- solution: reconstruct electron-positron pairs
- $\hfill \ensuremath{\,\,}$ momentum of γ is almost conserved in pair production
- use pair momentum as photon momentum
- calculate invariant mass of pair

Available data

Photo taken by Johannes Bennemann

- 2009 pion run
- π^- beam
- 158 GeV/c beam momentum
- 2 cm graphite target
- 5.5·10⁶ events
- analyzed for charged hadrons in Phys. Rev. D 107, 062004 (2023)

Particle tracks

Particle tagging

- tracks yield energy loss and momentum
- $\frac{dE}{dx}$ follows Bethe formula
- particles can be identified

D2

pi+

Particle tagging

2.5 к+ p+qр d+ 2.0 dE/dx [m.i.p.] 1.5 - K+ pi+ 1.0 - unknown e+ 0.5 10-1 100 101 10² p [GeV/c]

- tracks yield energy loss and momentum
- $\frac{dE}{dx}$ follows Bethe formula
- particles can be identified
- select regions with e⁺/e⁻

Invariant mass

- match all e^+ and e^- candidates
- calculate invariant mass of an e^+e^- pair:

$$m^2 = \left(E^+ + E^-\right)^2 - \left(\vec{p}^+ + \vec{p}^-\right)^2$$

simulation shows a clear difference

Invariant mass cut

- momentum resolution decreases with \vec{p}
- momentum dependent cut needed:

$$m^2 < m_0^2 p^{lpha}$$

- high efficiency up to 100 GeV
- reasonable background

Photon spectrum?

- check with simulation
- pairs pass the cut
- background gets rejected

Photon spectrum?

- check with simulation
- pairs pass the cut
- background gets rejected
- unexpected shape
- dropoff below 10 GeV

Pair production cross section

Formula 3D-1003

[The Bethe-Heitler Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

$$\frac{d\sigma}{dE_+} = \frac{\alpha Z^2 r_0^2}{k^3} \left\{ (E_+^2 + E_-^2) \left[\Phi_1(\gamma) - \frac{4}{3} \ln Z \right] + \frac{2}{3} E_+ E_- \left[\Phi_2(\gamma) - \frac{4}{3} \ln Z \right] \right\},$$

where the screening functions $\Phi_1(\gamma)$ and $\Phi_2(\gamma)$ are defined as

$$\begin{split} \Phi_{1}(\gamma) &= 4 \left\{ \int_{\delta}^{1} (q-\delta)^{2} [1-F(q)]^{2} \frac{dq}{q^{\delta}} \right\} + 4 + \frac{4}{3} \ln Z, \\ \Phi_{2}(\gamma) &= 4 \int_{\delta}^{1} \left[q^{3} - 6\delta^{2}q \ln \left(\frac{q}{\delta} \right) + 3\delta^{2}q - 4\delta^{3} \right] [1-F(q)]^{2} \frac{dq}{q^{4}} + \frac{10}{3} + \frac{4}{3} \ln Z, \end{split}$$

with $\gamma = 100k/(E_+E_Z^{1/3})$ and $\delta = k/(2E_+E_-)$. F(q) = atomic form factor which is defined in Sec. II and which is evaluated for different screening approximations by Motz, Olsen, and Koch (1964, Formula 1A-102).

Motz et al, Rev. Mod. Phys. 41 (1969), pp. 581-639.

Pair production cross section

- distribution of energy between e⁺ and e⁻
- uneven distribution preferred for high energies
- one high and one low energy pair particle

Simulated cross section

- predicted effect visible in simulation
- NA61's sensitivity drops off below 200 MeV
- photon dropoff expected at about 10 GeV
- explains shape of pair spectrum
- needs to be corrected

Corrections

- efficiency and acceptance
- trigger bias
- invariant mass cut
- introduces model-dependent systematics

Results

- multiplicity of e^+e^- pairs
- compared with hadronic interaction models
- 30% overprediction!
- photon spectrum?

Neutral Pion Production 35/36 26.10.2023

Johannes Bennemann

0.7%

Comparability

- additional decay channels
- $N_{+}^{\pi} = 0.078$ pairs per pion
- additional pairs from etas
- π^0 and η numbers from model $\rightarrow e^+e^-$ pairs
- all factors are known

 $e^+e^-\gamma$

η

η

Summary

- new method for neutral pion measurement
- successful e⁺e⁻ spectrum measurement with NA61/SHINE
- corrections for detector effects and efficiency
- less e⁺e⁻ pairs than expected
- results useful for model tuning
- step toward the solution of the muon puzzle

