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Are NN-based triggers feasible SD/WCD triggers?
Test feasibility with (for now) simulated proton showers

Goals

Requirements

Limited computational power in FPGAs/UUB electronics
.

Limited choice in candidate network architectures!
Limited number of trainable parameters!
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Around ~1600 stations
Triangular 1500 m grid spacing
Quasi 100% uptime

SD Array / trigger hierarchy / WCD time traces

1 RD 2 SSD

3 Comms Antenna 4 Electronics Box

5 Solar Panel 6 WCD
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Around ~1600 stations
Triangular 1500 m grid spacing
Quasi 100% uptime

SD Array / trigger hierarchy / WCD time traces

1 RD 2 SSD

3 Comms Antenna 4 Electronics Box

5 Solar Panel 6 WCD

Too comput. expensive to read 
all measured data at all times!

        Implement trigger hierarchy
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T1 – level         T2 – level       T3 – level 

SD Array / trigger hierarchy / WCD time traces

Rate Physics

Raised at            …station-level         … CDAS level
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SD Array / trigger hierarchy / WCD time traces

Rate Physics

Raised at            …station-level         … CDAS level

T1 – level         T2 – level       T3 – level 

Limited computational power in FPGAs/UUB electronics
Limited choice in candidate network architectures/size
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SD Array / trigger hierarchy / WCD time traces

𝛍−

Threshold trigger (Th)
PMTs register signal                         (                         for T1)
Threshold must be exceeded simultaneously for all PMTs

3.2VEM Peak 1.75VEM Peak
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SD Array / trigger hierarchy / WCD time traces
NN triggers

Feed labelled subset of trace to neural network architecture
Teach it to distinguish between Signal / Background

𝛍−
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SD Array / trigger hierarchy / WCD time traces
NN triggers

Feed labelled subset of trace to neural network architecture
Teach it to distinguish between Signal / Background

Signal component

QGSJET-II.04 protons with 

Only consider detector response that comes from EAS

Zenith uniform in                 with  

Background component

WCD component of UUBRandom traces (Mar. 2022)

Calibrate with           that gives correct T1 and T2 rates

0∘≤θ≤65∘sin2 (θ )

16.0 < log10 (E / eV ) ≤ 19.5

IVEM
est .

𝛍−
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SD Array / trigger hierarchy / WCD time traces
NN triggers

Feed labelled subset of trace to neural network architecture
Teach it to distinguish between Signal / Background

Signal component

QGSJET-II.04 protons with 

Only consider detector response that comes from EAS
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Background component

WCD component of UUBRandom traces (Mar. 2022)

Calibrate with           that gives correct T1 and T2 rates
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16.0 < log10 (E / eV ) ≤ 19.5
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est .
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Network architectures

120 bins x 3 PMTs = 360 input values        1 binary output (1 = Shower, 0 = Background)

Convolutional neural networks (CNNs) Recurrent neural networks (LSTMs)
Good at recognizing objects in images

Treat input data as 3x120 pixel image

Output independent of signal position in window

1-2 convolutional layers with dense final layer

84 to 890 free trainable parameters

Good at recognizing patterns sequential data

Basic LSTM receives 1-dimensional input

Implement 1 distinct LSTM for each PMT

12 to 44 free trainable parameters

From https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Estimating performance
Have (after training neural network) trigger efficiency given signal:  

Want trigger efficiency independent of EAS particles in tank:

P(T2 ∣ Signal)

P(T2)
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Estimating performance
Have (after training neural network) trigger efficiency given signal:  

Want trigger efficiency independent of EAS particles in tank:

Scale with lateral particle probability (LPP): 

P(T2 ∣ Signal)

P(T2)

P(Signal)

LPP=min(1, )
Lateral distribution function

* not really, but helps with intuition

*
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Estimating performance
Have (after training neural network) trigger efficiency given signal:  

Want trigger efficiency independent of EAS particles in tank:

Scale with lateral particle probability (LPP): 

P(T2 ∣ Signal)

P(T2)

P(Signal)

LPP=min(1, )
P(T2) = P(T2 ∣ Signal) × P(Signal)
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Estimating performance
Have (after training neural network) trigger efficiency given signal:  

Want trigger efficiency independent of EAS particles in tank:

Scale with lateral particle probability (LPP): 

P(T2 ∣ Signal)

P(T2)

P(Signal)

LPP=min(1, )
P(T2) = P(T2 ∣ Signal) × P(Signal)

Fair to neglect 

shower-to-shower 

fluctuations?!
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Lateral trigger probabilities (LTPs) agree across methods  

Enables use of powerful ML/NN libraries 

Intensive bootstrapping (via Offline) of LTP can be skipped 
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Comparing trigger efficiency

Scaled with LDF & Flux!
0.0 = detect no showers (at 
T2-level) that hit the array
1.0 = detect all showers
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Comparing trigger efficiency

CDAS cannot handle trigger 
rate      per station 
in SD-1500 main array !!

f Rand ≥ 20Hz
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Comparing trigger efficiency
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Comparing trigger efficiency
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Comparing trigger efficiency

𝛍−

We must count this as background!



Paul Filip – Machine learning triggers: a feasibility study IAP, KIT Faculty for Physics24 01/25/2024

Comparing trigger efficiency

𝛍−

We must count this as background!



Paul Filip – Machine learning triggers: a feasibility study IAP, KIT Faculty for Physics25 01/25/2024

Comparing trigger efficiency

Ensembles of networks with 
different labeling strategies

0.0 VEMCh

0.02 VEMCh0.05 VEMCh

0.1 VEMCh
0.2 VEMCh

0.5 VEMCh

0.8 VEMCh
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Sanity check – Charge cut

0.0 VEMCh

0.02 VEMCh 0.05 VEMCh 0.1 VEMCh 0.2 VEMCh 0.5 VEMCh 0.8 VEMCh
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Comparing trigger efficiency

Ensembles of networks with 
different labeling strategies

0.0 VEMCh

0.02 VEMCh0.05 VEMCh
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0.2 VEMCh

0.5 VEMCh
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Comparing trigger efficiency

LSTM architecture outperforms ToT!
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Most drastic gains at high inclinations
Possibly higher gains at   

Resulting LSTM T3 efficiencies at

θ ≥ 65∘

tS = 0.5 VEM
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Test data-driven, machine learning concepts
Analyse capability of shallow NNs (few parameters!) as SD T2-triggers
Consider convolutional (CNN) and simple recurrent neural networks (LSTM)
Verify performance of NNs with measured background data 
Control trigger rate by implementing charge cut

Convolutional neural networks
Performance of simple CNN architectures on par with Th-Trigger
CNN architecture has worse performance than ToT-trigger
Filtered & downsampled data preferred over full bandwidth input

LSTM / recurrent neural networks
Results indicate performance on par with or better than ToT
Gains in event detection efficiency at high shower angles 

Summary
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Backup
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Th-T2
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ToT
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ToTd
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All triggers
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Residuals – LTP fitfunction
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Efficiency scaling – unscaled
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Efficiency scaling – scaled
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Random traces – Power spectrum
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Trace building
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Muon cut
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Kernel size
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CNN - Input size
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T3 efficiency calculation

Offline approach Bayesian folding
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LSTM permutations
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Network parameters
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