

Potential of neural network triggers for the Water-Cherenkov detector array of the Pierre Auger Observatory

IAP HEU seminar 2024/01/25

PIERRE AUGER OBSERVATORY

- Are NN-based triggers feasible SD/WCD triggers?
- Test feasibility with (for now) simulated proton showers

Requirements

- Limited computational power in FPGAs/UUB electronics
- Limited choice in candidate network architectures!
- Limited number of trainable parameters!

Around ~1600 stations
Triangular 1500 m grid spacing

Quasi 100% uptime

1 RD	2 SSD
3 Comms Antenna	4 Electronics Box
5 Solar Panel	6 WCD

- Around ~1600 stations
- Triangular 1500 m grid spacing
- Quasi 100% uptime

Too comput. expensive to read all measured data at all times! Implement trigger hierarchy

1 RD	2 SSD
3 Comms Antenna	4 Electronics Box
5 Solar Panel	6 WCD

2 Hz

20 Hz

ToT-T2

13 bins

>0.2 I veak

1 bin

Limited computational power in FPGAs/UUB electronics Limited choice in candidate network architectures/size

2 Hz

ToT-T1

100 Hz

13 bins

> 0.2 I^{peak}

1 bin

> 1.75 I veak

Rate

Threshold trigger (Th)

- PMTs register signal $3.2 VEM_{Peak}$ (1.75 VEM_{Peak} for T1)
- Threshold must be exceeded simultaneously for all PMTs

NN triggers

- Feed labelled subset of trace to neural network architecture
- Teach it to distinguish between Signal / Background

NN triggers

- Feed labelled subset of trace to neural network architecture
- Teach it to distinguish between Signal / Background

NN triggers

- Feed labelled subset of trace to neural network architecture
- Teach it to distinguish between Signal / Background

IAP, KIT Faculty for Physics

Network architectures

120 bins x 3 PMTs = 360 input values => 1 binary output (1 = Shower, 0 = Background)

Convolutional neural networks (CNNs)

- Good at recognizing objects in images
- Treat input data as 3x120 pixel image
- Output independent of signal position in window
- 1-2 convolutional layers with dense final layer
- 84 to 890 free trainable parameters

Recurrent neural networks (LSTMs)

- Good at recognizing patterns sequential data
- Basic LSTM receives 1-dimensional input
- Implement 1 distinct LSTM for each PMT
- 12 to 44 free trainable parameters

- Have (after training neural network) trigger efficiency **given** signal: P(T2 | Signal)
- Want trigger efficiency independent of EAS particles in tank: P(T2)

- Have (after training neural network) trigger efficiency given signal: P(T2 | Signal)
- Want trigger efficiency independent of EAS particles in tank: P(T2)
- Scale with lateral particle probability (LPP): P(Signal)

not really, but helps with intuition

- Have (after training neural network) trigger efficiency given signal: P(T2 | Signal)
- Want trigger efficiency independent of EAS particles in tank: P(T2)
- Scale with lateral particle probability (LPP): P(Signal)

- Have (after training neural network) trigger efficiency given signal: P(T2 | Signal)
- Want trigger efficiency independent of EAS particles in tank: P(T2)
- Scale with lateral particle probability (LPP): P(Signal)

Resulting LSTM T3 efficiencies at $t_s = 0.5 \text{ VEM}$

Most drastic gains at high inclinations

• Possibly higher gains at $\theta \ge 65^{\circ}$

Summary

- Test data-driven, machine learning concepts
 - Analyse capability of shallow NNs (few parameters!) as SD T2-triggers
 - Consider convolutional (CNN) and simple recurrent neural networks (LSTM)
 - Verify performance of NNs with measured background data
 - Control trigger rate by implementing charge cut
- Convolutional neural networks
 - Performance of simple CNN architectures on par with Th-Trigger
 - CNN architecture has worse performance than ToT-trigger
 - Filtered & downsampled data preferred over full bandwidth input
- LSTM / recurrent neural networks
 - Results indicate performance on par with or better than ToT
 - Gains in event detection efficiency at high shower angles

Backup

www.kit.edu

IAP, KIT Faculty for Physics

IAP, KIT Faculty for Physics

Residuals – LTP fitfunction

IAP, KIT Faculty for Physics

Nadia : 1723

Random traces – Power spectrum

Trace building

Muon cut

Kernel size

T3 efficiency calculation

						-100	-						-100
16_16.5	0.0	0.0	0.0	0.0	0.0		16_16.5	0.0	0.0	0.0	0.0	0.0	
16.5_17	4.9	1.0	0.1	0.0	0.0	-80	16.5_17	5.0	1.5	0.3	0.0	0.0	-80
вс 17_17.5	25.7	10.7	2.7	1.1	0.2	60	/ % ge 17_17.5	26.3	11.6	3.0	1.0	0.1	60 ×
17.5_18		66.3	46.6	25.8	8.0		ficiency ergy ran 17.5_18	76.0	62.0	43.0	30.8	6.1	ficiency
18_18.5	98.1	97.0	93.6	79.7	48.7	40	13 ef Ene ^{18_18.5}	98.2	96.4	93.2	81.9	49.7	40 °E 13 ef
18.5_19	100.0	100.0	99.9	99.4	92.6	-20	18.5_19	100.0	100.0	100.0	99.7	93.6	-20
19_19.5	100.0	100.0	100.0	100.0	99.9		19_19.5	100.0	100.0	100.0	100.0	99.9	
	0_34	34_44	^{44_51} Zenith range	51_56	56_65	-0		0_34	34_44	^{44_51} Zenith range	51_56	56_65	0

Offline approach

Bayesian folding

ιī

LSTM permutations

Network parameters

Type Input size		Kernel size	$n_{\rm train}$	w/ dense extensior		
CNN	(3, 120)	(3,3)	140	834		
CNN	(3,120)	(3,10)	216	534		
CNN	(3,120)	(3,30)	444	714		
CNN	(3, 40)	(3,3)	84	210		
CNN	(3,60)	(3,3)	100	290		
CNN	(3,90)	(3,3)	120	390		
CNN	(3,240)	(3,3)	220	890		
LSTM	(3,120)	—	12	(single layer)		
LSTM	(3,120)	-	(three layers)	44		