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Motivation

• Nifty and resolve implement very fast forward models

• Sampling mock data from priors is fast

• The backpropagation, i.e. the inference is computationally costly

• Use Machine Learning

• Con: We have training phases

• Pro: after training the evaluation is cheap

• à Use forward model to produce pretrained networks
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Radio interferometry

• Motivation: Angular resolution Θ = !
"

• Interferometry with long baselines increases 
resolution

• No free lunch

• Low data coverages (sparse UV plane)

• Images need postprocessing

• Challenge in the upcoming years: High data 
rates
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Modeling the UV coverage

• Calculating UV coordinates for a given observation

• Pyvisgen (Kevin Schmidt, Felix Geyer @ TU Dortmund)

• RIME formalism to calculate visibilities

• Using the UV coverages of pyvisgen

• Nifty + Resolve to simulate a mock sky 
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Sky model

• Diffuse emissions = 
correlated field model

• Point sources = Inverse 
gamma operator

• Apply to random gaussian 
field
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Sky model

• Full UV coverage à Fourier 
transform

• Sparse UV coverage à
• Use UV pointings

• Create observation in resolve

• Apply radio-response to sky 
model 

• Fourier transformation
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Architectures

• WDSR (= Wide Activation for Efficient 
and Accurate Image Super-Resolution)

• Head: Convolution-layer

• Body: Combination of resblocks

• Resblock: B three convolutional layers, 
skip connection, weight normalization

• Tail: Convolution and Pixel shuffle
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Architectures

• UNet

• Encoder blocks: convolution 
blocks + Batch norms+ 
MaxPooling

• Decoder: convolution transpose 
blocks + Batch norms

22.11.23 David Smolinski 9



Challenges

• In the moment: Overfitting

• Trainings losses are good

• Validation loss is bad 

• à The model is not able to apply to new, unseen data

• Batch normalization?
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Next steps

• Get rid of overfitting

• Comparison of UNet, WDSR, radionets, resolve, CLEAN

• Generalize to different Nifty/ resolve models

• Use structure of Nifty to design models

• Pretrained models?

• Graph neural networks?
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Questions and Discussion
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