Bayesian Radio Interferometric Imaging

Jakob Roth, MPA Garching

November 24, 2023

Radio Interferometry

Radio Interferometry

Measurement Equation:

$$vis_{pqt} = \int rac{dldm}{n(l,m)} G_p(l,m,t)S(l,m)G_q^*(l,m,t)e^{-ik\cdot x} + n$$

- Sky brightness: S
- Antenna gain: G
- Visibilities: vis
- Noise: n

Radio Interferometry

Inverse Problem – Bayes' Theorem

Probabilistic solution: P(I, G|vis)

- Likelihood *P*(*vis*|*I*, *G*): Evaluate measurement equation
- Prior P(I, G|vis): Encode assumptions

Bayes' theorem
$$P(I, G|vis) = \frac{P(vis|I, G)P(I, G)}{P(vis)}$$

Resolve:

- Framework for bayesian imaging and calibration
- Open source: https://gitlab.mpcdf.mpg.de/ift/resolve

Bayesian Imaging and Calibration

Assumptions:

- *I*, *G* smooth functions
- Self adaptive degree of smoothness
- Positivity of sky brightness
- Two stage calibration:
 - $1. \ \ {\rm Direction} \ {\rm independent} \ {\rm calibration}$
 - 2. Include direction dependents

Cygnus A @ 2 GHz (VLA)

CLEAN Image from Arras et al.

Cygnus A @ 2 GHz (VLA)

RESOLVE Image from Roth et al.

Direction Independent Calibration and Imaging Forward Model

Direction Independent Calibration and Imaging Forward Model

Direction Dependen Calibration and Imaging Forward Model

¹Sebastiaan van der Tol, Bram Veenboer, and André R. Offringa. "Image Domain Gridding: a fast method for convolutional resampling of visibilities". In: *A&A* 616, A27 (Aug. 2018), A27.

Application to VLA Data

Test data set:

- VLA Data of Cygnus A at 2.05 Ghz
- All 4 VLA configurations
- in total ≈ 1 million data points

Direction and Time Dependent Calibration

11

Direction and Time Dependent Calibration - Pointing Erros

Comparison

Comparison on VLA 2.05 GHz Data of Cygnus A:

- Arras et al. 2021²:
 - Bayesian Imaging with resolve
 - Classically calibrated data
- Dabbech et al. 2021³:
 - Compressed sensing method
 - Joint calibration and imaging via non-convex optimization
 - Calibration includes direction dependents

²P. Arras et al. "Comparison of classical and Bayesian imaging in radio interferometry. Cygnus A with CLEAN and resolve". In: *A&A* 646, A84 (Feb. 2021), A84.

³A. Dabbech et al. "Cygnus A jointly calibrated and imaged via non-convex optimization from VLA data". In: *MNRAS* 506.4 (Oct. 2021), pp. 4855–4876.

Arras et al.

Comparison – Flux Contours

Comparison – Flux Contours

Contours $5\cdot 10^7$ - $2\cdot 10^{12}\,\text{Jy/sr}$

Philipp Arras et al.: Comparison of classical and Bayesian imaging in radio interferometry

 -10^{1}

 10^{0}

 10^{-1}

- 10⁻²

-

Summary

- RESOLVE: Radio interferometric imaging with NIFTy
- Joint calibration and imaging
- Direction dependent calibration
- Significant improvement compared to previous work
- Accurate calibration including DDE essential for
 - high resolution
 - high dynamic range
- Currently very high computational costs (compared to CLEAN)

- Sebastiaan van der Tol, Bram Veenboer, and André R. Offringa. "Image Domain Gridding: a fast method for convolutional resampling of visibilities". In: A&A 616, A27 (Aug. 2018), A27.
- [2] P. Arras et al. "Comparison of classical and Bayesian imaging in radio interferometry. Cygnus A with CLEAN and resolve". In: *A&A* 646, A84 (Feb. 2021), A84.
- [3] A. Dabbech et al. "Cygnus A jointly calibrated and imaged via non-convex optimization from VLA data". In: MNRAS 506.4 (Oct. 2021), pp. 4855–4876.