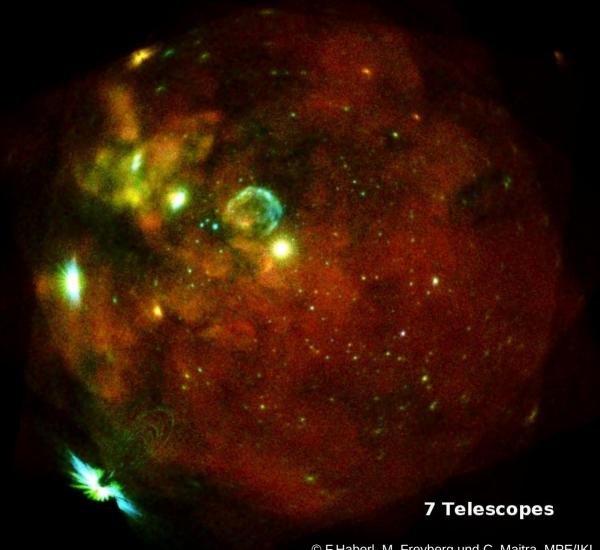
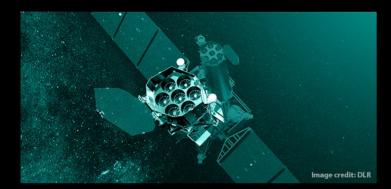
Spatially variant point spread function removal in X-ray observations

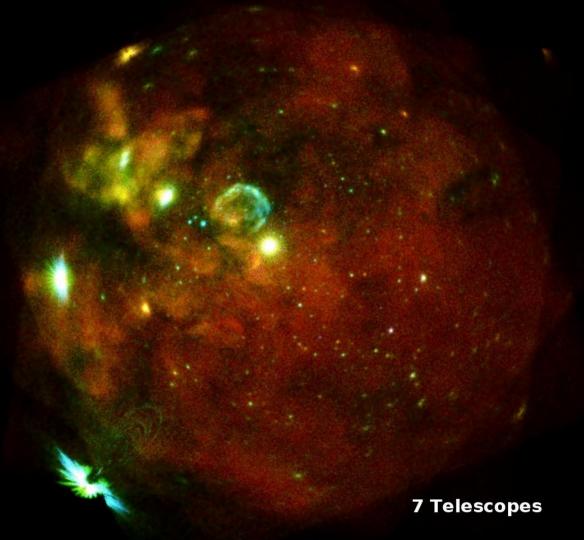
Vincent Eberle, Margret Westerkamp, Matteo Guardiani, Julia Stadler, Philipp Frank, Philipp Arras, Torsten Enßlin

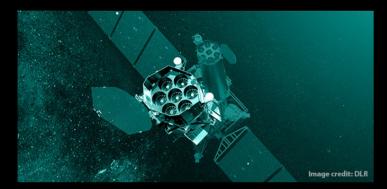
> 1st ErUM-IFT Collaboration Meeting Garching, Germany 24th November





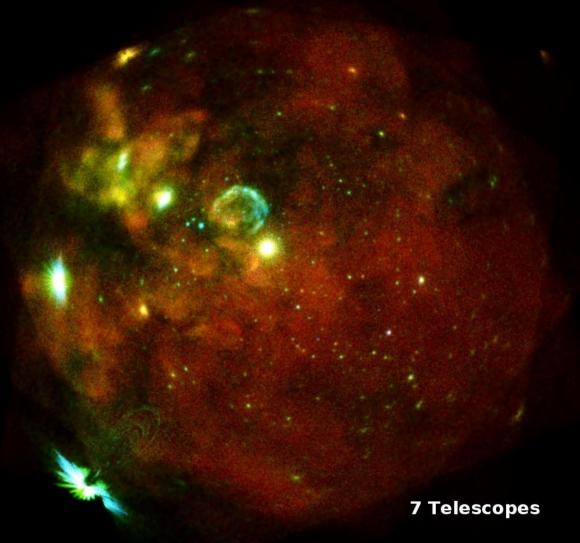
eROSITA – X-ray telescope

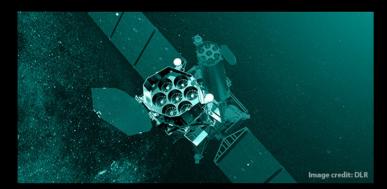




eROSITA – X-ray telescope

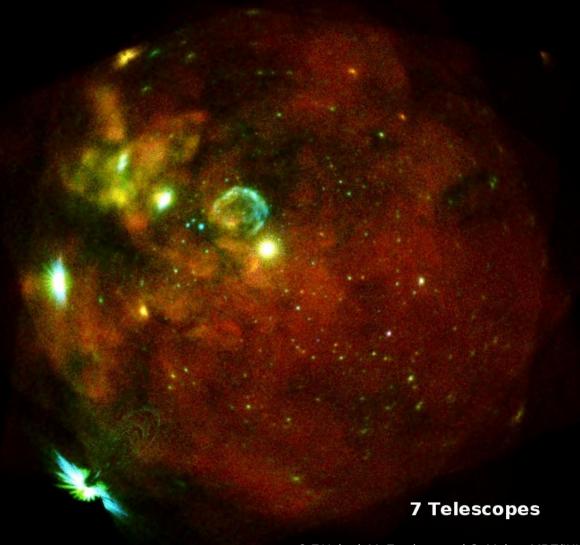
Effects of point spread functions (PSF) distort X-ray Observations

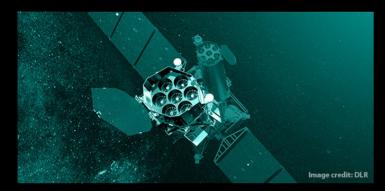




eROSITA – X-ray telescope

Effects of point spread functions (PSF) distort X-ray Observations

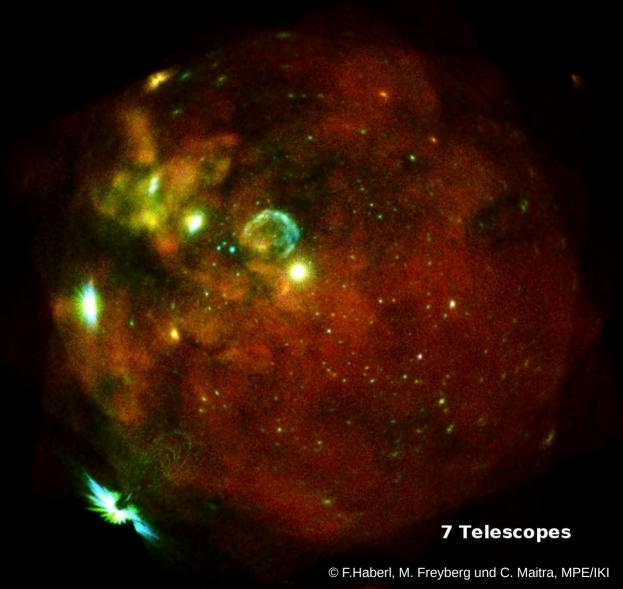




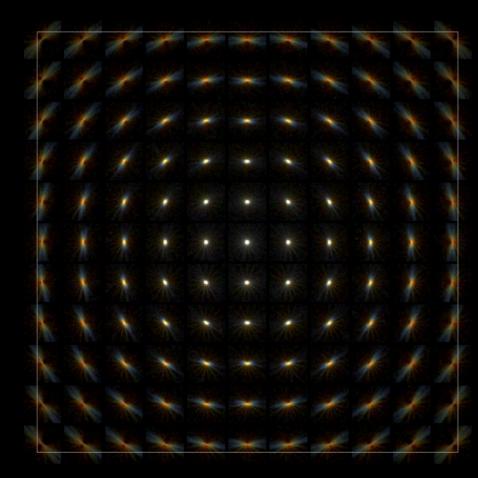
eROSITA – X-ray telescope

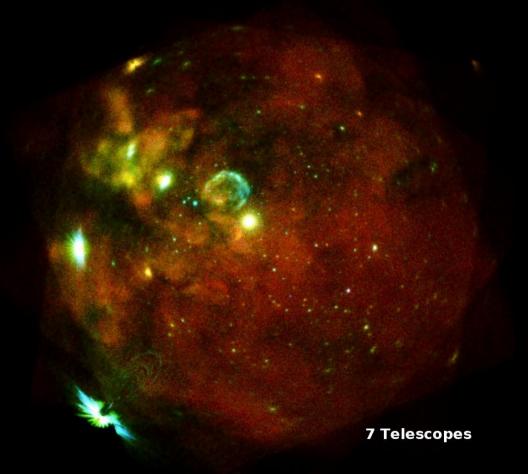
Effects of point spread functions (PSF) distort X-ray Observations

- Spatially invariant PSF
- Spatially **variant** PSF (off-axis-angle, azimuth and energy)

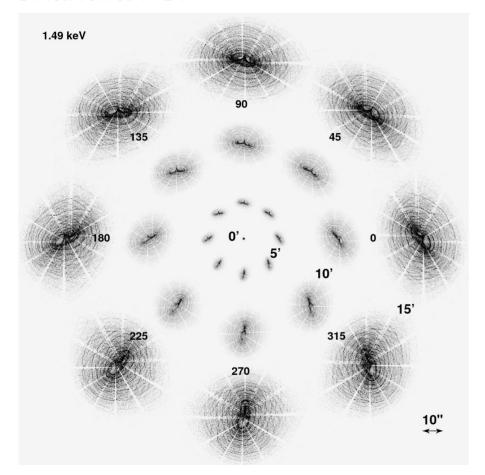


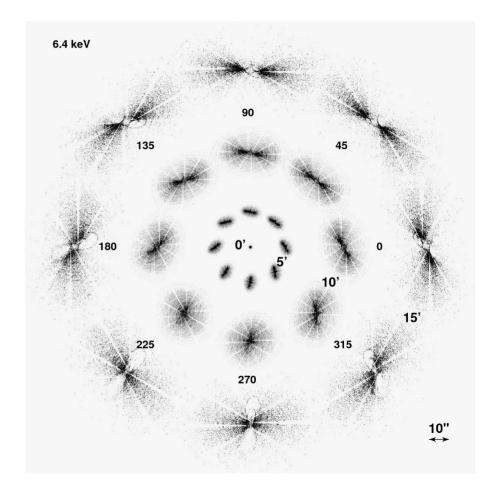
eROSITA PSF



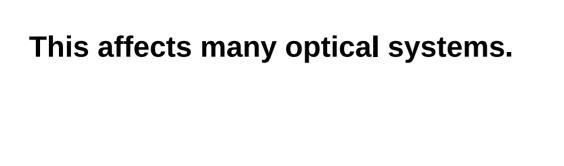


Chandra PSF





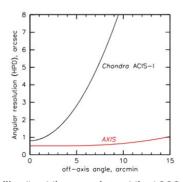
This affects many optical systems.



Will we have instruments without this effect in the future?

This affects many optical systems.

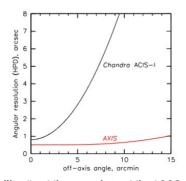
Will we have instruments without this effect in the future?



Mushotzky, Richard F., et al. "The advanced x-ray imaging satellite." arXiv preprint arXiv:1903.04083 (2019).

This affects many optical systems.

Will we have instruments without this effect in the future?



....we don't want to wait!

Mushotzky, Richard F., et al. "The advanced x-ray imaging satellite." arXiv preprint arXiv:1903.04083 (2019).

De-blurring noisy images

De-blurring noisy images

De-blurring noisy images

Information Field Theory

&

Generative Modeling

• Information theory for fields using **Bayes' Theorem** $\mathcal{P}(s|d) \propto \mathcal{P}(d|s)\mathcal{P}(s)$

• Information theory for fields using Bayes' Theorem $\mathcal{P}(s|d) \propto \mathcal{P}(d|s)\mathcal{P}(s)$

•
$$m = \langle s \rangle_{\mathcal{P}(s|d)}$$
 $\sigma = \sqrt{\langle (s-m)^2 \rangle_{\mathcal{P}(s|d)}}$ or posterior samples

- Information theory for fields using **Bayes' Theorem** $\mathcal{P}(s|d) \propto \mathcal{P}(d|s)\mathcal{P}(s)$
- $m = \langle s \rangle_{\mathcal{P}(s|d)}$ $\sigma = \sqrt{\langle (s-m)^2 \rangle_{\mathcal{P}(s|d)}}$ or posterior samples
- $\mathcal{P}(s)$: **domain knowledge** about the signal

- Information theory for fields using **Bayes' Theorem** $\mathcal{P}(s|d) \propto \mathcal{P}(d|s)\mathcal{P}(s)$
- $m = \langle s \rangle_{\mathcal{P}(s|d)}$ $\sigma = \sqrt{\langle (s-m)^2 \rangle_{\mathcal{P}(s|d)}}$ or posterior samples
- $\mathcal{P}(s)$: **domain knowledge** about the signal
- $\mathcal{P}(d|\lambda) = \prod_{i=1}^{N} \frac{(\lambda^i)^{d^i} e^{-\lambda^i}}{d^i!}$, $\lambda = \mathcal{R}s$: knowledge about the **instrument** and the noise

- Information theory for fields using **Bayes' Theorem** $\mathcal{P}(s|d) \propto \mathcal{P}(d|s)\mathcal{P}(s)$
- $m = \langle s \rangle_{\mathcal{P}(s|d)}$ $\sigma = \sqrt{\langle (s-m)^2 \rangle_{\mathcal{P}(s|d)}}$ or posterior samples
- $\mathcal{P}(s)$: **domain knowledge** about the signal
- $\mathcal{P}(d|\lambda) = \prod_{i=1}^N \frac{(\lambda^i)^{d^i} e^{-\lambda^i}}{d^i!}, \quad \lambda = \mathcal{R}s$: knowledge about the **instrument** and the noise

[Framework to build generative models for inference]

- Information theory for fields using Bayes' Theorem $\mathcal{P}(s|d) \propto \mathcal{P}(d|s)\mathcal{P}(s)$
- $m = \langle s \rangle_{\mathcal{P}(s|d)}$ $\sigma = \sqrt{\langle (s-m)^2 \rangle_{\mathcal{P}(s|d)}}$ or posterior samples
- $\mathcal{P}(s)$: **domain knowledge** about the signal
- $\mathcal{P}(d|\lambda) = \prod_{i=1}^N \frac{(\lambda^i)^{d^i} e^{-\lambda^i}}{d^i!}, \quad \lambda = \mathcal{R}s$: knowledge about the **instrument** and the noise

[Framework to build generative models for inference]

Geometric Variational Inference [P. Frank et al. 2021]

De-blurring noisy images

Information Field Theory

&

Generative Modeling

De-blurring noisy images

Information Field Theory

. . .

Generative Modeling

Spatially **in**variant PSF:

Spatially **in**variant PSF:

- Convolution with one PSF kernel
- O(N log N) Fast Fourier Transform

Spatially **in**variant PSF:

- Convolution with one PSF kernel
- O(N log N) Fast Fourier Transform

- Not a convolution.
- Naive: Full Matrix? [O(N2)]
 - → Huge memory consumption
 - → Slow execution

Spatially **in**variant PSF:

- Convolution with one PSF kernel
- O(N log N) Fast Fourier Transform

Strategies for spatially variant PSF deblurring:

- Not a convolution.
- Naive: Full Matrix? [O(N²)]
 - → Huge memory consumption
 - → Slow execution

Spatially **in**variant PSF:

- Convolution with one PSF kernel
- O(N log N) Fast Fourier Transform

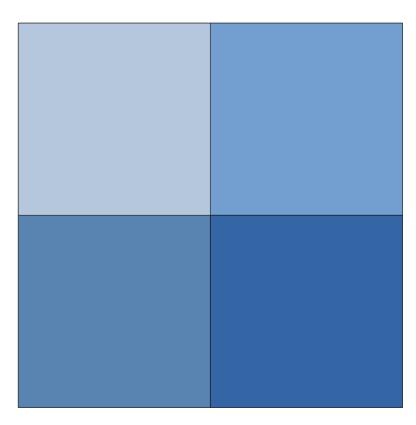
Strategies for spatially variant PSF de-blurring:

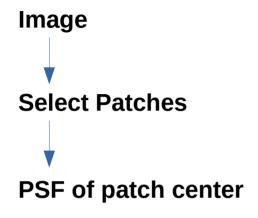
- Deconvolution with averaged PSF
- Remove off-axis data

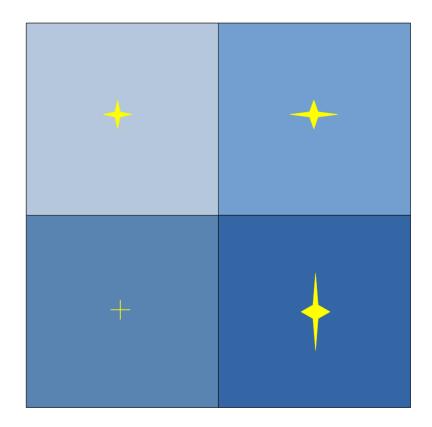
- Not a convolution.
- Naive: Full Matrix? [O(N²)]
 - → Huge memory consumption
 - → Slow execution

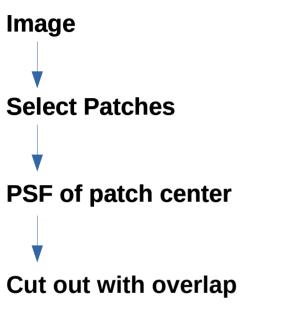
[Nagy, James G., and Dianne P. O'Leary. "Fast iterative image restoration with a spatially varying PSF." Advanced Signal Processing: Algorithms, Architectures, and Implementations VII. Vol. 3162. SPIE, 1997.]

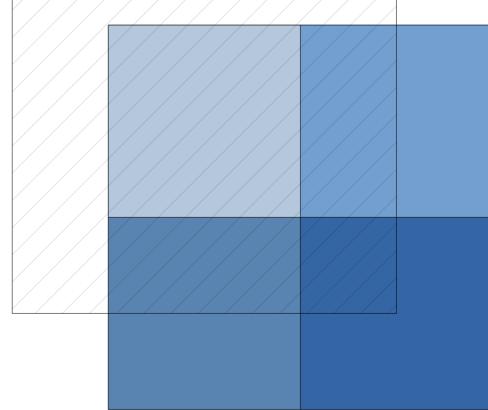
-	
Image	
mage	







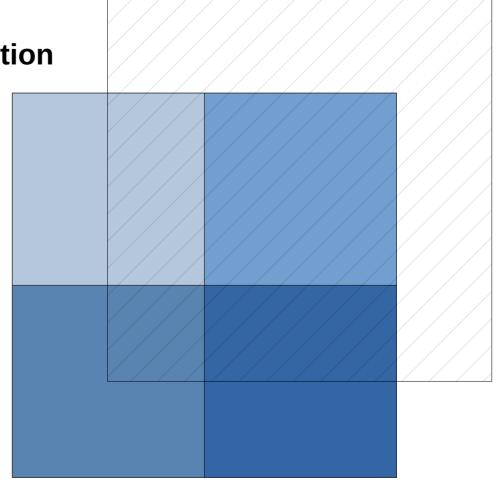


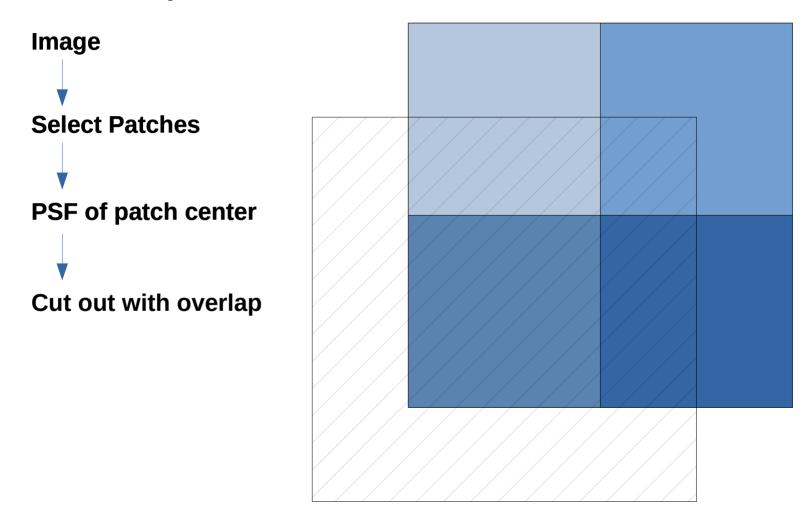


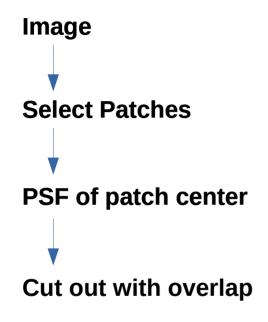
Select Patches

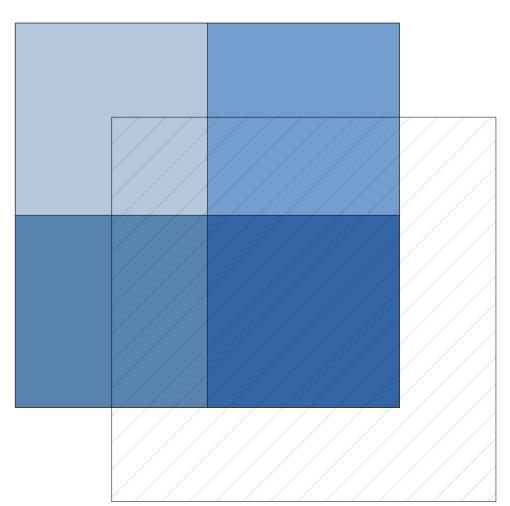
PSF of patch center

Cut out with overlap

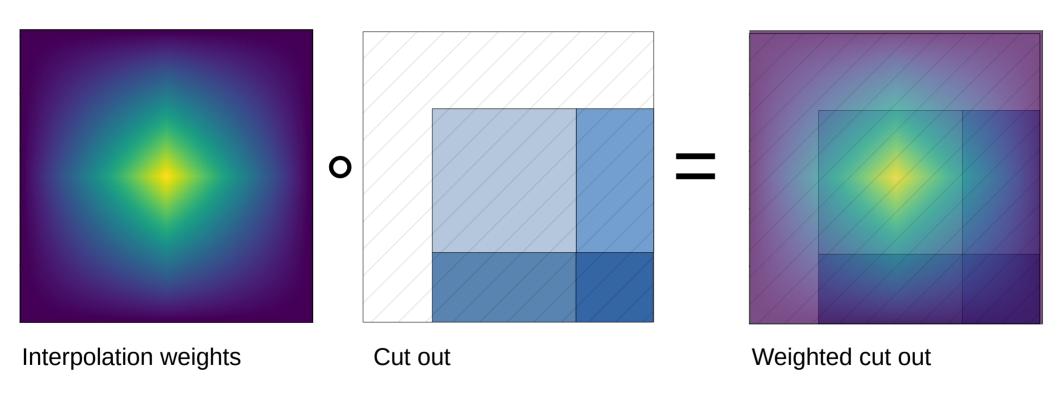




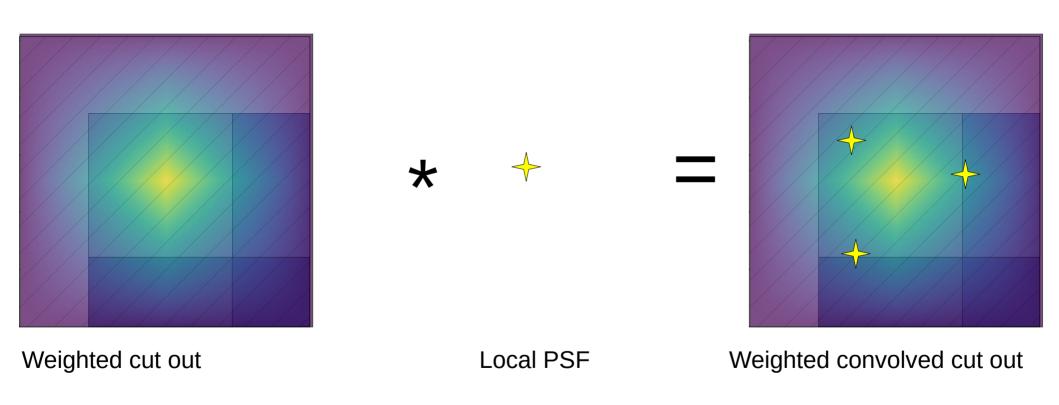




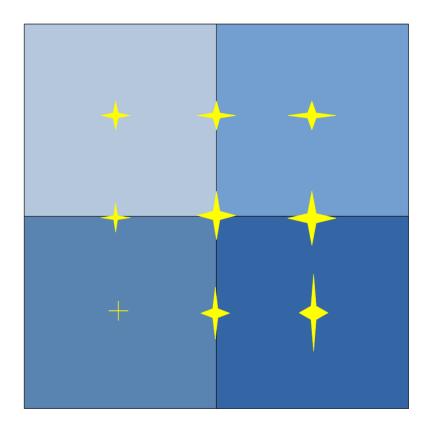
Weight cut outs bilinearly



Convolve weighted cut outs with local PSF



Add up the patches...



De-blurring noisy images

Information Field Theory

Generative Modeling

PSF Representation

De-blurring noisy images

Information Field Theory

Generative Modeling

PSF Representation

Patched Interpolated Convolution

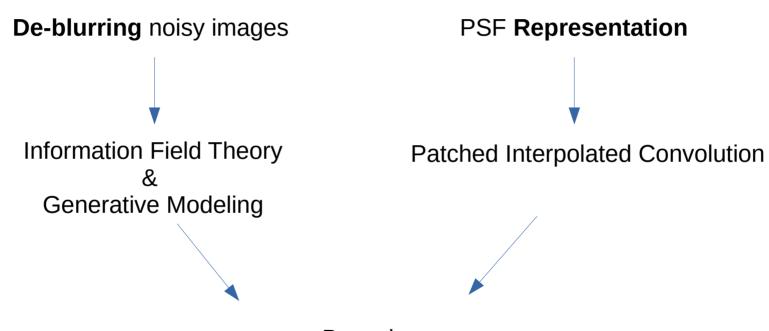
De-blurring noisy images

Information Field Theory

Generative Modeling

PSF Representation

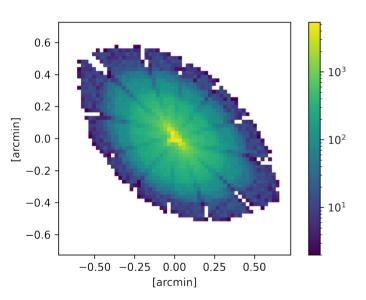
Patched Interpolated Convolution



Bayesian
Denoising, Decomposition and Deconvolution
with spatially variant PSF

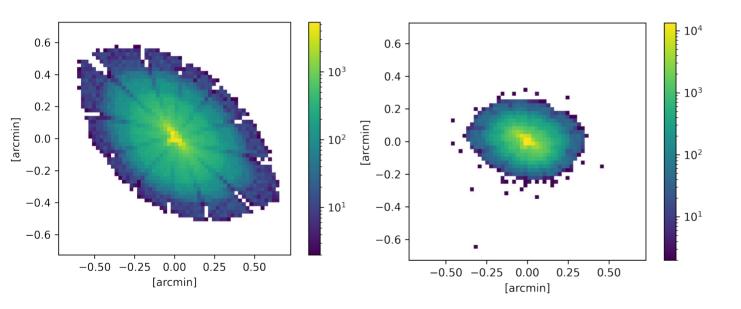
PSFs for patches from Marx [1] simulation, about 1e6 simulated photons, remove 1 photon events

PSFs for patches from Marx [1] simulation, about 1e6 simulated photons, remove 1 photon events



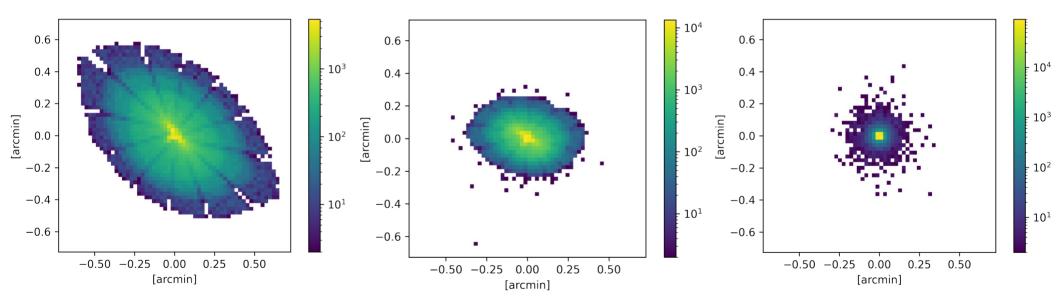
1) Raytracing with MARX: x-ray observatory design, calibration, and support (Davis et al. 2012, SPIE 8443, 84431A)

PSFs for patches from Marx [1] simulation, about 1e6 simulated photons, remove 1 photon events



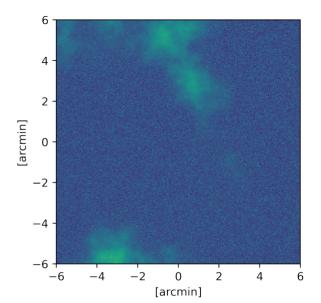
1) Raytracing with MARX: x-ray observatory design, calibration, and support (Davis et al. 2012, SPIE 8443, 84431A)

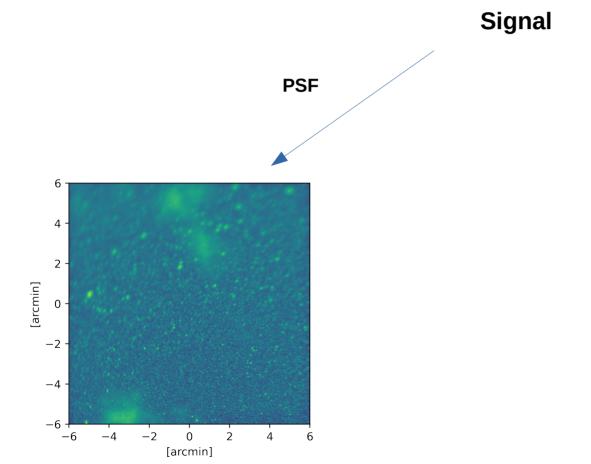
PSFs for patches from Marx [1] simulation, about 1e6 simulated photons, remove 1 photon events

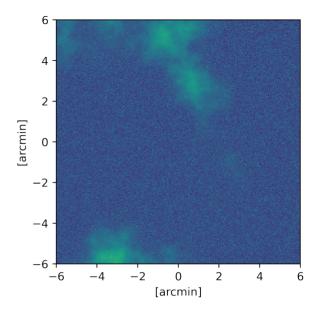


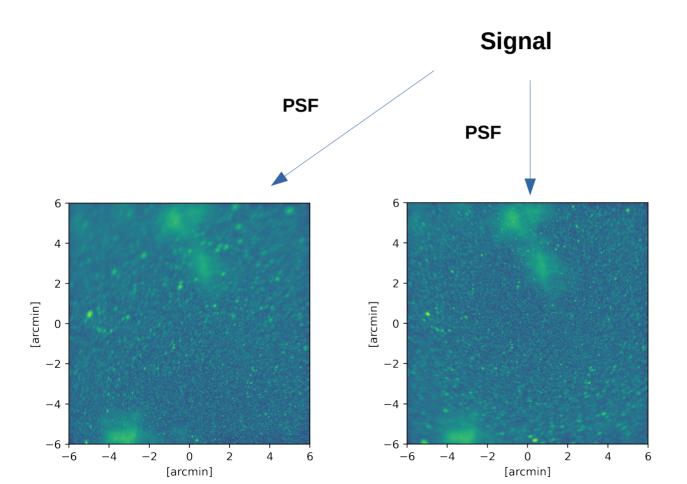
1) Raytracing with MARX: x-ray observatory design, calibration, and support (Davis et al. 2012, SPIE 8443, 84431A)

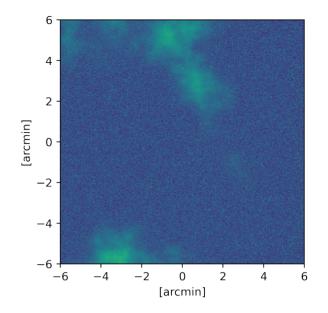
Signal

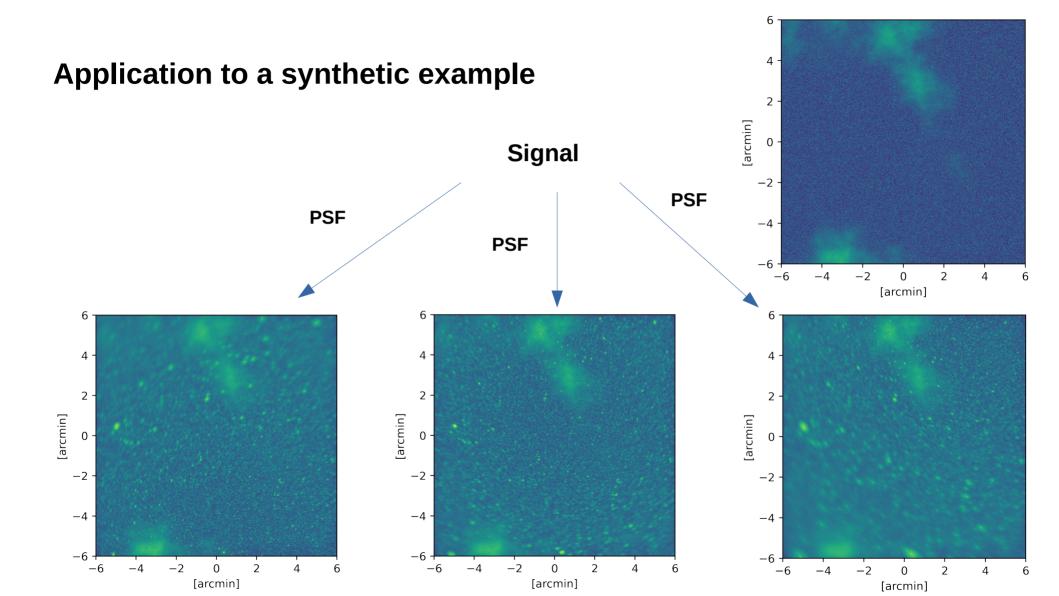


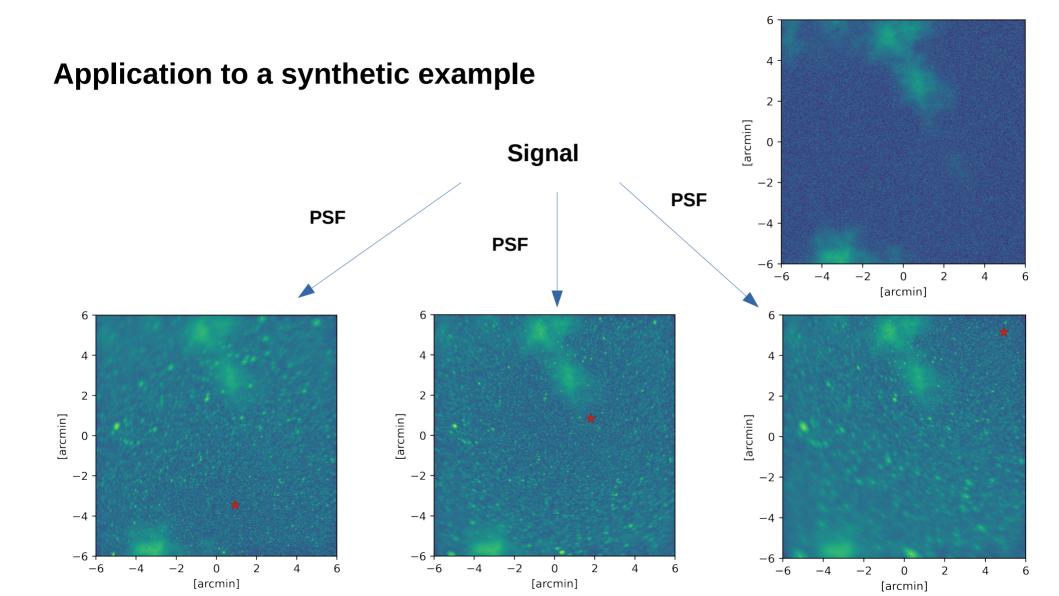










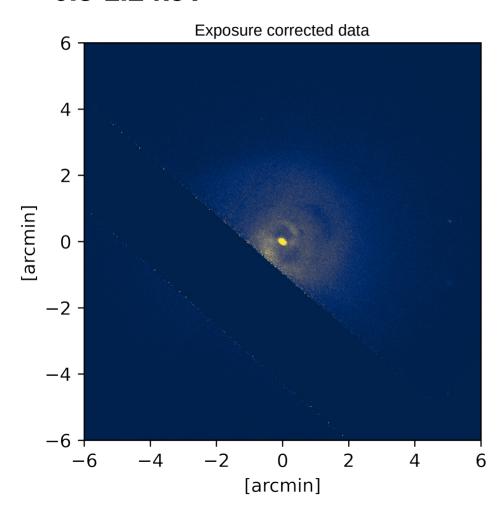


- Energy bins:
 - 0.5 1.2 keV
 - 1.2 2.9 keV
 - 2.9 7 keV

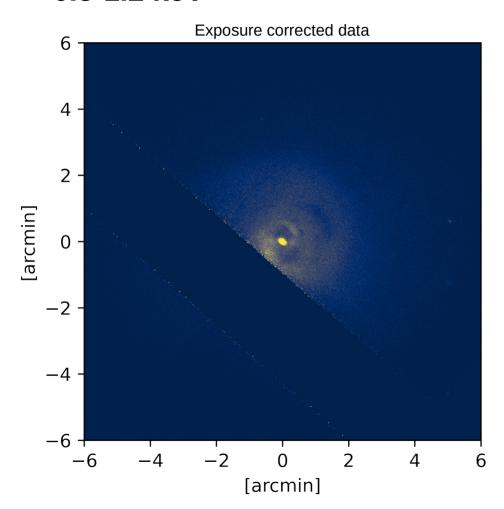
- Energy bins:
 - 0.5 1.2 keV
 - 1.2 2.9 keV
 - 2.9 7 keV
- Generative Model with diffuse & point-source component

- Energy bins:
 - 0.5 1.2 keV
 - 1.2 2.9 keV
 - 2.9 7 keV
- Generative Model with diffuse & point-source component
- Assuming spatial and spectral correlations

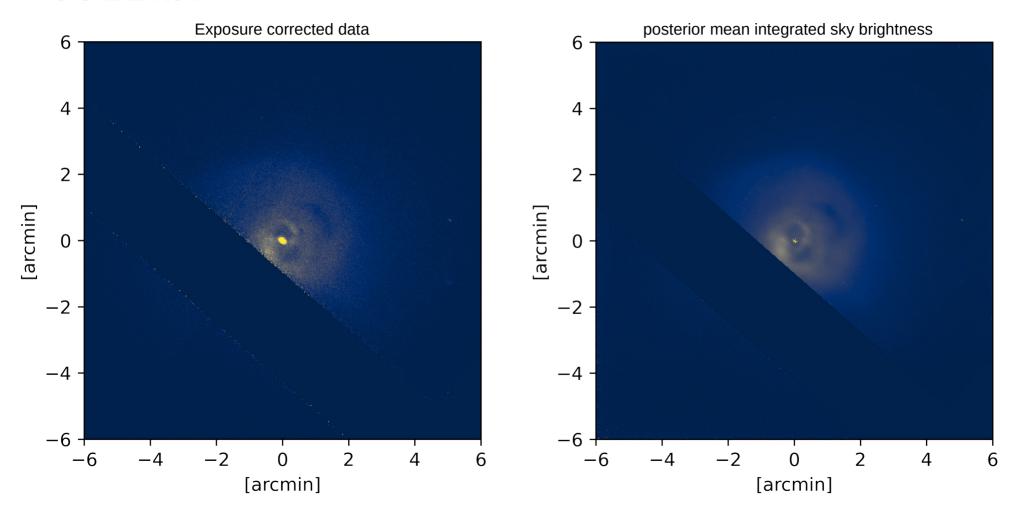
0.5-1.2 keV



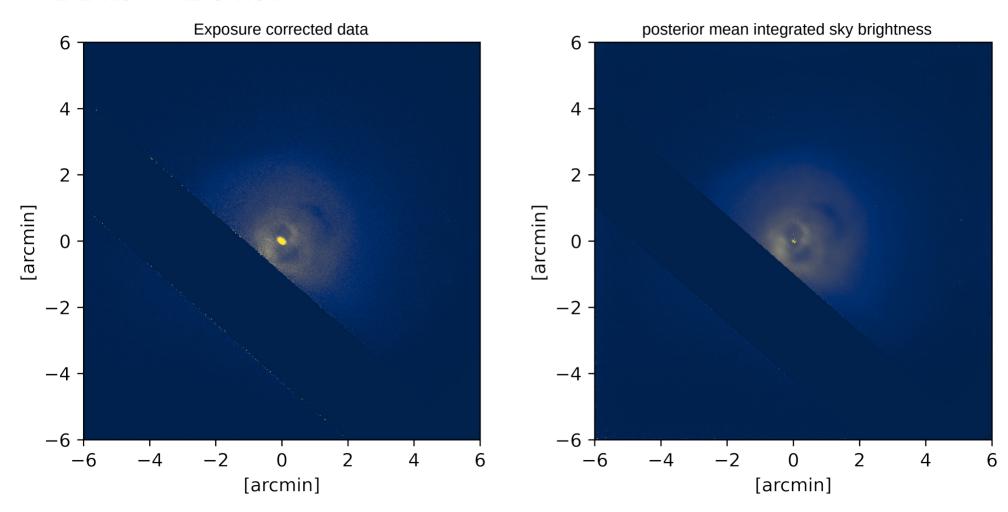
0.5-1.2 keV



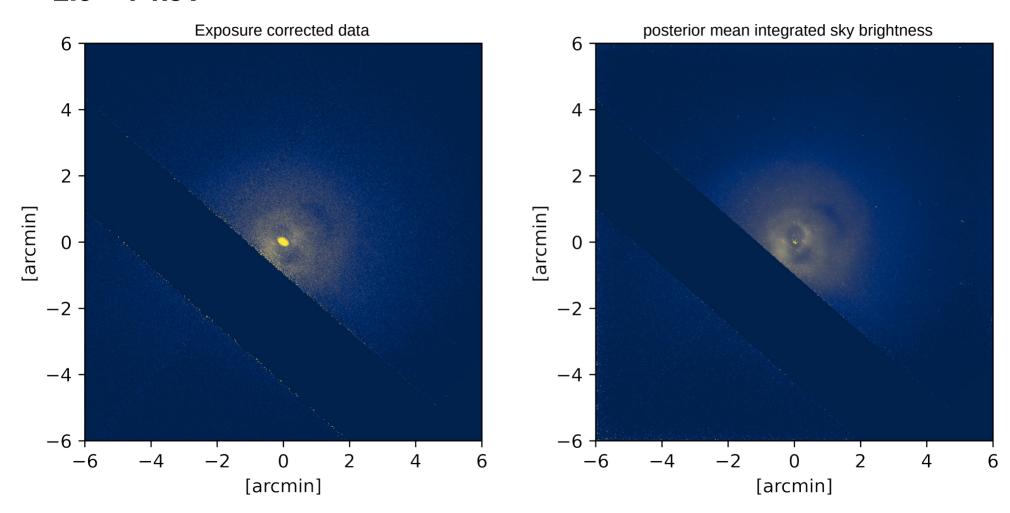
0.5-1.2 keV

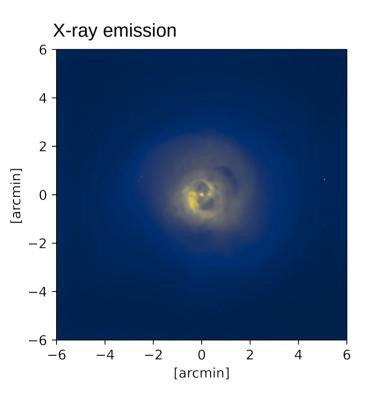


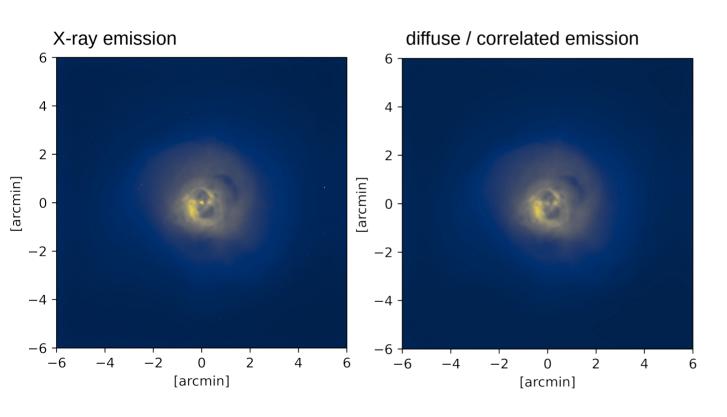
1.2 keV - 2.9 keV

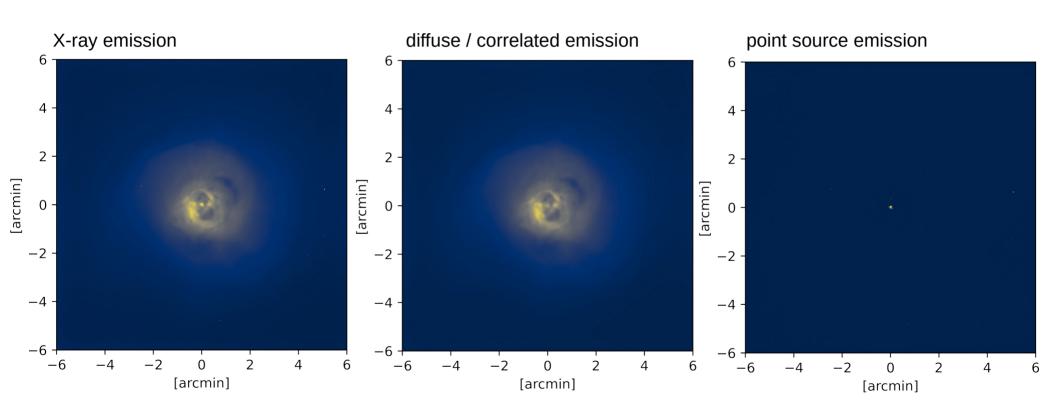


2.9 - 7 keV

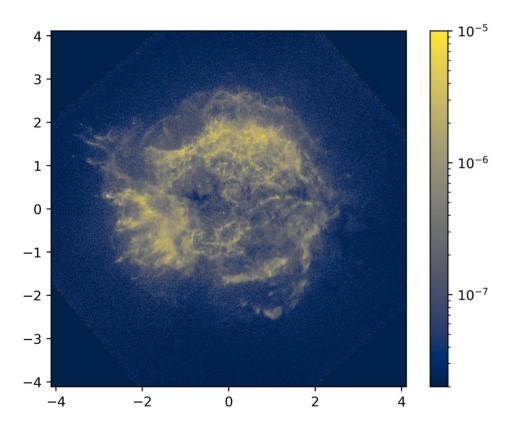




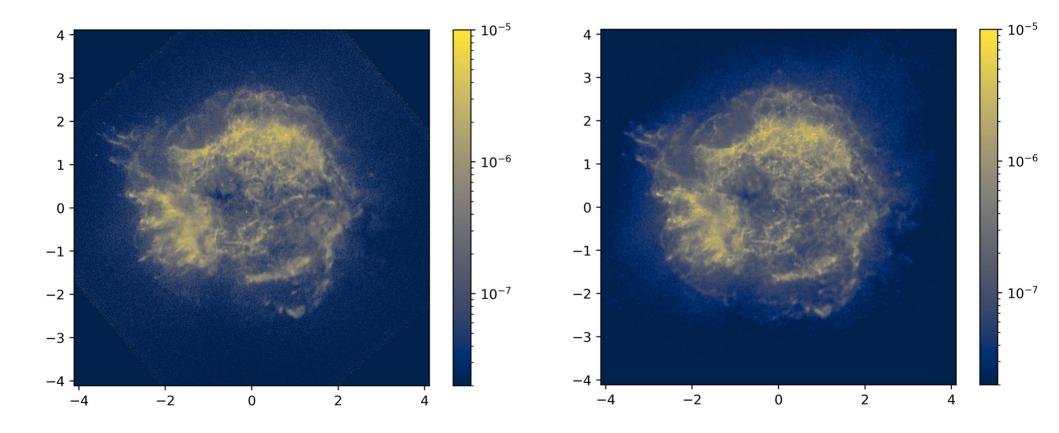


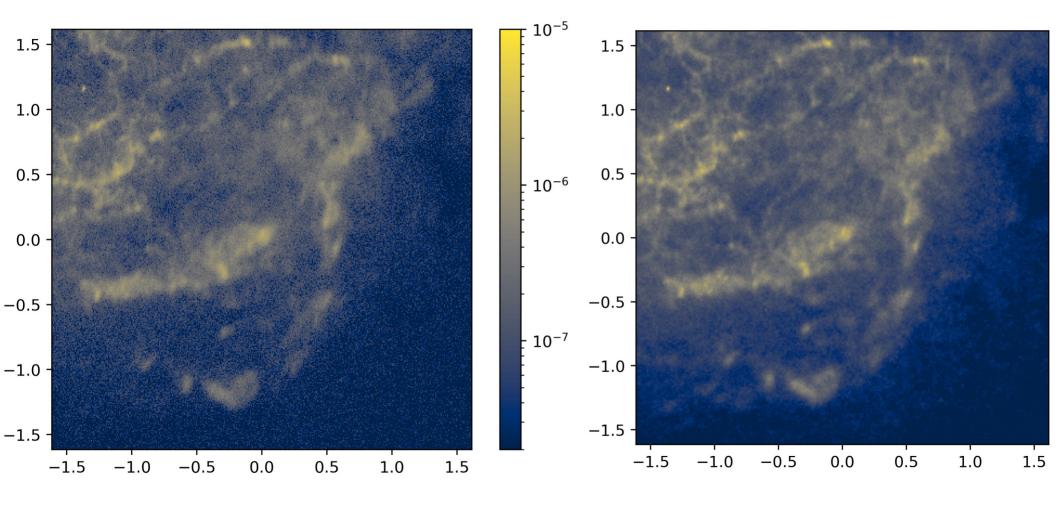


Preliminary new results (CasA):



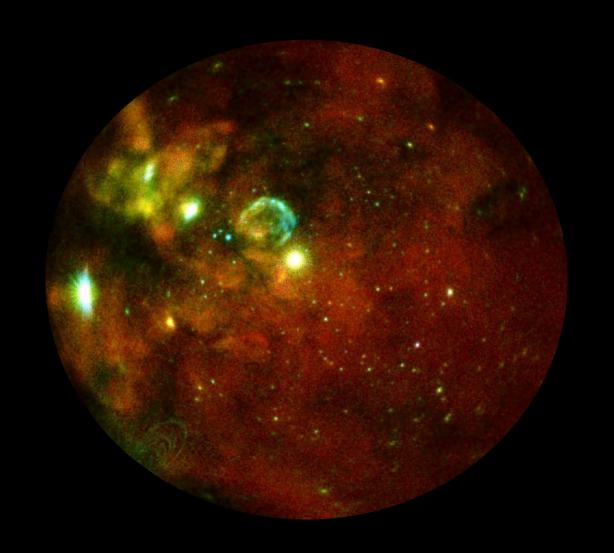
Preliminary new results (CasA):





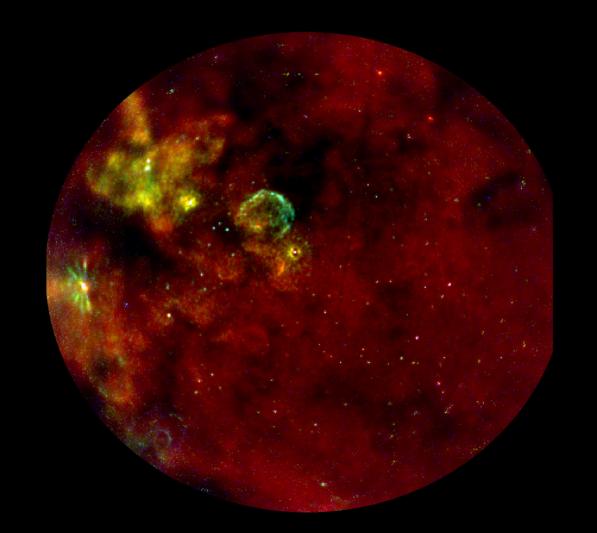
eROSITA

LMC 1987A



eROSITA

LMC 1987A



Removal of spatially variant PSF is possible, despite Poisson noise

- Removal of spatially variant PSF is possible, despite Poisson noise
- Enables us to use also far off-axis observations

- Removal of spatially variant PSF is possible, despite Poisson noise
- Enables us to use also far off-axis observations
- Stabilizes point source detection

- Removal of spatially variant PSF is possible, despite Poisson noise
- Enables us to use also far off-axis observations
- Stabilizes point source detection

Future:

- Removal of spatially variant PSF is possible, despite Poisson noise
- Enables us to use also far off-axis observations
- Stabilizes point source detection

Future:

Search for even faster and more precise representations

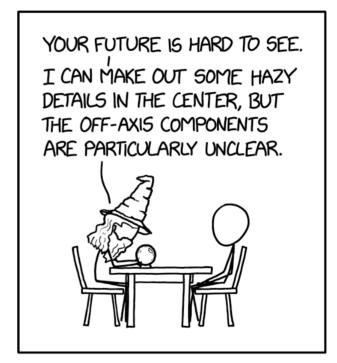
- Removal of spatially variant PSF is possible, despite Poisson noise
- Enables us to use also far off-axis observations
- Stabilizes point source detection

Future:

- Search for even faster and more precise representations
- Infer PSF and other detector effects (pileup etc.) from redundancy in data

You want to know more about PSF Representation, IFT or NIFTy?

Get in contact direct or via mail: veberle@mpa-garching.mpg.de



WIZARDS NEVER DID FIGURE OUT HOW TO FIX SPHERICAL ABERRATION.