Monitoring of PKS 2155-304 and PKS 1510-089 with H.E.S.S.

Alicja Wierzcholska for the H.E.S.S. Collaboration

Cochem 2018, 21.09.2018

High Energy Stereoscopic System

- The High Energy Stereoscopic System (H.E.S.S.) an array of five Cherenkov telescopes, located in Namibia.
- Four 12-m telescopes (mirror area of 108 m² each) and one telescope with a mirror area of 614 m² (32.6 m by 24.3 m; equivalent to a 28 m circular dish).
- Since late 2012 observations possible in MONO (CT5) and STEREO (CT1-CT5) mode.
- Observations taken in 28-minutes runs.
- Dedicated to observing very-high-energy γ rays from Galactic and extragalactic targets.

PKS 2155-304

Collaborators: Michael Zacharias, Felix Jankowsky, Stefan Wagner.

Alicja Wierzcholska

- HBL blazar, located at z=0.117.
- Discovered in the radio frequencies as part of the Parkes survey.
- It was a target of several observational campaigns both in one and multi-energy bands.
- H.E.S.S. observations started in 2002 (in 2004 with four telescopes and in 2012 with five).

- Exceptional flare in 2006 in VHE.
- Gamma optical correlation observed in 2008.
- Different activity states observed in the optical range.
- Lognormal behaviour in VHE γ rays in the longterm monitoring.

Details: H.E.S.S. Collaboration (2007), ApJ, 664, L71

- July 28, 2006 (MJD 53944).
- 1-minute bins.
- Five bursts visible.
- I(>200 GeV) = (1.72 \pm 0.05 $_{stat}$ \pm 0.34 $_{syst}$ \cdot 10 $^{-9}$ cm $^{-2}$ s $^{-1}$ equivalent to 7x I(>200 GeV) of Crab Nebula.
- $-F_{var} = 0.58 \pm 0.03.$

- Exceptional flare in 2006 in VHE.
- Gamma optical correlation observed in 2008.
- Different activity states observed in the optical range.
- Lognormal behaviour in VHE γ rays in the longterm monitoring.

Details: H.E.S.S. Collaboration (2009), ApJ, 696, L150

C = 0.77 - 0.86

- Exceptional flare in 2006 in VHE.
- Gamma optical correlation observed in 2008.
- Different activity states observed in the optical range.
- Lognormal behaviour in VHE γ rays in the longterm monitoring.

Details: H.E.S.S. Collaboration (2014) A&A, 571, A39

- 2008-2010 observations taken with H.E.S.S. and ATOM.
- Bluer-when-brigther trend is visible in separate branches.
- No clear gamma-optical correlation in short-term observations.

- Exceptional flare in 2006 in VHE.
- Gamma optical correlation observed in 2008.
- Different activity states observed in the optical range.
- Lognormal behaviour in VHE γ rays in the longterm monitoring.

- 9 years of VHE γ -ray monitoring.
- Long-term γ-ray quiescent state is consistent with a log-normal behaviour.
- Flicker noise behavour observed $\beta_{VHE} = 1.10^{+0.10}_{-0.13}$ and $\beta_{HE} = 1.20^{+0.21}_{-0.23}$.

Details: H.E.S.S. Collaboration (2017) A&A, 598, A39

H.E.S.S. monitoring in 2015-2016

- Regularly monitored both in 2015 and 2016 with H.E.S.S.
- MWL support thanks to Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM.
- H.E.S.S. stereo (CT1-CT5) observations include 91 runs in 2015 and 40 in 2016.

	2015	2016
Livetime	36	16.5
Significance $[\sigma]$	59.8	36.4
Excess	3284	1212

MWL light curve

- Variability patterns observed at all wavelengths (both is flux and photon index).
- VHE flare in 2015 corresponds to the 3x quiescent state in PKS 2155-304.
- Orphan optical outburst in 2016.

Instrument	F _{var,2015}	F _{var,2016}
H.E.S.S.	0.68±0.02	$0.38{\pm}0.05$
LAT	0.53±0.05	0.25±0.05
XRT	$1.14{\pm}0.03$	0.62±0.02
UVOT (B)	$0.354{\pm}0.005$	$0.234{\pm}0.004$
ATOM (R)	$0.322{\pm}0.001$	$0.29{\pm}0.01$

$$F_{var} = \frac{\sqrt{S^2 - \sigma_{err}^2}}{\langle F \rangle},\tag{1}$$

where $\langle F \rangle$ is an average flux, S^2 is the variance, and σ_{err}^2 is the mean square error;

$$C_{B-R,B} = 0.03 \longrightarrow NO$$
 bluer-when-brigther
 $C_{B,R} = 0.98 \pm <0.01$
 $C_{XRT} = -0.75 \pm 0.05 \longrightarrow$ harder-when-brigther

MWL correlations

 $C_{R,VHE} = 0.31$ $C_{B,XRT} = 0.45$ $C_{U,B} = 0.99 \pm <0.01$

- Harder-when-brighter trend is present in the X-ray data.
- Optical and UV data are well correlated (for all cases: ATOM vs ATOM, UVOT vs UVOT, ATOM vs UVOT).
- No global relation for other wavelengths.

PKS 1510-089

Collaborators: Michael Zacharias (PI), Felix Jankowsky, Stefan Wagner,

David Sanchez, Mahmoud Mohamed.

Alicja Wierzcholska

Monitoring of PKS 2155-304 and PKS 1510-0 Cochem 2018, 21.09.2018 15 / 21

- Detected in TeV energies as second FSRQ.
- Known for a complex multiwavelength behavior single zone models do not work.
- The emission region is expected to be located beyond the BLR.
- MWL observations and variability studies are essential for a deeper understanding of emission observed.

- Regularly observed with H.E.S.S. between 2009-2012.
- Intensive observations started in 2015.
- The 2015 data has been taken with the large telescope in monoscopic mode (total observation time: 66.8 hrs).
- The 2016 data has been taken with the full array (total observation time: 33.3 hrs).

PKS 1510-089 in 2015-2016

- For H.E.S.S. $F_{var} = 3.3 \pm 0.1$
- For LAT: $\label{eq:Fvar} \begin{array}{l} \mathsf{F}_{\textit{var}} = 1.11 \, \pm \, 0.01 \end{array}$
- For XRT: $F_{var} = 0.19 \pm 0.01$
- For ATOM: $F_{\textit{var}} = 0.679 \pm 0.002$

No clear relation between VHE γ rays and other wavelengths.

Alicja Wierzcholska

- MWL Monitoring: key tool to investigate variability behaviour in blazars and search for unique events.
- Both, PKS 2155-304 and PKS 1510-089, are highly variable blazars at all wavebands studied.
- For 2015-2016 data sets there is no correlation between VHE to other bands.
- For both, PKS 2155-304 and PKS 1510-089, each flare is characterized with different MWL properties.

Summary

- MWL Monitoring: a key tool to investigate variability behaviour in blazars and search for unique events.
- Both, PKS 2155-304 and PKS 1510-089, are highly variable blazars at all wavebands studied.
- For 2015-2016 data sets there is no correlation between VHE to other bands.
- For both, PKS 2155-304 and PKS 1510-089, each flare is characterized with different MWL properties.

A hanke You!

Contact: alicja.wierzcholska@ifj.edu.pl