Gamma-Ray Astrophysics in the Time Domain - Some Key Issues and Concepts in the Extragalactic Context -

Frank M. Rieger

September 19, 2018 "Monitoring the Non-thermal Universe", Cochem

Institute of Theoretical Astrophysics Heidelberg University

Max Planck Institut für Kernphysik Heidelberg, Germany

Outline

- Rapid VHE variability in AGN
- Beyond minimum variability considerations
 - ▶ log-normality (PDF) and multiplicative processes
 - power-law noise characteristics (PSD)
 - ▶ year-type quasi-periodicities in blazar light curves
- Potential & Perspectives

Gamma-Ray Astronomy entering the time domain

- I. <u>Rapid VHE flux variability (minimum timescale)</u>
 - down to minutes in bazars, e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
 - intra-day or less in radio galaxies, e.g. M87 (day), IC 310 (5 min)...

• extreme jet conditions: very compact ($r < \delta c \Delta t$) & luminous emitting region, close to BH? multiple (interacting) zones?

Gamma-Ray Astronomy entering the time domain

Potential will increase with CTA:

Simulated CTA light curve based on extrapolation of the power spectrum for the strong 2006 flare of PKS 2155-304 - *probing sub-min timescales*

Conceptual developments include

Jets-in-Jet / Minijets:

- * highly magnetized e-p jet (σ ~100)
- * relativistic (Petschek-type) reconnection
- * additional relativistic velocity ($\Gamma_r \approx \sqrt{\sigma}$) wrt mean flow
- * differential (strong) Doppler boosting possible
- * leptonic VHE: SSC & EC by accelerated electrons

Potential challenges ?

- * lower magnetization for e-p AGN jets (σ ~10)?
- * non-negligible guide field/weak dissipation only?
- * power-law e-acceleration beyond 10^2-10^3 thermal Lorentz factor $\sqrt{\sigma} m_p/2m_e$?

Giannios+ 2009, 2010...

Jet-star/cloud interactions:

- * "small" obstacle entering jet
- * assume efficient (shock-type) acceleration
- * hadronic VHE: pp-interactions
- * high target density introduced by star/cloud
- * explains light curve & spectrum

Potential challenges ?

- * wide observed radio jet opening angle, very large jet power required
- $L_j \propto L_{VHE} \times (r_j / r_c)^2$?
- * "bi-annual" frequency of interaction ?

Conceptual developments include

Magnetospheric Models :

- * gap-type (E_{II}) electron acceleration
- * IC up-scattering of ambient disk photons
- * pair cascade triggered by $\gamma\gamma$ absorption
- * gap closure and MHD jet formation

Potential challenges ?

- * transparency & escape of VHE (RIAF) ?
- * rapid variability & possible luminosity output $L_{gap} \sim L_{jet} (h/r_g)^{2-4}$, $h \sim c \Delta t$

Levinson & Rieger 2011, Hirotani & Pu 2016, Katsoulakos & Rieger 2018...

- I. Rapid VHE flux variability down to few minutes (and less/CTA)
 - e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
 - extreme jet conditions, very compact & luminous region, multiple zones?

- I. Rapid VHE flux variability down to few minutes (and less/CTA)
 - e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
 - extreme jet conditions, very compact & luminous region, multiple zones?

Beyond minimum variability considerations:

- I. Rapid VHE flux variability down to few minutes (and less/CTA)
 - e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
 - extreme jet conditions, very compact & luminous region, multiple zones?

Beyond minimum variability considerations:

II. Evidence for log-normal distribution of fluxes

- Log(Flux) is Gaussian distributed
 - for both low & high VHE source states
- multiplicative or cascade-type process $X = \log F_1 + \log F_2 + ... = \log(F_1 * F_2 ...)$
- ▶ additive models no longer likely (shot-noise; mini-jets...)
- hadronic cascade emission ? (but different energy bands)
- cascade injection...

III. Power Spectral Density (PSD)

- which power at which (temporal) frequency? How is variability on different timescales related to each other?
- ~modulus-squared of discrete FT (frequency domain)

- "AGN vary more strongly towards longer timescales"
- power-law noise $P(v) \sim v^{-\alpha}$

III. Power Spectral Density (PSD)

- which power at which (temporal) frequency? How is variability on different timescales related to each other?
- ~modulus-squared of discrete FT (frequency domain)
 - "AGN vary more strongly towards longer timescales"
 - ▶ power-law noise $P(v) \sim v^{-\alpha}$
- Example: PKS 2155-304:
 - $\alpha \sim 2$ for VHE active/flare states
 - $\alpha \sim I$ for quiescent HE & VHE

```
<u>flare</u>: timescales < 3h
<u>quiescent</u>: timescales > Id (H.E.S.S.) > IO d (Fermi)
```


▶ PSD break by $\Delta \alpha = 1$ (around ~1 day) as in Seyfert AGN (X-ray) ?

Uttley & McHardy 2005...

change in accretion flow conditions ? Lyubarskii 1997...

▶ PSD break by $\Delta \alpha = 1$ (around ~1 day) as in Seyfert AGN (X-ray) ?

Uttley & McHardy 2005...

change in accretion flow conditions ? Lyubarskii 1997...

Note: need to be consistent (TK'95 vs Emmanoulopoulos+'I3 simulations)

Ansatz A: disk-origin of jet

- accretion disk variations as multiplicative, power-law noise (X-ray binary context!)
 - independent fluctuations on local viscous timescales $t_v(r) \sim (1/\alpha) (r/h)^2 (r/r_g)^{3/2} r_g/c$ (Lyubarskii 1997)
- if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration

McHardy+ 2008, Rieger & Volpe 2010

Ansatz A: disk-origin of jet

- accretion disk variations as multiplicative, power-law noise (X-ray binary context!)
 - independent fluctuations on local viscous timescales $t_v(r) \sim (1/\alpha) (r/h)^2 (r/r_g)^{3/2} r_g/c$ (Lyubarskii 1997)
- if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration

Ansatz B: plasma-generation via pair cascades

- BH jet vacuum gap ?
 - <u>but:</u> timescale-range typically limited (gap closure) flares ? Unsteady gaps ?
- proton-induced (e.g., synchrotron-supported) cascades ("secondary" pairs)?
 - <u>but:</u> timescale-range limited (source size) flares ?

& also seen at different energies (optical, X-ray, VHE) ?

Ansatz B: plasma-generation via pair cascades

- BH jet vacuum gap ?
 - <u>but:</u> timescale-range typically limited (gap closure) flares ? Unsteady gaps ?
- proton-induced (e.g., synchrotron-supported) cascades ("secondary" pairs)?
 - <u>but:</u> timescale-range limited (source size) flares ?

& also seen at different energies (optical, X-ray, VHE) ?

Ansatz C: random fluctuations in particle acceleration rate (Sinha+ 2018)

- random perturbations in acceleration time scale
 - Accelerated particle distribution: $n(\mathbf{y}) = \mathbf{y}^{-1-t_{acc}/t_{esc}} (1 \mathbf{y}/\mathbf{y}_{max})^{t_{acc}/t_{esc}} \dots$ (Kirk, FR & Mastichiadis 1998)
 - ▶ if diffusion has Gaussian perturbations: $t_{acc} \sim \kappa/u_s^2 \Rightarrow t_{acc} = t_{acc,0} + \Delta t_{acc}$
 - fractional variability $\Delta n(\mathbf{y}) / n(\mathbf{y})$ contains $\log(\mathbf{y})$ -terms
 - ▶ can have log-normal shape for synchrotron and external IC...

Ansatz C: random fluctuations in particle acceleration rate (Sinha+ 2018)

- random perturbations in acceleration time scale
 - Accelerated particle distribution: $n(\mathbf{y}) = \mathbf{y}^{-1-t_{acc}/t_{esc}} (1 \mathbf{y}/\mathbf{y}_{max})^{t_{acc}/t_{esc}} \dots (Kirk, FR \& Mastichiadis 1998)$
 - if diffusion has Gaussian perturbations: $t_{acc} \sim \kappa/u_s^2 \Rightarrow t_{acc} = t_{acc,0} + \Delta t_{acc}$
 - fractional variability $\Delta n(\mathbf{y}) / n(\mathbf{y})$ contains $\log(\mathbf{y})$ -terms
 - ▶ can have log-normal shape for synchrotron and external IC...

II. Concept: PSD-slope dependencies

Explore possible modifications of PSD-shape by radiation (Finke & Becker 2014, 2015)

- start from some time-dependent particle transport equation for $N_e(\chi, t)$
- Fourier transform equation $\Rightarrow \tilde{N}_{e}(\gamma, \mathbf{f})$
- inject power-law noise $\mathbb{Q}(\gamma, f) \sim f^{-\beta}$
- study impact on synchrotron, EC and SSC
 - ► PSD proportional $|\mathbf{\mathcal{F}}_{SSC}(f)|^2 \sim \mathbf{f}^{-(4B-2)}$ versus $|\mathbf{\mathcal{F}}_{EC}(f)|^2 \sim \mathbf{f}^{-2B}$ (**F** Fourier transform of flux)
 - ▶ differences for FSQP (EC) and BL Lacs (SSC) ?

II. Concept: PSD-slope dependencies

Explore possible modifications of PSD-shape by radiation (Finke & Becker 2014, 2015)

- start from some time-dependent particle transport equation for $N_e(\chi, t)$
- Fourier transform equation $\Rightarrow \tilde{N}_{e}(\gamma, \mathbf{f})$
- inject power-law noise $\mathbb{Q}(\gamma, f) \sim f^{-\beta}$
- study impact on synchrotron, EC and SSC
 - ► PSD proportional $|\mathbf{\mathcal{F}}_{SSC}(f)|^2 \sim \mathbf{f}^{-(4B-2)}$ versus $|\mathbf{\mathcal{F}}_{EC}(f)|^2 \sim \mathbf{f}^{-2B}$ (**F** Fourier transform of flux)

▶ differences for FSQP (EC) and BL Lacs (SSC) ?

EC and SSC show different dependencies, i.e. 2B versus (4B-2) e.g. for PKS 2155-304 (SSC): B~I (flare), B ~ 0.75 (quiescent)

Is the VHE variability driven by accretion disk fluctuations?

- accretion disk variations as multiplicative, power-law noise (Lyubarskii 1997)
- if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration
 - ▶ need to study the scales on which this gets blurred by radiation etc (Rieger & Volpe 2010)
 - ▶ in particular, minimum VHE variability (~3min) limits BH size

Is the VHE variability driven by accretion disk fluctuations?

- accretion disk variations as multiplicative, power-law noise (Lyubarskii 1997)
- if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration
 - need to study the scales on which this gets blurred by radiation etc (Rieger & Volpe 2010)
 - ▶ in particular, minimum VHE variability (~3min) limits BH size

The "cost" for it in the case of PKS 2155-304:

• only works for "small" black hole $\sim 3 \times 10^7 M_{sun} < M_{BH total}$ (from $M_{BH total} - L_{bulge}$)

The "cost" for it in the case of PKS 2155-304:

• only works for "small" black hole $\sim 3 \times 10^7 M_{sun} < M_{BH total}$ (from $M_{BH total} - L_{bulge}$)

• possible in a binary black hole system

- elliptical galaxies as spiral merger results...
- circumbinary disk-accretion preferentially feeds secondary BH (e.g., Artymowicz & Lubow 1996)
- X-ray variability (PSD) support small BH mass (e.g., Czerny et al. 2001)
- "evidence" for optical longterm periodicity (\sim 7 yr) (Fan & Lin 2000)

Explaining QPOs in blazar light curves:

Explaining QPOs in blazar light curves:

Explaining QPOs in blazar light curves:

Hierarchical Galaxy Formation:

▶ Radio-loud AGN hosted by elliptical formed by merging events

Interacting Galaxies NGC 2207 and IC 2163 credit: NASA (Hubble, 2007)

Hierarchical Galaxy Formation:

▶ Radio-loud AGN hosted by elliptical formed by merging events

Interacting Galaxies NGC 2207 and IC 2163 credit: NASA (Hubble, 2007)

Evolutionary track of SBBHs:

circum-binary disk and BH mini-disks simulations

Farris+ 2014

Bowen+ 2017

Capabilities at VHE energies

Longterm monitoring of bright blazars

biased (IACT) and unbiased light curves characterizing longterm VHE variability

Mkn 501: Daily light curve by FACT (top) and HAWC (bottom) from Nov. 2014- Dec. 2015

Relating year-type QPOs to SBBHs ?

• P ~ O(1 yr) implies very close binary & significant gravitational emission

- ▶ short gravitational lifetime T ~ (10³-10⁴) yr
 ⇒ low probability
- PTA upper limit on gravitational background
 ⇒ only 0.01 0.1% (BL Lacs & FSRQs) (Holgado+2018)
- should expect rather $P \sim O(10 \text{ yr})$ (Rieger+ 2007)

Relating year-type QPOs to SBBHs ?

• P ~ O(1 yr) implies very close binary & significant gravitational emission

- ▶ short gravitational lifetime T ~ (10³-10⁴) yr
 ⇒ low probability
- ▶ PTA upper limit on gravitational background
 ⇒ only 0.01 0.1% (BL Lacs & FSRQs) (Holgado+2018)
- should expect rather $P \sim O(10 \text{ yr})$ (Rieger+ 2007)

• Alternative scenarios:

- Iighthouse model (e.g., Camenzing & Krockenberger 1992)
 - \Rightarrow outer jet-radius-constraints imply P < 2 yr (Rieger 2004)
- changes in accretion flow (ADAF to SS) (Gracia+ 2003) \Rightarrow transition radius $r_{tr} \sim 100 r_g$

Gamma-Ray Astrophysics in the Time Domain

Potential & Perspectives

- characterising gamma-ray variability beyond minimum timescales is gaining momentum
 - ▶ log-normality, PSD, QPOs...
- making (obvious) use of current & upcoming experimental capabilities
 - photon statistics (CTA), longterm monitoring....
- conceptual understanding needs "investment"
 - physical origin of variability & emission processes
 - BH accretion jet link

