Gamma-Ray Astrophysics in the Time Domain *- Some Key Issues and Concepts in the Extragalactic Context -*

Frank M. Rieger

September 19, 2018

"Monitoring the Non-thermal Universe", Cochem

Institute of Theoretical Astrophysics Heidelberg University

Max Planck Institut für Kernphysik Heidelberg, Germany

Outline

- *Rapid VHE variability in AGN*
- **Beyond minimum variability considerations**
	- ‣ *log-normality (PDF) and multiplicative processes*
	- ‣ *power-law noise characteristics (PSD)*
	- ‣ *year-type quasi-periodicities in blazar light curves*
- *Potential & Perspectives*

Gamma-Ray Astronomy entering the time domain

- **1. Rapid VHE flux variability (minimum timescale)**
	- down to minutes in bazars, e.g., **Mkn 501** (5 min), **PKS 2155-304** (3 min)
	- intra-day or less in radio galaxies, e.g. **M87** (day), **IC 310** (5 min)…

 \triangleright *extreme jet conditions:* very compact ($r < δ$ c Δt) & luminous emitting region, close to BH? multiple (interacting) zones?

Gamma-Ray Astronomy entering the time domain

Potential will increase with CTA:

Simulated CTA light curve based on extrapolation of the power spectrum for the strong 2006 flare of PKS 2155-304 *- probing sub-min timescales*

Conceptual developments include

Jets-in-Jet / Minijets:

- * highly magnetized e-p jet (σ~100)
- * relativistic (Petschek-type) reconnection
- * additional relativistic velocity (Γ _r \approx $\sqrt{\sigma}$) wrt mean flow
- * *differential (strong) Doppler boosting possible*
- * leptonic VHE: SSC & EC by accelerated electrons

Potential challenges ?

- * lower magnetization for e-p AGN jets $(\sigma$ ~10)?
- * non-negligible guide field/weak dissipation only?
- * power-law e-acceleration beyond 102-103 thermal Lorentz factor $\sqrt{\sigma}$ m_p/2m_e ?

Jet-star/cloud interactions:

- * "small" obstacle entering jet
- * assume efficient (shock-type) acceleration
- * hadronic VHE: pp-interactions
- * high target density introduced by star/cloud
- * explains light curve & spectrum

Potential challenges ?

- ***** wide observed radio jet opening angle, very large jet power required
	- $L_j \propto L_{\text{VHE}} \times (r_j/r_c)^2$?
- ***** "bi-annual" frequency of interaction ?

Conceptual developments include

Magnetospheric Models :

- $*$ gap-type (E_{II}) electron acceleration
- * IC up-scattering of ambient disk photons
- * pair cascade triggered by ɣɣ absorption
- * gap closure and MHD jet formation

Potential challenges ?

- * transparency & escape of VHE (RIAF) ?
- * rapid variability & possible luminosity output $L_{gap} \sim L_{jet}$ (h/r_g)²⁻⁴, h ~ c Δt

Levinson & Rieger 2011, Hirotani & Pu 2016, Katsoulakos & Rieger 2018…

- **1. Rapid VHE flux variability down to few minutes (and less/CTA)**
	- e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
	- ‣ *extreme jet conditions*, very compact & luminous region, multiple zones?

- **1. Rapid VHE flux variability down to few minutes (and less/CTA)**
	- e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
	- ‣ *extreme jet conditions*, very compact & luminous region, multiple zones?

Beyond minimum variability considerations:

- **1. Rapid VHE flux variability down to few minutes (and less/CTA)**
	- e.g., Mkn 501 (5 min), PKS 2155-304 (3 min)
	- ‣ *extreme jet conditions*, very compact & luminous region, multiple zones?

Beyond minimum variability considerations: PHISTOGRAPHISTOGRAPHISTOS **PHISTOGRAPHISTOS AT PKS 2155-304**

II. Evidence for log-normal distribution of fluxes

- *• Log(Flux) is Gaussian distributed*
	- for both low & high VHE source states
- *multiplicative* or cascade-type process $X = log F_1 + log F_2 + ... = log(F_1 * F_2 ...)$
- ‣ additive models no longer likely (*shot-noise; mini-jets…*)
- ‣ hadronic cascade emission ? (*but different energy bands*)
- ▶ cascade injection...

III. Power Spectral Density (PSD)

- which power at which (temporal) frequency? *How is variability on different timescales related to each other?*
- ~modulus-squared of discrete FT (frequency domain)

- **‣** *"AGN vary more strongly towards longer timescales"*
- ‣ power-law noise *P(***ν***) ~* **ν** **^α**

III. Power Spectral Density (PSD)

- which power at which (temporal) frequency? *How is variability on different timescales related to each other?*
- ~modulus-squared of discrete FT (frequency domain)
	- **‣** *"AGN vary more strongly towards longer timescales"*
	- ‣ power-law noise *P(***ν***) ~* **ν** **^α**
- **Example:** PKS 2155-304:
	- \triangleright α ~ 2 for VHE active/flare states
	- \triangleright α \sim 1 for quiescent HE & VHE

```
flare: timescales < 3h
quiescent: timescales > 1d (H.E.S.S.) > 10 d (Fermi)
```


 \rightarrow PSD break by $\Delta \alpha = 1$ (around ~1 day) as in Seyfert AGN (X-ray) ?

Uttley & McHardy 2005…

‣ change in accretion flow conditions ? *Lyubarskii 1997…*

 \triangleright PSD break by $\Delta \alpha = I$ (around ~1 day) as in Seyfert AGN (X-ray) ?

Uttley & McHardy 2005…

‣ change in accretion flow conditions ? *Lyubarskii 1997…*

Note: need to be consistent (TK'95 vs Emmanoulopoulos+ '13 simulations)

Ansatz A: disk-origin of jet

- *accretion disk variations as multiplicative, power-law noise (X-ray binary context!)*
	- ‣ *independent fluctuations on local viscous timescales tv(r)~(1/*α*) (r/h)2(r/rg)3/2 rg/c (Lyubarskii 1997)*
- • *if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration*

McHardy+ 2008, Rieger & Volpe 2010

Ansatz A: disk-origin of jet

- *accretion disk variations as multiplicative, power-law noise* (*X-ray binary context!*)
	- ‣ *independent fluctuations on local viscous timescales tv(r)~(1/*α*) (r/h)2(r/rg)3/2 rg/c (Lyubarskii 1997)*
- • *if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration*

Ansatz B: plasma-generation via pair cascades

- • *BH jet vacuum gap ?*
	- ‣ *but: timescale-range typically limited (gap closure) flares ? Unsteady gaps ?*
- • *proton-induced (e.g., synchrotron-supported) cascades ("secondary" pairs)?*
	- ‣ *but: timescale-range limited (source size) flares ?*

 & also seen at different energies (optical, X-ray, VHE) ?

Levinson & Rieger 2011

Ansatz B: plasma-generation via pair cascades

- • *BH jet vacuum gap ?*
	- ‣ *but: timescale-range typically limited (gap closure) flares ? Unsteady gaps ?*
- • *proton-induced (e.g., synchrotron-supported) cascades ("secondary" pairs)?*
	- ‣ *but: timescale-range limited (source size) flares ?*

 & also seen at different energies (optical, X-ray, VHE) ?

Ansatz C: random fluctuations in particle acceleration rate (Sinha+ 2018)

- • *random perturbations in acceleration time scale*
	- ‣ *Accelerated particle distribution: n(*ɣ*) =* ɣ*-1-tacc/tesc (1-*ɣ*/*ɣ*max)tacc/tesc 1…(Kirk, FR & Mastichiadis 1998)*
	- \triangleright *if diffusion has Gaussian perturbations:* $t_{acc} \sim \kappa/u_s^2 \implies t_{acc} = t_{acc,0} + \Delta t_{acc}$
	- ‣ *fractional variability* Δ*n(*ɣ*) / n(*ɣ*) contains log(*ɣ*)-terms*
	- ‣ *can have log-normal shape for synchrotron and external IC…*

Ansatz C: random fluctuations in particle acceleration rate (Sinha+ 2018)

- • *random perturbations in acceleration time scale*
	- ‣ *Accelerated particle distribution: n(*ɣ*) =* ɣ*-1-tacc/tesc (1-*ɣ*/*ɣ*max)tacc/tesc 1…(Kirk, FR & Mastichiadis 1998)*
	- \triangleright *if diffusion has Gaussian perturbations:* $t_{acc} \sim \kappa/u_s^2 \implies t_{acc} = t_{acc,0} + \Delta t_{acc}$
	- ‣ *fractional variability* Δ*n(*ɣ*) / n(*ɣ*) contains log(*ɣ*)-terms*
	- ‣ *can have log-normal shape for synchrotron and external IC…*

II. Concept: PSD-slope dependencies

Explore possible modifications of PSD-shape by radiation (Finke & Becker 2014, 2015)

- • *start from some time-dependent particle transport equation for Ne(*ɣ*,t)*
- Fourier transform equation $\Rightarrow \tilde{N}_e(\gamma, \mathbf{f})$
- inject power-law noise $\mathbb{Q}(\gamma, f) \sim f^{-\beta}$
- • *study impact on synchrotron, EC and SSC*
	- **▶** PSD proportional $|F_{SSC}(f)|^2$ \sim $f^{-(4B-2)}$ versus $|F_{EC}(f)|^2$ \sim f^{-2B} *(***F** Fourier transform of flux)
	- ‣ *differences for FSQP (EC) and BL Lacs (SSC) ?*

II. Concept: PSD-slope dependencies

Explore possible modifications of PSD-shape by radiation (Finke & Becker 2014, 2015)

- • *start from some time-dependent particle transport equation for Ne(*ɣ*,t)*
- Fourier transform equation $\Rightarrow \tilde{N}_e(\gamma, \mathbf{f})$
- inject power-law noise $\mathbb{Q}(\gamma, f) \sim f^{-\beta}$
- • *study impact on synchrotron, EC and SSC*
	- **▶** PSD proportional $|F_{SSC}(f)|^2$ \sim $f^{-(4B-2)}$ versus $|F_{EC}(f)|^2$ \sim f^{-2B} *(***F** Fourier transform of flux)
	- ‣ *differences for FSQP (EC) and BL Lacs (SSC) ?*

EC and SSC show different dependencies, i.e. 2ß versus (4ß-2) e.g. for PKS 2155-304 (SSC): ß~1 (flare), ß ~ 0.75 (quiescent)

Is the VHE variability driven by accretion disk fluctuations ?

- • *accretion disk variations as multiplicative, power-law noise (Lyubarskii 1997)*
- • *if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration*
	- ‣ *need to study the scales on which this gets blurred by radiation etc (Rieger & Volpe 2010)*
	- ‣ *in particular, minimum VHE variability (~3min) limits BH size*

Is the VHE variability driven by accretion disk fluctuations ?

- • *accretion disk variations as multiplicative, power-law noise (Lyubarskii 1997)*
- • *if efficiently transmitted to jet, power-law noise in injection for Fermi acceleration*
	- ‣ *need to study the scales on which this gets blurred by radiation etc (Rieger & Volpe 2010)*
	- ‣ *in particular, minimum VHE variability (~3min) limits BH size*

The "cost" for it in the case of PKS 2155-304:

• only works for "small" black hole \sim 3 x 10⁷ M_{sun} < M_{BH total} (from M_{BH total} - L_{bulge})

The "cost" for it in the case of PKS 2155-304:

• only works for "small" black hole \sim 3 x 10⁷ M_{sun} < M_{BH total} (from M_{BH total} - L_{bulge})

• *possible in a binary black hole system*

- ‣ *elliptical galaxies as spiral merger results…*
- ‣ *circumbinary disk-accretion preferentially feeds secondary BH (e.g., Artymowicz & Lubow 1996)*
- ‣ *X-ray variability (PSD) support small BH mass (e.g., Czerny et al. 2001)*
- ‣*"evidence" for optical longterm periodicity (~7 yr) (Fan & Lin 2000)*

Explaining QPOs in blazar light curves:

Explaining QPOs in blazar light curves:

Explaining QPOs in blazar light curves:

Hierarchical Galaxy Formation:

‣ *Radio-loud AGN hosted by elliptical formed by merging events*

Interacting Galaxies NGC 2207 and IC 2163 credit: NASA (Hubble, 2007)

Hierarchical Galaxy Formation:

‣ *Radio-loud AGN hosted by elliptical formed by merging events*

Interacting Galaxies NGC 2207 and IC 2163 credit: NASA (Hubble, 2007)

Evolutionary track of SBBHs:

‣ *circum-binary disk and BH mini-disks simulations*

Farris+ 2014 Bowen+ 2017

Capabilities at VHE energies

Longterm monitoring of bright blazars

biased (IACT) and unbiased light curves characterizing longterm VHE variability

Mkn 501: Daily light curve by FACT (top) and HAWC (bottom) from Nov. 2014- Dec. 2015

Relating year-type QPOs to SBBHs ?

• *P ~ O(1 yr) implies very close binary & significant gravitational emission*

- \triangleright short gravitational lifetime T ~ (10³-10⁴) yr \Rightarrow *low probability*
- ▶ PTA upper limit on gravitational background ⇒ only 0.01 - 0.1% (BL Lacs & FSRQs) (Holgado+2018)
- ‣ should expect rather P ~ O(10 yr) *(Rieger+ 2007)*

Relating year-type QPOs to SBBHs ?

• *P ~ O(1 yr) implies very close binary & significant gravitational emission*

- \triangleright short gravitational lifetime T ~ (10³-10⁴) yr \Rightarrow *low probability*
- ▶ PTA upper limit on gravitational background ⇒ only 0.01 - 0.1% (BL Lacs & FSRQs) (Holgado+2018)
- \triangleright should expect rather $P \sim O(10 \text{ yr})$ (Rieger+ 2007)

• *Alternative scenarios:*

- ‣ lighthouse model *(e.g., Camenzing & Krockenberger 1992)*
	- \Rightarrow outer jet-radius-constraints imply $P < 2$ yr (Rieger 2004)
- ‣ changes in accretion flow *(ADAF to SS) (Gracia+ 2003)* \Rightarrow transition radius $r_{tr} \sim 100 r_{g}$

Gamma-Ray Astrophysics in the Time Domain

Potential & Perspectives

- *characterising gamma-ray variability beyond minimum timescales is gaining momentum*
	- ‣ *log-normality, PSD, QPOs…*
- *making (obvious) use of current & upcoming experimental capabilities*
	- ‣ *photon statistics (CTA), longterm monitoring….*
- *conceptual understanding needs "investment"*
	- ‣ *physical origin of variability & emission processes*
	- ‣ *BH accretion jet link*

