Fermi Gamma-ray Burst Monitor Observations of Gravitational Wave Counterparts

Péter Veres

University of Alabama in Huntsville

on behalf of the GBM-LIGO/Virgo working gorup

A. Goldstein, E. Burns, M. S. Briggs, R. Hamburg, D. Kocevski, C. A. Wilson-Hodge, R. D. Preece, S. Poolakkil, O. J. Roberts, C. M. Hui, V. Connaughton, J. Racusin, A. von Kienlin, T. Dal Canton, N. Christensen, T. Littenberg, K. Siellez, L. Blackburn, J. Broida, E. Bissaldi, W. H. Cleveland, M. H. Gibby, M. M. Giles, R. M. Kippen, S. McBreen, J. McEnery, C. A. Meegan, W. S. Paciesas, and M. Stanbro

Monitoring the Non-thermal Universe 2018 September 18-21, 2018

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum: emerging complex picture
- Lightcurve/variability $\gtrsim 10$ ms
- Afterglow visible for ~ week(s)
- Prompt: keV to \lesssim MeV
- Deduce: compact object, $\theta_{\rm jet} \approx$ few °, $E_{\rm iso} = 10^{50} - 10^{55}$ erg

$3^{\rm rd}$ GBM GRB catalog Bhat+16

- Random directions on the sky $(\sim \text{ few per week})$
- Short/long divide in duration
- Broad non-thermal spectrum: emerging complex picture
- Lightcurve/variability $\gtrsim 10~{
 m ms}$
- Afterglow visible for ~ week(s)
- Prompt: keV to \lesssim MeV
- Deduce: compact object, $\theta_{\rm jet} \approx$ few °, $E_{\rm iso} = 10^{50} - 10^{55}$ erg

 $3^{\rm rd}$ GBM GRB catalog Bhat+16

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum: emerging complex picture
- Lightcurve/variability $\gtrsim 10$ ms
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV
- Deduce: compact object, $\theta_{\rm jet} \approx$ few °, $E_{\rm iso} = 10^{50} - 10^{55}$ erg

- Random directions on the sky $(\sim \text{ few per week})$
- Short/long divide in duration
- Broad non-thermal spectrum: emerging complex picture
- Lightcurve/variability $\gtrsim 10~{\rm ms}$
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV
- Deduce: compact object, $\theta_{\rm jet} \approx$ few °, $E_{\rm iso} = 10^{50} 10^{55}$ erg

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum: emerging complex picture
- Lightcurve/variability $\gtrsim 10~{
 m ms}$
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV
- Deduce: compact object, $\theta_{\rm jet} \approx$ few °, $E_{\rm iso} = 10^{50} - 10^{55}$ erg

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum: emerging complex picture
- Lightcurve/variability $\gtrsim 10~{
 m ms}$
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV
- Deduce: compact object, $\theta_{\rm jet} \approx$ few °, ${\sf E}_{\rm iso} = 10^{50} 10^{55}$ erg

credit: NASA/Swift/deWilde

Fermi Gamma-ray burst Monitor (**GBM**) An instrument for multi-messenger astronomy

- 12 Nal (8-1000 keV), 2 BGO (0.2-40 MeV)
- 87% uptime (SAA), 67% of the sky, any location: \sim 60% of time
- Real-time **triggers**: in orbit detection of rate increase
- Localization: compare relative counts in detectors
- Short GRB: \sim 40 per year
- Off-line searches increase sensitivity: Targeted, Untargeted

Sub-threshold searches (1) - Targeted search

- Independent seed time (e.g. GW, ν , FRB etc.)
- 3 template spectra (soft, normal, hard)
- Assumes point source
- Scans the whole sky
- 64 ms to 8 s, \pm 30 s (1 run \sim 30 minutes)
- Significance based on false alarm probability from background runs

Example: recovery of a Swift GRB that didn't trigger GBM

Blackburn et al., ApJ, 2015; Goldstein et al., 2016, arXiv:1612.02395, Kocevski et al., ApJ, 2018

GW150914-GBM

- A weak gamma-ray transient 0.4 s after GW150914, duration \sim 1 s,
- Positive fluctuation in all dets., E> 50 keV.
- Location ~163 dec to Fermi pointing (under S/C)
- Weak constraints on the spectrum
- Consistent with a short GRB.
- False Alarm Probability for association with GW150914: 0.0022

Connaughton et al. 2016 ApJL, Veres et al. 2017 ApJ

GW150914-GBM

- A weak gamma-ray transient 0.4 s after GW150914, duration $\sim 1~{\rm s},$
- Positive fluctuation in all dets., E> 50 keV.
- Location ~163 dec to Fermi pointing (under S/C)
- Weak constraints on the spectrum
- Consistent with a short GRB.
- False Alarm Probability for association with GW150914: 0.0022

Connaughton et al. 2016 ApJL, Veres et al. 2017 ApJ

GW150914-GBM

- A weak gamma-ray transient 0.4 s after GW150914, duration $\sim 1~{\rm s},$
- Positive fluctuation in all dets., E> 50 keV.
- Location ~163 dec to Fermi pointing (under S/C)
- Weak constraints on the spectrum
- Consistent with a short GRB.
- False Alarm Probability for association with GW150914: 0.0022

Connaughton et al. 2016 ApJL, Veres et al. 2017 ApJ

Sub-threshold searches (2) - Untargeted search

- Briggs et al. 2008 (in prep)
- Improved background
- Excess signal in 2+ dets, lower than for triggers (e.g. 1.25 & 2.5 σ)
- Few hours latency public GCN
- Confirmation by other instruments
- Increase # of short GRBs by \sim 80 yr⁻¹ (from 40 triggered yr⁻¹)

https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html

GRB 170817A / GW170817

Goldstein et al. ApJL (2017), LVC-GBM-ACS ApJL (2017)

GRB 170817A - location - timeline

- T_{GW} = T_{GRB} 2.02 s
- T_{GW}+16 s: first public notice by flight software
- T_{GW}+27 s: on-board localization and classification
- T_{GW}+40 s: automatic on-ground localization
- T_{GW}+40 min: LVC reports GW trigger conc. w GRB

- T_{GW}+45 min: improved human-guided location
- Single IFO location consistent with GBM \rightarrow good sign
- T_{GW}+67 min: report GRB properties
- T_{GW}+5 h: HLV map still consistent with GBM map (that was when we knew they are surely associated)

GRB 170817A - Significance of association

•
$$P_{\text{temporal}} = 5 \times 10^{-6}$$
 • $P_{\text{spatial}} = 5 \times 10^{-6}$

$$P = 5 \times 10^{-8} (5.3 \sigma)$$

GRB 170817A - Basic information

- GRBs brightest in 50-300 keV
- Triggered GBM: excess counts on 256 ms timescale
- Start: $T_{
 m GW}{+}1.7~{
 m s} pprox T_{
 m GRB}{-}0.3~{
 m s}$
- Duration, $T_{90} = 2.0 \pm 0.5 \text{ s}$
- "By eye" it's only 0.5 s long
- Main peak + soft component ~ 1 to 2 s after trigger

50-300 keV lightcurve

GRB 170817A - Basic information

- GRBs brightest in 50-300 keV
- Triggered GBM: excess counts on 256 ms timescale
- Start: $T_{
 m GW}{+}1.7~{
 m s} pprox T_{
 m GRB}{-}0.3~{
 m s}$
- Duration, $T_{90} = 2.0 \pm 0.5 \text{ s}$
- "By eye" it's only 0.5 s long
- Main peak + soft component ~ 1 to 2 s after trigger

10-300 keV lightcurve

GRB 170817A - Is this a short GRB?

- Short long divide (2 s ?)
- $3^{\rm rd}$ GBM GRB catalog
- $T_{90} = 2.0 \pm 0.5 \text{ s} \rightarrow \text{conservative}$ (~ 0.5 s + soft episode)
- 2 log-normals describe the duration distribution
- Answer:

YES, short more likely (\sim 3:1)

GRB 170817A - astrophysics - detectability

Observationally ordinary GRB. Redshift \rightarrow subluminous by orders of magnitude.

- On axis: sublum: sel. effect (?)
- Cocoon shock breakout (?)
- Off-axis structured jet
- Speed of gravity $\Delta v = v_g v_{EM}$: -10 s \leq dt \leq 1.7 s

•
$$-3 \times 10^{-15} \le \frac{\Delta v}{v_{\rm EM}} \le 7 \times 10^{-16}$$

- O3: 1-50 BNS/year (0.1-1.4 joint)
- Design: 6-120 BNS/year (0.3-1.7 joint)
- 30 % dimmer : still triggered
- 50 % dimmer : untargeted search
- 60 % dimmer : targeted search

GRB 150101B another GRB like 170817A

- Third closest sGRB /w z, z=0.134
- Hard pulse (E_{peak}=550 keV) / soft episode (kT = 6 keV)
- Much brighter / shorter than GRB 170817A
- Rules out (simple) cocoon model
- Possible kilonova and off-axis afterglow (Troja et al. 2018)

Burns et al. ApJL (2018)

Plans of LIGO/Virgo 3rd observing run (O3)

- Starts \sim Feb 2019
- Improve targeted search
 - ${\sim}10\text{-}15\text{x}$ improvement in runtime
 - Full atmospheric scattering in the response
 - Exclude poorly modeled energy channels
- Add very soft, bbody template spectrum for source char. inspired by GRB 170817A
- GBM / LIGO-Virgo joint localization
- Fast (~10 min.) GBM / ACS joint annulus

Conclusions

- Fermi-GBM can detect GW counterparts!
- At least some short GRBs originate from binary neutron star mergers!
- GRB 170817A: an ordinary GRB with extraordinary implications
- Emerging signature: hard peak+soft tail structure
- BBH counterparts?
- Optimistic for future multimessenger detections

Backup slides

GRB 170817A - archival searches

- $\lesssim 1$ s peak followed by $\gtrsim 1$ s soft tail
- Initial search (von Kienlin et al. in preparation) Preliminary
- GBM: 2228 GRBs. 460 sGRBs (21%), few (\lesssim 10) similar
- BATSE: 2704 GRBs. 650 sGRB (24%), few similar

Where does it fit?

- All GBM GRBs analyzed consistently
- Generally: dimmer/softer than sGRBs but not unusually so
- Except soft episode, weak but ordinary short GRB

GRB 170817A - Energy distribution

GRB 170817A - Luminosity distribution

GRB 170817A - Hardness duration

GRB 170817A - spectrum - Main pulse

GRB 170817A - spectrum - soft emission

GRB 170817A - Fermi location at the time of discovery

- SAA high levels of charged particles
- Slightly different shape for LAT

GRB 170817A - spectrum

Time Range (s) Model	$E_{\rm peak}$ (keV)	Index	kT (keV)	Energy Flux $(10^{-7} \text{ erg s}^{-1} \text{ cm}^{-2})$
Standard Analysis					
-0.192:0.06	4 Comp	215 ± 54	0.14 ± 0.59	-	5.5 ± 1.2
-0.128:-0.06	4 Comp	229 ± 78	0.85 ± 1.38	-	7.3 ± 2.5
Detailed Analysis					
-0.320:0.25	б Сотр	185 ± 62	-0.62 ± 0.40	-	3.1 ± 0.7
0.832:1.984	BBody	-	-	$10.3 {\pm} 1.5$	0.53 ± 0.10

GRB 170817A - an off-axis GRB?

$$\frac{T_{90}(\text{off})}{T_{90}(\text{on})} = \frac{E_{\text{p}}(\text{on})}{E_{\text{p}}(\text{off})} = \frac{\delta_{\text{D}}(0)}{\delta_{\text{D}}(\theta_{\text{j}} - \theta_{\text{v}})} = \frac{1 - \beta \cos(\theta_{\text{j}} - \theta_{\text{v}})}{1 - \beta} \stackrel{\Delta}{=} b \approx 1 + \Gamma^{2}(\theta_{\text{v}} - \theta_{\text{j}})^{2}$$

- $\theta_{v} < 56^{\circ}$ GW only
- θ_ν <36° H₀ high+
 NGC 4993

Scenario i: Uniform Top-hat Jet

• $\theta_{v} < 28^{\circ} H_{0}$ low

- $E_{
 m p} pprox 200\,{
 m keV}$, $E_{\gamma,{
 m iso}} = 5.3 imes 10^{46}\,{
 m erg}~T_{90} pprox 2\,{
 m s}$,
- $E_p = 6(b/30) \text{ MeV}$, $E_{\gamma,\text{iso}} = 5 \times 10^{49} (b/30)^2 \text{ erg}$ $T_{90} = 7 \times 10^{-2} (b/30)^{-1} \text{ s.}$
- $\theta_{
 m v}=30^\circ$ and $\Gamma=300$: $\theta_{
 m v}-\theta_{
 m j}\simeq 1$ deg unlikely

•
$$\Gamma=$$
 30: $heta_{
m v}- heta_{
m j}\simeq$ 10 \pm 4 deg

Scenario ii: Structured Jet

Scenario iii: Uniform Jet + Cocoon

Sub-threshold searches (1)

- Ideal \sim GRB170817A/ GW170817
- GW 150914-GBM
- Typical distance short GRB

 Both sources faint joint data may be significant

