Timing and Spectral Variability in Black Holes

Abbie Stevens

NSF Astronomy & Astrophysics Postdoctoral Fellow Michigan State University & University of Michigan

X alstev@msu.edu

abigailstev

github.com/abigailstev

Outline

- Variability in stellar-mass black holes
- Spectral-timing analysis (incl. machine learning)
- Red noise vs. interesting signals
- Stingray: open-source spectral-timing software
- STROBE-X: next-gen. broadband X-ray observatory

A.L. Stevens • Michigan State U. & U. Michigan

Many are transient: outburst over months/year

Many are transient: outburst over months/year

- Quasi-periodic oscillations (QPOs)
 - High-frequency: 100's Hz
 - Hot blobs in Keplerian orbit at inner disk edge?

- Quasi-periodic oscillations (QPOs)
 - High-frequency: 100's Hz
 - Hot blobs in Keplerian orbit at inner disk edge?
 - Low-frequency: ~0.1-10's Hz
 - Precession of corona/hot flow? Magnetic warps in disk? Comptonized disk fluctuations?

- Quasi-periodic oscillations (QPOs)
 - High-frequency: 100's Hz
 - Hot blobs in Keplerian orbit at inner disk edge?
 - Low-frequency: ~0.1-10's Hz
 - Precession of corona/hot flow? Magnetic warps in disk? Comptonized disk fluctuations?

- Broadband noise (band-limited noise): $\leq 1 \text{ Hz}$
 - Propagating fluctuations in accretion disk?

• Orbital binary motion: period > 10 min

- Optical radial velocity measurements of companion star
- Power spectra of multiple epochs, multiple instruments, 10-60ks exposures

Bahramian+17

BH variability is hard to see by eye!

BH variability is hard to see by eye!

The timing toolbox

- Power spectra/periodograms
- Bispectra, bicoherence
- Coherence

The spectral-timing toolbox

- Power spectra/periodograms
- Bispectra, bicoherence
- Coherence
- rms and covariance spectra
- Cross spectra, cospectra
- Energy- and frequency-dependent time lags
- Cross-correlation
- Phase-resolved spectroscopy

Fourier techniques

AGN reverberation

<u>Reverberation mapping</u>: looking for "self" similarities between simultaneous light curves of different energies with cross spectral data products

See work by, e.g., Cackett, Fabian, Kara, Uttley, Wilkins, Zoghbi

A.L. Stevens • Michigan State U. & U. Michigan

AGN reverberation

<u>Reverberation mapping</u>: looking for "self" similarities between simultaneous light curves of different energies with cross spectral data products

See work by, e.g., Cackett, Fabian, Kara, Uttley, Wilkins, Zoghbi

A.L. Stevens • Michigan State U. & U. Michigan

AGN reverberation

- 1H0707-495 (NLS1)
- 1.3Ms of XMM data

Gaussian processes (recap from yesterday)

Modeling the light curve in the time domain

- CARMA models (Kelly+14)
- Celerite (Foreman-Mackey+17)
- ARIMA models (Zhang+18)

A.L. Stevens • Michigan State U. & U. Michigan

Machine learning for BH variability

GRS 1915+105: microquasar with 14 distinct variability states

Adapted from Huppenkothen+17

Machine learning for BH variability

- GRS 1915+105: microquasar with 14 distinct variability states
- How are the different variability patterns related?
 - Machine learning!

Image: XKCD; h/t D. Huppenkothen

States correlate with themselves (if in state χ , 85.9% of the time it stays in state χ)

Some states are more prone to transition to other states

Some states never transition to other states

0.0

~1 hr periodicity in RE J1034+396

- NLS1, 91 ks in 2007 with XMM-Newton
- Saw 16 'cycles' (periods) in one uninterrupted observation!
- Evenly-sampled time bins
- Signal attributed to high-freq.
 QPO
 - If at innermost stable circular orbit, M_{BH}~7x10⁶-1x10⁷ M_☉

Gierlinski+08

44 day low-freq. QPO in KIC 9650712

- NLS1 in original Kepler field
- 30 minute cadence over 3.5 years: ~30 cycles
- Tested periodicity via simulations (Uttley+02) and Lomb-Scargle periodogram

Beware of red noise!

- Red noise: steep power spectrum at low frequencies
- Cannot apply standard peak-finding algorithms, since those assume white noise (see Vaughan & Uttley '06)

Data looks periodic!

Vaughan+16 (figure); Liu+18

Data looks periodic!

Uneven sampling, gappy data, only 1.5 cycles

Data looks periodic!

Uneven sampling, gappy data, only 1.5 cycles

Sampling a random red noise process in same way can look like a "periodic" signal

A.L. Stevens • Michigan State U. & U. Michigan

Vaughan+16 (figure); Liu+18

A.L. Stevens • Michigan State U. & U. Michigan

Vaughan+16 (figure); Liu+18

Stingray: spectral-timing software

- Open-source, community-driven and -developed, python, Astropy-affiliated package
- <u>Stingray</u>: Python library of analysis tools
- HENDRICS: shell scripting interface
- <u>DAVE</u>: graphical user interface
- Tutorials in Jupyter(/iPython) notebooks
- github.com/StingraySoftware

- Leads: D. Huppenkothen, M. Bachetti, <u>A.L. Stevens</u>, S. Migliari, P. Balm
- Google Summer of Code students: <u>S. Sharma</u> ('18); O. Hammad and H. Rashid ('17); U. Khan, H. Mishra, and D. Sodhi ('16)
- Other major contributors: E. Martinez Ribeiro, R. Valles

Google Summer of Code

A.L. Stevens • Michigan State U. & U. Michigan

Stingray: spectral-timing software

- Library of time series analysis methods
 - Power spectra, cross spectra, bispectra
 - Lag-frequency & lag-energy spectra
 - Rms & covariance spectra
 - Coherence, cross-correlation
 - Handles GTIs, pulsar & QPO searches
 - Phase-resolved spectroscopy of QPOs

- Simulator, modeling
- Well-tested on X-ray timing data (RXTE, NuSTAR, XMM, some NICER); also used by a few people for radio timing

STROBE-X instrument concept

- Flexible, high-throughput X-ray observatory with large area
- Science drivers: spin distribution of BHs, X-ray reverberation, disk-jet connection, LIGO EM counterparts, GRBs, TDEs, etc!

STROBE-X instrument concept

- Flexible, high-throughput X-ray observatory with large area
- Science drivers: spin distribution of BHs, X-ray reverberation, disk-jet connection, LIGO EM counterparts, GRBs, TDEs, etc!

STROBE-X instrument concept

- Flexible, high-throughput X-ray observatory with large area
- Science drivers: spin distribution of BHs, X-ray reverberation, disk-jet connection, LIGO EM counterparts, GRBs, TDEs, etc!

Resources

- Understand assumptions of models, techniques;
 question your own assumptions about data, process
- Periodicities and simulations: Vaughan & Uttley '06; Vaughan+16; Liu, Gezari, & Miller '18; Barth & Stern '18
- Timing and spectral-timing: Vaughan '13; Uttley+14
 When in doubt, simulate!
- Spectral-timing software: StingraySoftware.github.io
- STROBE-X: see Ray+18 in SPIE
- See also talks this morning & Thursday morning

A.L. Stevens • Michigan State U. & U. Michigan

STROBE-X instrument parameters

Large Area Detector (LAD)	
Number of Modules	60
Eff. Area per Module (cm^2)	850
Effective Area (cm^2 @ 10 keV)	51,000
Energy Range	2–30 keV
Detector	SDD (segmented large-area)
Power per Module (W)	10
Instrument Power (W)	600
Background Rate (mcrab)	10
Background Rate (c/s)	1,480
Energy Resolution	200 – 300 eV FWHM
Collimator	1° FWHM
Time Resolution	10 µs
Count Rate on Crab (2-30 keV)	148,020
Telem Rate on 100 mcrab (kbps)	355

Wide-Field Monitor (WFM)		
# of Camera Pairs	4	
FOV/Camera Pair	70° × 70° FWHM	
Eff. Area/Camera Pair	364 cm^2	
Optics	1.5-D coded mask	
Energy Range	2-50 keV	
Energy Resolution	300 eV FWHM	
Detector	SDD (1.5D)	
Instrument Power (W)	92	
Sensitivity (1 s)	600 mcrab	
Sensitivity (1 day)	2 mcrab	
Sky Coverage (sr)	4.12	
Angular Resolution	4.3 arcmin	
Position Accuracy	1 arcmin	
Telemetry Rate (kpbs)	340	

X-ray Concentrator Array (XRCA)	
Number of XRC units	80
Eff. Area per XRCU	272
Effective Area (cm^2 @ 1.5 keV)	21,760
Energy Range	0.2–12 keV
Detector	SDD (single pixel)
Instrument Power (W)	140
Diffuse Background (c/s)	2.2
Radiation Background (c/s)	0.1
Background Rate (c/s)	2.2
Energy Resolution	85 – 175 eV FWHM
Collimator	4 arcmin FWHM
Time Resolution	100 ns
Count Rate on Crab (0.2-10 keV)	147,920
Telem Rate on 100 mcrab (kbps)	947

