

Complex spectro-temporal behaviour of Mrk 501 from unbiased monitoring

C. Romoli, M. Blank, N. Chakraborty, D. Dorner, A. Taylor, for the FACT and the HESS Collaborations

Monitoring the Non-thermal Universe 2018 Cochem – 17-21.09.2018

At the visibility edge for HESS: Visible only in high state and with large energy threshold

Markarian 501

- Second extragalactic source discovered at TeV energies (Quinn et al. 1996)
- Nearby (z = 0.034)

Several observation campaigns on it (Albert et al., 2007, Anderhub et al., 2009, Fermi-LAT, MAGIC, **VERITAS**, 2011) We should have a good knowledge of it, but it still surprises us!

HE behaviour very complex: hints of multiple components (e.g. Shukla et al. 2015) very hard photon index during flares (e.g. Neronov et al. 2011) The more we look, the more interesting it gets!

Flaring activity in June 2014

Flaring activity in June 2014

- HESS observations triggered by a FACT alert (Cologna et al., Chakraborty et al., ICRC 2015, GAMMA 2016)
- Detection of flare close to historical maximum
- Fermi-LAT data over multi-year interval

Monitoring at HE and VHE

- Various instruments to explore the behaviour at the highest energies
 - Fermi-LAT
 - FACT
 - Classic (IACT)
 - (HAWC)

No HAWC data for this dataset HAWC monitoring potential (Dorner et al. 2016; HAWC Coll., 2017)

See HAWC talk on Friday by M.M. Gonzalez

LAT – FACT – HESS

GOOD Energy range: 100 MeV < E <~ O(100 GeV) Large field of view: 2.4 srd Synoptic – unbiased monitoring

Small effective area: ~1 m²

GOOD Energy range: E >~ O(1 TeV)

Monitoring strategy

NOT SO GOOD

Low sensitivity

GOOD Energy range: E >~ O(1 TeV) for Mrk501

High sensitivity

NOT SO GOOD Biased observations

NOT SO GOOD

Flux distributions: normality vs log-normality

- The flux distribution gives insight on the processes responsible for the source variability
- Normal (Gaussian) flux Probability Density Function implies additive processes in the emission
- Log-normal PDF would naturally arise from multiplicative processes

Many examples of Log-normal behaviour in AGNs Favour multiplicative processes => constrain standard additive multi-zone framework (e.g. Uttley et al. 2005) Mathematical caveat : large number (O(10³)) of additive components (Biteau Thesis)

Flux distributions: Fermi - LAT

- Normal distribution consistent with the data (log-normal not)
- Shorter time-scales not enough precision to have a meaningful histogram
- Remaining questions:
 - Normality at low energies?
 - Normality at monthly timescales?

Flux distributions: FACT

 In the nightly light-curve for an energy threshold of 830 GeV there is a clear preference for log-normal flux distribution

Flux distributions: HESS

Above 2 TeV, on 4-min light-curve: still preference for log-normal flux distribution

Current observations show a stronger preference for lognormal distribution for nightwise LCs at TeV energies than monthly LCs at GeV energies – tricky to separate the temporal and spectral effects *Improved solution => unbiased monitoring*

Flux – Index relations

- Beside the flux variations, we can look also at spectral ones.
- Reconstruct the relations between flux level and photon index of the source
 - At TeV energies often observed a "harder-when-brighter" behaviour (Mrk 501 Cologna et al., ICRC2015; IC 310 MAGIC Coll., 2017, ...) even though the relation can be more complex (e.g. PKS 2155-304 flare, HESS Coll., 2010)
- Exploration of the existing relations for Mrk 501 in the different energy bands and different timescales sampled by LAT, FACT and HESS

Flux – Index relations TeV energies (HESS)

- Historical HESS observations on Mrk 501
- The HESS results with the "harderwhen-brighter" behaviour

MAGIC also reports similar behaviours (Anderhub et al., 2009)

See also talk by D. Paneque on Thursday on Mrk 501 and Mrk 421

Flux – Index relations GeV energies

- Fermi-LAT allows exploration in different energy bands
- Pearson's coefficient to check correlation between Flux and Index

(Similar distributions already in Shukla et al. 2015 and hint towards multiple spectral components)

Flux – Index relations Fermi-LAT above 1 GeV

 Photon index becomes completely independent from the flux level

Flux – Index relations TeV energies (FACT)

- FACT using Bayesian Blocks on nightly LC
- Larger spread of indices at low fluxes
- More similar to what seen in the Fermi-LAT data
- The relation for this source at TeV and GeV energies is more complex than previously thought.

Conclusions

- Evident log-normality in the flux distributions in the VHE regime at different timescales
- Different case for Fermi-LAT where flux distribution on monthly timescales is perfectly compatible with a Gaussian
- "Harder-when-brighter" behaviour at TeV energies could be an effect of observational bias.
- Need to disentangle between time-scale effects and overlay of different processes
- Unbiased monitoring fundamental to investigate properly the spectral and temporal properties

Back-up slides

