

Monitoring & Multi-Messenger Astronomy with IceCube

Monitoring the non-thermal Universe 2018 18.09.2018, Cochem

René Reimann

XITANA

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Multimessenger Astrophysics

Cosmic Rays interact with photons or matter surrounding the source

$$p + \gamma \rightarrow \pi^{0} + p$$

$$\rightarrow \gamma + \gamma + p$$

$$\rightarrow \pi^{+} + n$$

$$\rightarrow \mu^{+} + \nu_{\mu} + n$$

$$\rightarrow e^{+} + \overline{\nu}_{\mu} + \nu_{e} + \nu_{\mu} + n$$

From: http://gallery.icecube.wisc.edu/internal/d/318865-1/physicus.pdf

Charged cosmic rays

- accelerated in astrophysical objects
- deflected by intergalactic magnetic fields
- propagation effects energy spectrum

TeV gamma rays

- point back to place of origin
- may not leave the source region
- can be produced by leptonic processes

TeV neutrinos

- point back to place of origin
- not absorbed during their propagation
- hard to detect at Earth

Gravitational waves

Produced by extreme gravitational fields

Finding a neutrino point source is *smoking gun* for hadronic acceleration.

CECUBE

Transparency of the Universe

- Photons are absorbed above 10 TeV by interactions with photons
 - CMB
 - Start light

- ...

$$\gamma + \gamma \rightarrow e^+ + e^-$$

Protons are absorbed by the GZK mechanism

$$p + \gamma \rightarrow \Delta^+ \rightarrow \pi + N$$

- → At high energies the observable Universe is limited in cosmic rays and gamma rays
- → Neutrinos can probe the complete universe

50 m

IceTop

IceCube Data Taking

- Digital data acquisition at the surface
- Automated detector calibration
- Automated data processing and transmission by satellite north
- Special real-time systems for Alerts
- Operation-time > 99.7 %
- Physics data > 98.9%
- 1 neutrino (>TeV) every 7 minutes

Event Signatures

$$\begin{array}{l} \nu_{x} + N \rightarrow \nu_{x} + X \\ \nu_{e} + N \rightarrow e + X \\ \nu_{\tau} + N \rightarrow \tau + X \left(E_{\nu_{\tau}} < \sim PeV \right) \end{array}$$

$$\nu_{\mu} + N \to \mu + X$$

Credit: IceCube

- cascade-like signature
- energy fully contained in most events
 - ightarrow 15% deposited energy resolution
- spherical signature
 - \rightarrow 10-15° angular resolution (>100 TeV)

- track-like signature
- through-going / leaving the detector
 → factor of 2 energy resolution
- long leaver arm
 - \rightarrow < 1° angular resolution

September 2018

Monitoring & Multimessenger Astronomy with IceCube

Measurement of astrophysical v-flux

At lower energies, backgrounds dominate detection

- Atmospheric muons (Southern hemisphere)
- Atmospheric neutrinos (Northern hemisphere)

Select high-energy events

Through-going tracks (~2π FoV)

Select contained/starting events

• High-Energy Starting Events (4π FoV)

Neutrino 2018

CECUBE

High-Energy Starting Events 7.5 Year result

- 102 events total, 60 events with E_{dep} > 60 TeV (>75% astroph. purity)
- Improved calibration and reconstruction
- Fit-Range: 60 TeV < E_{dep} < 10 PeV
- Expected background: 0.65±0.2 (atm.μ) , 14.5^{+10.1}-8.1 (atm.ν, incl. prompt)
- Angular distribution cannot be described by backgrounds
- All flavor flux:

 $E^{-2}\phi = 2.19^{+1.10}_{-0.55} \times 10^{-8} \times (E / 100 \text{TeV})^{-0.91} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

• Spectrum relatively soft γ=2.91^{+0.33}-0.22

Flavor analysis of HESE data

- Two tau-neutrino candidate under investigation
- Result consistent with full 1:1:1 mixing
- Neutrino oscillations over >Mpc baselines
- Single flavor fluxes excluded
- Neutron decay scenario disfavored

Up-going Muons 8 year result

- High statististics ~500 000 neutrino events, purity > 99.7%
- Global fit of all data set including systematic uncertainties

 \Rightarrow Excellent agreement with simulation Exclusion of atmospheric origin @ 6.7 σ

- Clear high energy excess above about 200TeV
- Astro Flux $\nu_{\mu} + \bar{\nu}_{\mu}$ @ 100TeV: (1.01^{+0.26}_{-0.23}) × 10⁻¹⁸ GeV⁻¹cm⁻²s⁻¹sr⁻¹
- Hard Spectral index:

 $\gamma_{astro} = 2.19 \pm 0.10$

- No indication of prompt
- 36 events E_µ > 200TeV (p_{astro} >50%)
- Total ~1000 astrophysical neutrinos with good pointing

The High-Energy Neutrino Sky

N New Starting Tracks *N* New Starting Cascades

- N Earlier Starting Tracks
 N Earlier Starting Cascades
- N* Throughgoing Tracks

- Skymap of HESE+HEMU with P(astro)>50% (2017)
- No anisotrpy found in ~100 events
- Large amount of astrophysical neutrinos at lower energies ~1000
 →Use the full sample
- Background events from atmosphere do not cluster

The High-Energy Neutrino Sky

N New Starting Tracks *N* New Starting Cascades

N Earlier Starting Tracks
 N Earlier Starting Cascades

• N* Throughgoing Tracks

- Skymap of HESE+HEMU with P(astro)>50% (2017)
- No anisotrpy found in ~100 events
- Large amount of astrophysical neutrinos at lower energies ~1000
 →Use the full sample
- Background events from atmosphere do not cluster

Unbinned likelihood analysis

Unbinned Likelihood:

$$L = \sum_{i} \left[\frac{n_s}{N} S_i + \left(1 - \frac{n_s}{N} \right) B_i \right]$$

where:

- N number of events in sample
- n_s number of signal events $\rightarrow \phi_{100 TeV}$
- S_i Signal probability
- B_i Background probability

also use Spatial and Energy distribution

 $\begin{array}{l} \boldsymbol{\rightarrow} \quad S_i = S_{spat,i} \cdot S_{ener,i} \\ \boldsymbol{\rightarrow} \quad B_i = B_{spat,i} \cdot B_{ener,i} \end{array}$

Likelihood ratio test as test statistic

$$TS = -2 \cdot \log \left[\frac{L(\vec{x}_s, n_s = 0)}{L(\vec{x}_s, \hat{n}_s, \hat{\gamma})} \right]$$

- Time integrated unbinned point source hot spot search
- ~500k events from 8 years (NH) of data, energy-weighted to distinguish atmospheric (isotropic) and astrophysical neutrinos
- IceCube & ANTARES a-priori source catalog with 34 source on NH based on γ-observations 4 sources in catalog have local p-value ~1%
 - 1 galactic: MGRO J1908
 - 2 FSRQ: 4C38.41, 3C454.3
 - 1 FR-II radio galaxy: Cyg-A

→ Compatible with background

Large Scale Structure Galactic plane

Guaranteed (but weak) flux from galactic plane due to CR interactions with the ISM

- Expect ~40 v/a
- Measurement observes slight overfluctuation
- Upper limit very close to realistic estimate

Multi-Messenger

From: http://gallery.icecube.wisc.edu/internal/d/318865-1/physicus.pdf

UHECR correlation

- 300 cosmic ray events > 50 EeV (magnetic deflection small) from the Telescope Array and Pierre Auger
- HESE neutrinos + ~ a dozen events from other samples
- Cross correlation analysis of cosmic ray and neutrino arrival directions
- Stacking analysis with an assumed magnetic deflection of 6°
 - \rightarrow over a variety of tests no observed significance > 3.3 σ

Gravitational Wave correlation

- First black hole merger GW150914, observed by LIGO on Sep. 2015
- IceCube and Antares observed 3 and 0 neutrino candidates within ±500s
- consistent with the atmospheric expectation
- No SN alert triggered in IceCube (monitors average detector rate)

arXiv:1602.05411v3

Focus on well reconstructed track-like events

Use Iridium satellite to send data (2.4 kbps bandwidth, 24h available) Send alert data in two stages:

1. minimal message with alert stream, direction and few key parameters

2. full event data for follow-up program in Northern hemisphere Latency from detection to alert typically less than 1 minute (median 33 second) Program since April 2016 First alert follow up by PTF, ZTF, HAWC, VERITAS, MAGIC, HESS, Fermi LAT, Fermi GBM, Swift, ...

IceCube Alert Streams

Multiple Event Streams

Optical Follow-Up

- Neutrino doubles (2+)
- Northern hemisphere
- spatial & temporal clustered
- ~3 alerts/year

High Energy Starting Events

- High energy (>6000 PE)
- Veto of atmospheric muons
- Just tracks

Single Event Streams

- All sky tracks
- ~3-4 alerts/year

Gamma Follow-Up

- v multiplet from known γ sources
- All sky
- up to 3 weeks apart
- ~2 alerts/year

Extreme High Energy

- Optimized for GZK-v
- VHE through-going tracks
- PE > 3000, Hit DOMs > 300
- Good track reconstruction
- All sky
- ~4-5 alerts/year
 Aartsen *et al* Astropart. Phys. 92, 30-41 (2017)

Real-Time Multi-Messenge IceCube170922A

- Extreme-High Energy Alert
- on September 22, 2017
- uncertainty <1 deg² at 90% CL
- sent alert 43 seconds after detection
- 290 TeV neutrino energy assuming E^{-2.13}
- Signalness 56.5% (energy and declination)

	///////////////////////////////////////		
ITLE:	GCN/AMON NOTICE		
NOTICE DATE:	Fri 22 Sep 17 20:55:13 UT		
NOTICE TYPE:	AMON ICECUBE EHE		
RUN NUM:	130033		
EVENT NUM:	50579430		
SRC RA:	77.2853d {+05h 09m 08s} (J2000),		
-	77.5221d {+05h 10m 05s} (current),		
	76.6176d {+05h 06m 28s} (1950)		
SRC DEC:	+5.7517d {+05d 45' 06"} (J2000),		
-	+5.7732d {+05d 46' 24"} (current),		
	+5.6888d {+05d 41' 20"} (1950)		
SRC ERROR:	14.99 [arcmin radius, stat+sys, 50% containment]		
DISCOVERY_DATE:	18018 TJD; 265 DOY; 17/09/22 (yy/mm/dd)		
ISCOVERY_TIME:	75270 SOD {20:54:30.43} UT		
REVISION:	0		
L_EVENTS:	1 [number of neutrinos]		
STREAM:	2		
DELTA_T:	0.0000 [sec]		
SIGMA_T:	0.0000e+00 [dn]		
INERGY :	1.1998e+02 [TeV]		
SIGNALNESS:	5.6507e-01 [dn]		
CHARGE :	5784.9552 [pe]		
SUN_POSTN:	180.03d {+12h 00m 08s} -0.01d {-00d 00' 53"}		
SUN_DIST:	102.45 [deg] Sun_angle= 6.8 [hr] (West of Sun)		
100N_POSTN:	211.24d {+14h 04m 58s} -7.56d {-07d 33' 33"}		
100N_DIST:	134.02 [deg]		
GAL_COORDS:	195.31,-19.67 [deg] galactic lon, lat of the event		
CL_COORDS:	76.75,-17.10 [deg] ecliptic lon,lat of the event		
COMMENTS:	AMON_ICECUBE_EHE.		

Follow-up Observatories

Follow-up Observatories

Science Vol. 361, Issue 6398, eaat1378

• Fermi Large Area Telescope (LAT) detected counter part

- Blazar TXS 0506+056
- 0.16° from neutrino direction
- Blazar shows strong gamma-ray flare
- Detected by to separate Fermi online analysis
- HESS, VERITAS, MAGIC made follow-up observations
- No detection in the nights after neutrino alert
- Resumed follow-up after Fermi-LAT observation
- MAGIC found 374±62 excess photons
- MAGIC found γ-rays up to 400 GeV energy

Fermi-LAT Counts/Pixe

Multi-Wavelength Observation

high emission state

spectral variability

• significant variability

• correlation of VHE gamma-ray and X-ray

Differential Photon Spectrum

Blazar TXS 0506+056

TXS 0506+056

- not much known about blazar before alert
- Type: BL Lac
- RA: 5h 9' 25.96'' (77.36°), Dec: +5° 41' 35.32'' (5.69°)
- z= 0.3365 ± 0.0010 (Pianno, et al. ApJ 854 (2018) 2)
- one of the most luminous blazars

But how often does this happen by chance?

- 2257 cataloged extragalactic Fermi-LAT sources
- Light curves above 1 GeV in monthly bins
- Likelihood ratio test comparing random coincidence (H0) to correlation between γ-ray flux & neutrino-flux for several models
 - Energy flux, Flux variability, VHE detection
 - 4.1σ preference for correlated emission
- Trials corrected:
- previous alerts + 41 additional events that would have generated alerts, had they been operational
- **3.00** preference for correlated emission

CECUBE

Archival Data

- IceCube has about 10 years of data
- Use selection developed for PS searches
- About 70000 muon tracks pre year
- Dominated by atmospheric muons and neutrinos
- Added all available data up to October 2017
- Run previous developed point source analysis

Astron.Astrophys. 539 (2012) A60

Time Integrated Result

Time Dependent Result

Evidence of time-dependent emissions:

- 13 ± 5 events over background (5.8 events, in 1° radius, 158 days)
- Independent of, and prior to neutrino alert

	Gaussian	Box
T ₀	13 Dec 2014 ± 21 days	26 Dec 2014
T _w	110^{+35}_{-24} days	158 days
p _{val} (season)	3×10^{-5}	7×10^{-5}
p _{val} (overall)	1×10^{-4} (3.7o)	$2 imes 10^{-4}$ (3.5 σ)

Best of both with trial factor of $2 \rightarrow 3.5\sigma$

v-directional correlation with Blazars

- IceCube published limit on blazar contribution to diffuse astrophysical neutrino flux
- Using 2nd Fermi LAT catalog of 862 Blazars
- Stacking of all neutrino directions
- No significant excess in 4 year IceCube data
- 2LAC blazars < 27% observed astrophysical neutrino flux (assuming E^{-2.5})
- < 40% 80% (assuming E⁻², > 200 TeV)
- TXS flux is 1% of 9.5 year diffuse flux

CECUBE

ApJ 835 (2017) 45

- IceCube has observed an astrophysical neutrino flux
 - With High Energy Starting Events
 - With through-going Muons

Conclusions

- IceCube has observed an astrophysical neutrino flux
 - With High Energy Starting Events
 - With through-going Muons
- No significant identification of galactic plane (yet)
- No significant identification of an individual point-like source
- No significant identification of a neutrino UHECR correlation
- No significant identification of a neutrino GW correlation

Conclusions

- IceCube has observed an astrophysical neutrino flux
 - With High Energy Starting Events
 - With through-going Muons
- No significant identification of galactic plane (yet)
- No significant identification of an individual point-like source
- No significant identification of a neutrino UHECR correlation
- No significant identification of a neutrino GW correlation
- On September 22 2017 IceCube sent an alert of a well localized high-energy track-like event: IC170922A (signalness = 56%)
- Found strongly flaring gamma-ray counterpart TXS 0506+056
 →3.0σ evidence for correlated emission
 →one of the most luminous known Blazars
- Search for neutrino emission in IceCube archival data
 - \rightarrow 3.5 σ evidence for a neutrino flare at end of 2014 from the same source

Conclusions

- IceCube has observed an astrophysical neutrino flux
 - With High Energy Starting Events
 - With through-going Muons
- No significant identification of galactic plane (yet)
- No significant identification of an individual point-like source
- No significant identification of a neutrino UHECR correlation
- No significant identification of a neutrino GW correlation
- On September 22 2017 IceCube sent an alert of a well localized high-energy track-like event: IC170922A (signalness = 56%)
- Found strongly flaring gamma-ray counterpart TXS 0506+056
 →3.0σ evidence for correlated emission
 →one of the most luminous known Blazars
- Search for neutrino emission in IceCube archival data
 - \rightarrow 3.5 σ evidence for a neutrino flare at end of 2014 from the same source

ightarrow Starting to become interesting, stay tuned

