

EFT descriptions of Higgs boson pair production

Annual Meeting of the CRC TRR 257, A1b

Jannis Lang | March 11, 2024

INSTITUTE FOR THEORETICAL PHYSICS

Mainly based on collaborative research works:

- [1] JHEP 08 (2022) 079
- [2] https://arxiv.org/abs/2304.01968
- [3] https://arxiv.org/abs/2310.18221
- [4] https://arxiv.org/abs/2311.15004

[Heinrich,JL,Scyboz '22] [CERN LHC Higgs WG4 note] [Di Noi,Gröber,Heinrich,JL,Vitti '23] [Heinrich,JL '23]

Relevance of *hh* **production in an EFT framework**

Effective field theory basics

Top-down perspective

- Effective low-energy description integrating out heavy particles with mass $M \sim \Lambda$
- Example: Fermi theory of weak interaction and heavy top limit

$$\overset{A}{\longrightarrow} \overset{E \ll \Lambda}{\longrightarrow} \overset{\Delta \mathcal{L}}{\longrightarrow} \Delta \mathcal{L} = \frac{c}{\Lambda^2} \bar{\psi}_i \gamma^{\mu} \psi_j \, \bar{\psi}_k \gamma_{\mu} \psi_l + \mathcal{O}\left(\Lambda^{-4}\right)$$

Bottom-up EFT: systematic parameterisation for unknown new physics above energy scale Λ

Standard Model Effective Field Theory (SMEFT)

Higgs Effective Field Theory (HEFT)

Introduction O	SMEFT and HEFT ●00	Benchmark study with ggHH_SMEFT	C_{tG} and 4-top contributions	Summary O
Jannis Lang – EFT descript	ons of Higgs boson pair production		March 11, 2024	3/13

Two bottom-up EFT systematics: SMEFT vs. HEFT

SMEFT:

- Decoupling scenario for $\Lambda \to \infty :$ doublet Higgs
- Expansion of contributions according to

$$\begin{split} \Delta \mathcal{L}_{\mathsf{SMEFT}}^{\mathsf{lead}} &= \frac{\mathcal{C}_{\mathcal{H}\square}}{\Lambda^2} (\phi^{\dagger} \phi) \square (\phi^{\dagger} \phi) + \frac{\mathcal{C}_{\mathcal{H}D}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{\mathcal{C}_{\mathcal{H}}}{\Lambda^2} (\phi^{\dagger} \phi)^3 \\ &+ \frac{\mathcal{C}_{\mathcal{H}}}{\Lambda^2} \left((\phi^{\dagger} \phi) (\bar{Q}_L t_R \tilde{\phi}) + \mathsf{H.c.} \right) + \frac{\mathcal{C}_{\mathcal{H}G}}{\Lambda^2} (\phi^{\dagger} \phi) \, G_{\mu\nu}^a \, G^{a\,\mu\nu} \end{split}$$

HEFT:

- Non-decoupling scenario: singlet Higgs
- Contributions ordered by loop expansion

canonical dimension d_c : L, L : loop factor $(16\pi^2)^{-1}$ strong coupling g_s : $\mathcal{O}\left({f \Lambda}^{-d_c} \left(g_s^2 L
ight)^{l_{
m QCD}} {f L}^{l_{
m non-QCD}}
ight)$

Two bottom-up EFT systematics: SMEFT vs. HEFT

SMEFT:

- Decoupling scenario for $\Lambda \to \infty$: doublet Higgs
- Expansion of contributions according to

$$\Delta \mathcal{L}_{\mathsf{SMEFT}}^{\mathsf{lead}} = \frac{\mathcal{C}_{H\Box}}{\Lambda^2} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{\mathcal{C}_{HD}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{\mathcal{C}_{H}}{\Lambda^2} (\phi^{\dagger} \phi) + \frac{\mathcal{C}_{H}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{Q}_L t_R \tilde{\phi}) + \mathsf{H.c.} + \frac{\mathcal{C}_{HG}}{\Lambda^2} (\phi^{\dagger} \phi) G^a_{\mu\nu} G^{a\mu\nu}$$

HEFT:

Introduct

Jannis Lang - EFT descriptions of Higgs boson pair production

- Non-decoupling scenario: singlet Higgs
- Contributions ordered by loop expansion

$$\mathcal{L}_{\mathsf{HEFT}}^{\mathsf{lead}} = -m_t \left(C_{tth} \frac{h}{v} + C_{tthh} \frac{h^2}{v^2} \right) \overline{t} t - C_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(C_{ggh} \frac{h}{v} + C_{ggh} \right) \frac{C_{ggh}}{C_{gghh}}$$

$$\mathcal{M}_{\mathsf{HEFT}}^{\mathsf{LO}} = \underbrace{\mathfrak{s}}_{\mathcal{C}_{tth}} + \underbrace{\mathfrak{s}}_{\mathcal{C}_{thh}} +$$

Summarv

4/13

canonical dimension

March 11, 2024

 d_c :

SMEFT truncation

SMEFT truncation of cross section:

	$\sigma_{SM} + \sigma_{SM imes \dim 6}$	(a)
	$\sigma_{({ m SM+dim6}) imes ({ m SM+dim6})}$	(b)
$\simeq \langle$	$\sigma_{\rm (SM+dim6)\times(SM+dim6)}+\sigma_{\rm SM\times dim6^2}$	(c)
	$\sigma_{(SM+\dim 6+\dim 6^2)\times(SM+\dim 6+\dim 6^2)}$	(d)

Summary O 5/13

SMEFT truncation

⇒ Implemented at NLO QCD in the POWHEG BOX translating ggHH → ggHH_SMEFT:

SMEFT truncation of cross section:

$$\sigma \simeq \begin{cases} \sigma_{\rm SM} + \sigma_{\rm SM \times dim6} & (a) \\ \\ \sigma_{\rm (SM+dim6) \times (SM+dim6)} & (b) \\ \\ \sigma_{\rm (SM+dim6) \times (SM+dim6)} + \sigma_{\rm SM \times dim6^2} & (c) \\ \\ \\ \sigma_{\rm (SM+dim6+dim6^2) \times (SM+dim6+dim6^2)} & (d) \end{cases}$$

Reals: Modified version of 1-loop ME provider GoSam Virtuals: Adjust grids encoding 2-loop corrections

$$\mathcal{V}_{\text{fin}} = \sum a_i \, c_{hhh}^{n_{hhh,i}} \, c_{tth}^{n_{tth,i}} \, c_{tthh}^{n_{tth,i}} \, c_{ggh}^{n_{ggh,i}} \, c_{gghh}^{n_{ggh,i}}$$

 C_{rG} and 4-top contributions
 Summary

 OOOO
 March 11, 2024
 5/13

Invariant mass distributions at NLO QCD [1]

- Truncation (a): negative cross section
- \Rightarrow Valid HEFT point invalid in SMEFT after naive translation
- Distributions converge for increasing Λ
- \Rightarrow Consistent with measure for truncation validity

Introduction O	SMEFT and HEFT	Benchmark study with ggHH_SMEFT $\bullet \circ$	C_{tG} and 4-top contributions	Summary O
Jannis Lang – EFT descriptio	ns of Higgs boson pair production		March 11, 2024	6/13

Invariant mass distributions at NLO QCD m

Λ

1 TeV

- No negative cross sections
- Typical shape not recovered for SMEFT (except for (d))
- Difference HEFT \leftrightarrow (d) mainly from $\alpha_s(\mu)$
- Shapes converge faster for increasing Λ

SMEET and HEET Benchmark study with ggHH_SMEFT 0. Jannis Lang - EFT descriptions of Higgs boson pair production

 C_{ic} and 4-top contributions Summarv 00000 March 11, 2024 7/13

Amplitude with C_{tG} and 4-top insertion [4]

- $\mathcal{M}_{tG}, \mathcal{M}_{4t} \sim \mathcal{O}\left(\left(g_s^2 L\right) L \Lambda^{-2}\right)$ subleading w.r.t. $\mathcal{M}_{dim6}^{LO} \sim \mathcal{O}\left(\left(g_s^2 L\right) \Lambda^{-2}\right)$
- 4-top contributions factorise in 1-loop structures \Rightarrow Added analytically to ggHH_SMEFT
- Cross check with GoSam or multi-loop framework alibrary (QGraf, FORM, Kira, pySecDec)

Amplitude with C_{tG} and 4-top insertion [3,4]

- $\mathcal{M}_{tG}, \mathcal{M}_{4t} \sim \mathcal{O}\left((g_s^2 L) \mathrel{\textbf{L}} \Lambda^{-2}\right)$ subleading w.r.t. $\mathcal{M}_{dim6}^{LO} \sim \mathcal{O}\left((g_s^2 L) \mathrel{\Lambda^{-2}}\right)$
- 4-top contributions factorise in 1-loop structures \Rightarrow Added analytically to ggHH_SMEFT
- Cross check with GoSam or multi-loop framework alibrary (QGraf, FORM, Kira, pySecDec)
- Study structure of different γ_5 scheme choices in dimensional regularisation

 $\bar{\gamma}_{5} \text{ in 4-dim:} \quad (1) \ \{\bar{\gamma}_{5}, \bar{\gamma}^{\mu}\} = 0 \qquad (2) \ \operatorname{Tr}\left[\bar{\gamma}^{\mu_{1}} \bar{\gamma}^{\mu_{2}} \bar{\gamma}^{\mu_{3}} \bar{\gamma}^{\mu_{4}} \bar{\gamma}_{5}\right] = -4i \bar{\epsilon}^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} \qquad (3) \ \operatorname{Tr}\left[\Gamma_{1} \Gamma_{2} \bar{\gamma}_{5}\right] = \operatorname{Tr}\left[\Gamma_{2} \bar{\gamma}_{5} \Gamma_{1}\right]$

 γ_5 in *D*-dim: NDR: $\{\gamma_5, \gamma^\mu\} = 0$

BMHV: $\gamma_5 \equiv \bar{\gamma}_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$

Introduct

$$\bar{\gamma}_{5} \text{ in 4-dim:} \quad (1) \ \{\bar{\gamma}_{5}, \bar{\gamma}^{\mu}\} = 0 \qquad (2) \ \operatorname{Tr}\left[\bar{\gamma}^{\mu_{1}} \bar{\gamma}^{\mu_{2}} \bar{\gamma}^{\mu_{3}} \bar{\gamma}^{\mu_{4}} \bar{\gamma}_{5}\right] = -4i \, \bar{\epsilon}^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} \qquad (3) \ \operatorname{Tr}\left[\Gamma_{1} \Gamma_{2} \bar{\gamma}_{5}\right] = \operatorname{Tr}\left[\Gamma_{2} \bar{\gamma}_{5} \Gamma_{1}\right]$$

 γ_5 in *D*-dim:

NDR:
$$\{\gamma_5, \gamma^\mu\} = 0$$

BMHV:
$$\gamma_5 \equiv \bar{\gamma}_5 = i \gamma^0 \gamma^1 \gamma^2$$

Jannis Lang - EFT descriptions of Higgs boson pair production

Amplitude structure for single 4-top Wilson coefficients γ₅ scheme dependent

Introduction O	SMEFT and HEFT	Benchmark study with ggHH_SMEFT	C_{tG} and 4-top contributions	Summary O
Jannis Lang - EFT descriptions of Higgs boson pair production		on	March 11, 2024	10/13

collaboration, S] Ranges from ([2105.00006 (§

 C_{tG} and 4-top contributions Introduction SMEFT and HEFT Benchmark study with ggHH_SMEFT Summarv Jannis Lang - EFT descriptions of Higgs boson pair production March 11, 2024 11/13

 $\Rightarrow \gamma_5$ scheme independence requires multi-parameter contributions

00000

Jannis Lang – EFT descriptions of Higgs boson pair production

March 11, 2024

 C_{ic} and 4-top contributions

Summary 0 11/13

equivalent parameterisation of new physics

 γ_5 scheme independence requires multi-parameter contributions

0000

Jannis Lang - EFT descriptions of Higgs boson pair production

Ethier

collaboration

March 11, 2024

 C_{ic} and 4-top contributions

Summary

 $\begin{array}{l} \mathcal{C}_{H}, \mathcal{C}_{tH}, \mathcal{C}_{HG}, \mathcal{C}_{H; \, \mathrm{kin}} @ \texttt{NLO QCD} \\ \mathcal{C}_{tG} \ \& \ \mathcal{C}_{Ql}^{(1)}, \mathcal{C}_{Ql}^{(6)}, \mathcal{C}_{QQ}^{(1)}, \mathcal{C}_{QQ}^{(6)}, \mathcal{C}_{tt} \\ \text{truncation options} \end{array}$

 γ_5 schemes NDR & BMHV

- Naive translation from HEFT \rightarrow SMEFT can lead out of validity of Λ^{-2} expansion
- γ_5 scheme independence at higher orders requires inclusive selection of contributions
- gg o h(h) can potentially help to improve global fits of ${\cal C}^{(1)}_{Qt}$ and ${\cal C}^{(8)}_{Qt}$

Future directions

- Scale dependence of Wilson coefficients
- EW corrections required for complete subleading operator contribution
- Exhaustive study of γ_5 schemes in EFTs

Public implementations of EFT tools for $gg \rightarrow hh$

Higgs Effective Field Theory (HEFT):

- I O and NI O OCD HTL HPATE.
- Full mt NLO QCD POWHEG-BOX-V2/ggHH
- Non-public state-of-the-art NNLO' (HTL NNLO, full mt NLO) Ide Florian, Fabre, Heinrich, Mazitelli, Scyboz '211

Standard Model Effective Field Theory (SMEFT):

LO and NLO QCD HTL HPAIR. [Gröber.Mühlleitner.Spira.Streicher '15]

LO (1-loop) including C_{tG} SMEFT@NLO + MG5_aMC@NLO

[Degrande.Durieux.Maltoni.Mimasu.Vrvonidou.Zhang '20]

Full mt NLO QCD POWHEG-BOX-V2/ggHH_SMEFT with truncation options [4] + \mathcal{C}_{tc} and 4-top Comparison with other tools Benchmark study Backup **Uncertainties** C_{tG}, C_{4t} and γ_5 More details about HEFT Jannis Lang - EFT descriptions of Higgs boson pair production March 11, 2024 14/13

[Gröber.Mühlleitner.Spira.Streicher '15]

Naive benchmark translation

Consider HEFT benchmark points with characteristic m_{hh} -distributions:

- Benchmark 1: enhanced low *m*_{hh} region
- Benchmark 6: close-by double peaks
- benchmark 3: enhanced low m_{hh} region and second local maximum above m_{hh} ~ 2m_t

benchmark	C hhh	C _t	Ctt	C _{ggh}	C gghh	$\mathcal{C}_{H; kin}$	\mathcal{C}_{H}	\mathcal{C}_{tH}	\mathcal{C}_{HG}	٨
SM	1	1	0	0	0	0	0	0	0	1 TeV
1	5.105	1.1	0	0	0	4.95	-6.81	3.28	0	1 TeV
6	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25	0.561	3.80	2.20	0.0387	1 TeV
3	2.21	1.05	$-\frac{1}{3}$	0.5	0.25*	13.5	2.64	12.6	0.0387	1 TeV
3	2.21	1.05	$-\frac{1}{3}$	0.5	0.25	13.5	2.04	12.0	0.0387	1

 \Rightarrow SMEFT expansion based on $E^2 \frac{C_i}{\Lambda^2} \ll 1$ justified?

 \mathcal{C}_{HG} obtained using $\alpha_s(m_Z) = 0.118$

Comparison with other tools

Uncertainties

Jannis Lang - EFT descriptions of Higgs boson pair production

March 11, 2024

15/13

Jannis Lang - EFT descriptions of Higgs boson pair production

March 11, 2024

15/13

Invariant mass distributions at NLO QCD [1]

- Truncation (a): negative cross section
- \Rightarrow Valid HEFT point invalid in SMEFT after naive translation
- Distributions converge for increasing Λ
- \Rightarrow Consistent with measure for truncation validity

Comparison with other tools	Benchmark study Backup	Uncertainties	$\mathcal{C}_{tG}, \mathcal{C}_{4t}$ and γ_5	More de	tails about HEFT
Jannis Lang - EFT descriptions of Higgs bo	son pair production		March 1	1, 2024	16/13

Invariant mass distributions at NLO QCD m

Λ

1 TeV

No negative cross sections

Comparison with other tools

Typical shape not recovered for SMEFT (except for (d))

 C_{tG}, C_{4t} and γ_5 Benchmark study Backup **Uncertainties** More details about HEFT 0000

Jannis Lang - EFT descriptions of Higgs boson pair production

Difference HEFT \leftrightarrow (d) mainly from $\alpha_s(\mu)$

Shapes converge faster for increasing Λ

17/13

Invariant mass distributions at NLO QCD [1]

Comparison with other tools O_{OOO} Benchmark study Backup O_{OOO} Uncertainties O_{OOO} C_{IG} , C_{4t} and γ_5 More details about HEFT O_{OOO} Jannis Lang – EFT descriptions of Higgs boson pair production March 11, 2024 18/13

Estimating theory uncertainties	
$\Delta \sigma \sim \frac{+\Delta_{\text{scale}+}}{-\Delta_{\text{scale}+}} + \frac{+\Delta_{m_l} \text{ scheme}+}{-\Delta_{m_l} \text{ scheme}+} \pm \Delta_{\text{num. grid}} (\pm \Delta_{\text{EFT trunc.}}) \pm \Delta_{\text{PDF}+\alpha_s} \pm \Delta_{\text{EW}}$	[Li,Si,Wang,Zhang,Zhao '24] $\{\pm \Delta_{\text{Decay}}\}$
• $\Delta_{\text{scale }\pm}$: Determined by 7-point variation of μ_R , $\mu_F = \{0.5, 1, 2\} \cdot \mu_0$ $\mathcal{O}(15\%)$ for NLO QCD SM, 15 - 20% for NLO QCD SMEFT truncation (b) ben	chmark 1& 6
 <u>A_{mt} scheme ±</u>: In principle needs determination for each point in EFT paramete available) [Baglio et al '18] [Baglio et al '20] [Baglio et al '20] 	r space! (not yet

■ △_{num. grid}: Numerical uncertainty of V_{fin} due to grid population, not covered by Monte Carlo statistical uncertainty of POWHEG!

• $\Delta_{\text{EFT trunc.}}$: No quantitative prescription, qualitative observation of truncation options

- $\Delta_{\text{PDF}+\alpha_s} \approx 3\%$ ($\sqrt{s} = 13 \text{ TeV}$): B.I. NNLO HTL and employing PDF4LHCNNLO [twiki *hh* cross group] stable for *chhh* variation, but might rise if tail enhanced
- Δ_{EW}: NLO EW for SM available, 10% effects w.r.t. LO QCD for threshold and tails [Bi,Huang,Ma,Yu '23] unknown for EFT scenario, combines with subleading operator contributions!

 Comparison with other tools
 Benchmark study Backup
 Uncertainties
 C₁₆, C₄₁ and γ_5 More details about HEFT

 o
 Jannis Lang – EFT descriptions of Higgs boson pair production
 March 11, 2024
 19/13

m_t renormalisation scheme uncertainty

[Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '18] [Baglio.Campanario.Glaus.Mühlleitner.Ronca.Spira.Streicher '20] [Baglio Campanario Glaus Mühlleitner Bonca Spira '20]

- Prediction depends on m_t scheme (on-shell vs. *MS* with varying scale)
- Uncertainty sensitive to choice of $C_{hhh} = \kappa_{\lambda}$
- Sensitivity to variations of c_t , c_{tt} expected

Comparison with other tools

Benchmark study Backup

to

I Incertainties 0.00

 $\mathcal{C}_{tG}, \mathcal{C}_{4t}$ and γ_5

More details about HEET

Jannis Lang - EFT descriptions of Higgs boson pair production

March 11, 2024

20/13

Numerical grids uncertainty

- Low (and high) m_{hh} region very sparsely populated in virtual grids, due to small contribution in SM
- $\Rightarrow O(12\%)$ uncertainty for SM in first bin not represented by Monte Carlo statistical uncertainty in POWHEG
- \Rightarrow Uncertainty much worse for scenarios with enhanced low m_{hh} region

Comparison with other tools	Benchmark study Backup	Uncertainties ○O●	$\mathcal{C}_{tG}, \mathcal{C}_{4t}$ and γ_5	More detail	ls about HEFT
Jannis Lang - EFT descriptions of Higgs bo	son pair production		March 1	1, 2024	21/13

C_{tG} and irrelevant 4-top contributions [4]

Jannis Lang - EFT descriptions of Higgs boson pair production

^{22/13}

Jannis Lang - EFT descriptions of Higgs boson pair production

23/13

March 11, 2024

$\gamma_{\rm 5}$ scheme translation

$$\mathcal{L}_{4t} \supset \frac{\mathcal{C}_{Qt}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma^\mu Q_L) \bar{t}_R \gamma_\mu t_R \qquad \mathcal{L}_{\psi 2\phi 2D} \supset \frac{\mathcal{C}_{HO}^{(1)}}{\Lambda^2} (\phi^{\dagger} i \overleftrightarrow{D}^{\mu} \phi) \bar{t}_R \gamma_\mu t_R \qquad \mathcal{L}_{tG} = \frac{\mathcal{C}_{tG}}{\Lambda^2} \left((\bar{Q}_L \sigma^{\mu\nu} T^a t_R \widetilde{\phi}) G_{\mu\nu}^a + \text{H.c.} \right) \\ + \frac{\mathcal{C}_{Qt}^{(8)}}{\Lambda^2} (\bar{Q}_L \gamma^\mu T^a Q_L) \bar{t}_R \gamma_\mu T^a t_R \qquad + \frac{\mathcal{C}_{Ht}}{\Lambda^2} (\phi^{\dagger} i \overleftrightarrow{D}^{\mu} \phi) (\bar{Q}_L \gamma_\mu Q_L) \qquad \mathcal{L}_{tH} = \frac{\mathcal{C}_{tH}}{\Lambda^2} \left((\phi^{\dagger} \phi) (\bar{Q}_L t_R \widetilde{\phi}) + \text{H.c.} \right)$$

$$\begin{split} y_{t}^{\text{BMHV}} &= y_{t}^{\text{NDR}} \left(1 - \frac{\lambda v^{2}}{16\pi^{2}} \frac{\mathcal{C}_{Qt}^{(1)} + c_{\text{F}} \mathcal{C}_{Qt}^{(8)}}{\Lambda^{2}} - \frac{\lambda v^{2}}{32\pi^{2}} \frac{\mathcal{C}_{HQ}^{(1)} - \mathcal{C}_{Ht}}{\Lambda^{2}} + \dots \right) \\ \mathcal{C}_{tH}^{\text{BMHV}} &= \mathcal{C}_{tH}^{\text{NDR}} + \frac{y_{t}(y_{t}^{2} - \lambda)}{8\pi^{2}} \left(\mathcal{C}_{Qt}^{(1)} + c_{\text{F}} \mathcal{C}_{Qt}^{(8)} \right) - \frac{y_{t}(y_{t}^{2} + 3\lambda)}{48\pi^{2}} \left(\mathcal{C}_{HQ}^{(1)} - \mathcal{C}_{Ht} \right) + \dots \\ \mathcal{C}_{tG}^{\text{BMHV}} &= \mathcal{C}_{tG}^{\text{NDR}} - \frac{g_{s} y_{t}}{16\pi^{2}} \left(\mathcal{C}_{Qt}^{(1)} + \left(c_{\text{F}} - \frac{c_{A}}{2} \right) \mathcal{C}_{Qt}^{(8)} \right) + \frac{g_{s} y_{t}}{48\pi^{2}} \left(\mathcal{C}_{HQ}^{(1)} - \mathcal{C}_{Ht} \right) + \dots \end{split}$$

Comparison with other tools

1

Benchmark study Backup

Uncertainties

 $\underset{000}{\overset{\mathcal{C}_{tG}, \, \mathcal{C}_{4t}}{\overset{\text{and}}{\rightarrow}} \gamma_5 }$

More details about HEFT

Jannis Lang - EFT descriptions of Higgs boson pair production

March 11, 2024

25/13

More details about HEFT

- HEFT: Non-linear theory (EW χ L)
 - Motivation as analogue to chiral pert. theory
 - BSM: can be strongly coupling New Physics
 - Light Higgs is EW gauge singlet
 - Goldstone matrix transforms non-trivially

$$D_{\mu}h = \partial_{\mu}h$$

 $U(x) \rightarrow g_L(x)U(x)g_V^{\dagger}(x)$, with $U = \exp(i\sigma^a \varphi^a / v)$ and $g_L \in SU(2)_L, g_Y \in U(1)_Y \subset SU(2)_R$ $D_{\mu}U = \partial_{\mu}U + igW^{i}_{\mu}T^{i}_{\mu}U - ig^{\prime}B_{\mu}UT^{3}_{\mu}$

• Chiral dimension of operators $d_{\gamma}(\partial, \bar{\psi}\psi, g, y) = 1$ • Expansion in $\frac{f^2}{\Lambda^2} \sim \frac{1}{10^{-2}}$ (\Rightarrow loop counting)

$$\mathcal{L}_{HEFT} \sim \mathcal{L}_{HEFT}^{LO} + \sum_{L=1} \sum_{i} \left(\frac{1}{16\pi^2} \right)^L c_i \mathcal{O}_i^{d_\chi = 2 + 2L}$$

Comparison with other tools Jannis Lang - EFT descriptions of Higgs boson pair production

Benchmark study Backup

Uncertainties

More details about HEFT

HEFT: **•** Explicit form of LO Lagrangian:

$$\mathcal{L}_{HEFT}^{LO} = \mathcal{L}_4 + \frac{v^2}{4} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \left(1 + F_U(h) \right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h)$$

- $v \left[\bar{q}_L \left(\hat{Y}_u + F_{\hat{Y}_u^{(n)}}(h) \right) U \begin{pmatrix} u_R \\ 0 \end{pmatrix} \dots + \text{h.c.} \right]$ with $F_i(h) = \sum_{n=1}^{\infty} f_i^{(n)} \left(\frac{h}{v} \right)^n$

$$\Rightarrow$$
 Relevant parts for $gg \rightarrow hh$:

