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Non-factorizable corrections appear in QCD processes which, at tree level, are mediated by exchanges of colorless 
particles.  Two most famous examples are single top production and Higgs production in weak boson fusion.   These 
processes are used by the LHC collaborations to study e.g. tbW and HVV couplings, as well as other physical 
quantities related to top and Higgs physics.
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<latexit sha1_base64="CRPKc5bYEoilepqNmndOYSG9vjw=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VG/1cnmrYKWAf4k9J/nzN/Msev0wa73ce7cf4jggXGGGpOzYVqTcBAlFMSMTsxtLEiE8QgPS0ZSjgEg3SQ+dwCOt9KEfCl1cwVT9PpGgQMpx4OnOAKmh/O1Nxf+8Tqz8sptQHsWKcDxb5McMqhBOv4Z9KghWbKwJwoLqWyEeIoGw0tmYaQiVkuOUncXLOoRKuVi0TxdK86RglwrFupWvXoAZsuAAHIJjYAMHVMEVqIEGwICAO/AAHo0b4954Mp5nrRljPrMPfsB4+QI3LpBs</latexit>

W
<latexit sha1_base64="f/Dz4BSqY5/BaajrVXuBTRawpOA=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VPd6ubxVsFLAv8Sek/z5m3kWvX6YtV7uvdsPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4JFW+tAPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1Z+2U0oj2JFOJ4t8mMGVQinX8M+FQQrNtYEYUH1rRAPkUBY6WzMNIRKyXHKzuJlHUKlXCzapwuleVKwS4Vi3cpXL8AMWXAADsExsIEDquAK1EADYEDAHXgAj8aNcW88Gc+z1owxn9kHP2C8fAFH2pB3</latexit>

b
<latexit sha1_base64="KuqnMLgiaVG6UdWcX+3vFl0N76U=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VFe9XN4qWCngX2LPSf78zTyLXj/MWi/33u2HOA4IV5ghKTu2FSk3QUJRzMjE7MaSRAiP0IB0NOUoINJN0kMn8EgrfeiHQhdXMFW/TyQokHIceLozQGoof3tT8T+vEyu/7CaUR7EiHM8W+TGDKoTTr2GfCoIVG2uCsKD6VoiHSCCsdDZmGkKl5DhlZ/GyDqFSLhbt04XSPCnYpUKxbuWrF2CGLDgAh+AY2MABVXAFaqABMCDgDjyAR+PGuDeejOdZa8aYz+yDHzBevgBjIpCJ</latexit>

t

<latexit sha1_base64="1vahneHixwaoiUAKFjCczHdHqeU=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VI97ubxVsFLAv8Sek/z5m3kWvX6YtV7uvdsPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4JFW+tAPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1Z+2U0oj2JFOJ4t8mMGVQinX8M+FQQrNtYEYUH1rRAPkUBY6WzMNIRKyXHKzuJlHUKlXCzapwuleVKwS4Vi3cpXL8AMWXAADsExsIEDquAK1EADYEDAHXgAj8aNcW88Gc+z1owxn9kHP2C8fAFkppCK</latexit>u
<latexit sha1_base64="SWNu8szNajHHU6nrEsOzSM8Zw+I=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymUzbsZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgNM+xUhpqe73cnmrYKWAf4k9J/nzN/Msev0wa73ce9cPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4JFWfNgPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1b9sptQHsWKcDxb1I8ZVCGcfg19KghWbKwJwoLqWyEeIoGw0tmYaQiVkuOUncXLOoRKuVi0TxdK86RglwrFupWvXoAZsuAAHIJjYAMHVMEVqIEGwICAO/AAHo0b4954Mp5nrRljPrMPfsB4+QJK4pB5</latexit>

d

<latexit sha1_base64="boB5P+K3TKIgr/jMkbzZyJ6vb2o=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi266bMG2QhvKZDppx04mYWYilNAvcONCEbf6Me7diH/jNC3F14ELh3Pu5d57vIhRqSzr08gsLa+srmXXzY3Nre2d3O5eS4axwKSJQxaKaw9JwignTUUVI9eRICjwGGl7o8up374lQtKQX6lxRNwADTj1KUZKS41aL5e3ClYK+JfYc5I/fzPPotcPs97LvXf7IY4DwhVmSMqObUXKTZBQFDMyMbuxJBHCIzQgHU05Coh0k/TQCTzSSh/6odDFFUzV7xMJCqQcB57uDJAayt/eVPzP68TKL7sJ5VGsCMezRX7MoArh9GvYp4JgxcaaICyovhXiIRIIK52NmYZQKTlO2Vm8rEOolItF+3ShtE4KdqlQbFj56gWYIQsOwCE4BjZwQBXUQB00AQYE3IEH8GjcGPfGk/E8a80Y85l98APGyxcgcpBd</latexit>

H

<latexit sha1_base64="jgnVMwNpk54FaYouK+KUDuDWglY=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VG/2cnmrYKWAf4k9J/nzN/Msev0wa73ce7cf4jggXGGGpOzYVqTcBAlFMSMTsxtLEiE8QgPS0ZSjgEg3SQ+dwCOt9KEfCl1cwVT9PpGgQMpx4OnOAKmh/O1Nxf+8Tqz8sptQHsWKcDxb5McMqhBOv4Z9KghWbKwJwoLqWyEeIoGw0tmYaQiVkuOUncXLOoRKuVi0TxdK86RglwrFupWvXoAZsuAAHIJjYAMHVMEVqIEGwICAO/AAHo0b4954Mp5nrRljPrMPfsB4+QI1qpBr</latexit>

V

<latexit sha1_base64="jgnVMwNpk54FaYouK+KUDuDWglY=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VG/2cnmrYKWAf4k9J/nzN/Msev0wa73ce7cf4jggXGGGpOzYVqTcBAlFMSMTsxtLEiE8QgPS0ZSjgEg3SQ+dwCOt9KEfCl1cwVT9PpGgQMpx4OnOAKmh/O1Nxf+8Tqz8sptQHsWKcDxb5McMqhBOv4Z9KghWbKwJwoLqWyEeIoGw0tmYaQiVkuOUncXLOoRKuVi0TxdK86RglwrFupWvXoAZsuAAHIJjYAMHVMEVqIEGwICAO/AAHo0b4954Mp5nrRljPrMPfsB4+QI1qpBr</latexit>

V

<latexit sha1_base64="byt6YhlleBNDkcAph/jU49FIIw4=">AAAB6HicbVDLSsNAFJ3UV62vqktFBovgqiRim3ZXdOOyBfuANpTJdNKOnUzizEQooUtXblwo4tav6He48xv8CadpKb4OXDiccy/33uOGjEplmh9Gaml5ZXUtvZ7Z2Nza3snu7jVkEAlM6jhggWi5SBJGOakrqhhphYIg32Wk6Q4vp37zjghJA36tRiFxfNTn1KMYKS3VbrvZnJk3E8C/xJqTXOVwUvu8P5pUu9n3Ti/AkU+4wgxJ2bbMUDkxEopiRsaZTiRJiPAQ9UlbU458Ip04OXQMT7TSg14gdHEFE/X7RIx8KUe+qzt9pAbytzcV//PakfJKTkx5GCnC8WyRFzGoAjj9GvaoIFixkSYIC6pvhXiABMJKZ5NJQigXbbtkL17WIZRLhYJ1vlAaZ3mrmC/UdBoXYIY0OADH4BRYwAYVcAWqoA4wIOABPIFn48Z4NF6M11lrypjP7IMfMN6+AOv/kPA=</latexit>q

<latexit sha1_base64="jzovoE/Bdb+7AuTcRt01XnQevqQ=">AAAB6nicbVDLSsNAFJ3UV62vqktFBovgqiRim3ZXdOOyRfuANpTJdNIOnUzizEQooUuXblwo4taP6He48xv8CadpKb4OXDiccy/33uOGjEplmh9Gaml5ZXUtvZ7Z2Nza3snu7jVkEAlM6jhggWi5SBJGOakrqhhphYIg32Wk6Q4vp37zjghJA36jRiFxfNTn1KMYKS1d33atbjZn5s0E8C+x5iRXOZzUPu+PJtVu9r3TC3DkE64wQ1K2LTNUToyEopiRcaYTSRIiPER90taUI59IJ05OHcMTrfSgFwhdXMFE/T4RI1/Kke/qTh+pgfztTcX/vHakvJITUx5GinA8W+RFDKoATv+GPSoIVmykCcKC6lshHiCBsNLpZJIQykXbLtmLl3UI5VKhYJ0vlMZZ3irmCzWdxgWYIQ0OwDE4BRawQQVcgSqoAwz64AE8gWeDGY/Gi/E6a00Z85l98APG2xcRaJGU</latexit>q1
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At NLO QCD, two classes of contributions appear.  However, the non-factorizable contributions vanish at this order  
because of color conservation.

<latexit sha1_base64="DHjNBUaApR+XTug/IZSNxSsLUQk=">AAAB6HicbVDLSgMxFM3UVx1fVZdugkVwNcxI59GFWHTjsgXbCm0pmTRtYzMPkoxQhn6BGxeKuNWPce9G/BszHSkqHhI4nHMv997jx4wKaZqfWmFpeWV1rbiub2xube+UdvdaIko4Jk0csYhf+0gQRkPSlFQych1zggKfkbY/ucj89i3hgkbhlZzGpBegUUiHFCOppIbRL5VNw6zY6sGMOJZXzUnFMaFlmHOUz9700/j1Q6/3S+/dQYSTgIQSMyRExzJj2UsRlxQzMtO7iSAxwhM0Ih1FQxQQ0Uvni87gkVIGcBhx9UMJ5+rPjhQFQkwDX1UGSI7FXy8T//M6iRx6vZSGcSJJiPNBw4RBGcHsajignGDJpoogzKnaFeIx4ghLlY0+D6HquK7nLk5WIVQ927YqC6V1YliOYTfMcu0c5CiCA3AIjoEFXFADl6AOmgADAu7AA3jUbrR77Ul7zksL2nfPPvgF7eULWFeQhQ==</latexit>.<latexit sha1_base64="DHjNBUaApR+XTug/IZSNxSsLUQk=">AAAB6HicbVDLSgMxFM3UVx1fVZdugkVwNcxI59GFWHTjsgXbCm0pmTRtYzMPkoxQhn6BGxeKuNWPce9G/BszHSkqHhI4nHMv997jx4wKaZqfWmFpeWV1rbiub2xube+UdvdaIko4Jk0csYhf+0gQRkPSlFQych1zggKfkbY/ucj89i3hgkbhlZzGpBegUUiHFCOppIbRL5VNw6zY6sGMOJZXzUnFMaFlmHOUz9700/j1Q6/3S+/dQYSTgIQSMyRExzJj2UsRlxQzMtO7iSAxwhM0Ih1FQxQQ0Uvni87gkVIGcBhx9UMJ5+rPjhQFQkwDX1UGSI7FXy8T//M6iRx6vZSGcSJJiPNBw4RBGcHsajignGDJpoogzKnaFeIx4ghLlY0+D6HquK7nLk5WIVQ927YqC6V1YliOYTfMcu0c5CiCA3AIjoEFXFADl6AOmgADAu7AA3jUbrR77Ul7zksL2nfPPvgF7eULWFeQhQ==</latexit>.

<latexit sha1_base64="CRPKc5bYEoilepqNmndOYSG9vjw=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VG/1cnmrYKWAf4k9J/nzN/Msev0wa73ce7cf4jggXGGGpOzYVqTcBAlFMSMTsxtLEiE8QgPS0ZSjgEg3SQ+dwCOt9KEfCl1cwVT9PpGgQMpx4OnOAKmh/O1Nxf+8Tqz8sptQHsWKcDxb5McMqhBOv4Z9KghWbKwJwoLqWyEeIoGw0tmYaQiVkuOUncXLOoRKuVi0TxdK86RglwrFupWvXoAZsuAAHIJjYAMHVMEVqIEGwICAO/AAHo0b4954Mp5nrRljPrMPfsB4+QI3LpBs</latexit>

W

<latexit sha1_base64="KuqnMLgiaVG6UdWcX+3vFl0N76U=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VFe9XN4qWCngX2LPSf78zTyLXj/MWi/33u2HOA4IV5ghKTu2FSk3QUJRzMjE7MaSRAiP0IB0NOUoINJN0kMn8EgrfeiHQhdXMFW/TyQokHIceLozQGoof3tT8T+vEyu/7CaUR7EiHM8W+TGDKoTTr2GfCoIVG2uCsKD6VoiHSCCsdDZmGkKl5DhlZ/GyDqFSLhbt04XSPCnYpUKxbuWrF2CGLDgAh+AY2MABVXAFaqABMCDgDjyAR+PGuDeejOdZa8aYz+yDHzBevgBjIpCJ</latexit>

t

<latexit sha1_base64="OT+gZn4cd80Do9wqcLbKPacjb0g=">AAAB6nicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25cVuxDaGOZTCft0MkkzEyEEvoJblwo4lL/xb0b8W+cpqX4OnDhcM693HuPFzEqlWV9GpmFxaXlleyquba+sbmV295pyjAWmDRwyEJx7SFJGOWkoahi5DoSBAUeIy1veD7xW7dESBryuhpFxA1Qn1OfYqS0dFW/Qd1c3ipYKeBfYs9I/vTNPIlePsxaN/fe6YU4DghXmCEp27YVKTdBQlHMyNjsxJJECA9Rn7Q15Sgg0k3SU8fwQCs96IdCF1cwVb9PJCiQchR4ujNAaiB/exPxP68dK7/sJpRHsSIcTxf5MYMqhJO/YY8KghUbaYKwoPpWiAdIIKx0OmYaQqXkOGVn/rIOoVIuFu3judI8KtilQvHSylfPwBRZsAf2wSGwgQOq4ALUQANg0Ad34AE8Gsy4N56M52lrxpjN7IIfMF6/AJ79kTw=</latexit>

T a

<latexit sha1_base64="OT+gZn4cd80Do9wqcLbKPacjb0g=">AAAB6nicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25cVuxDaGOZTCft0MkkzEyEEvoJblwo4lL/xb0b8W+cpqX4OnDhcM693HuPFzEqlWV9GpmFxaXlleyquba+sbmV295pyjAWmDRwyEJx7SFJGOWkoahi5DoSBAUeIy1veD7xW7dESBryuhpFxA1Qn1OfYqS0dFW/Qd1c3ipYKeBfYs9I/vTNPIlePsxaN/fe6YU4DghXmCEp27YVKTdBQlHMyNjsxJJECA9Rn7Q15Sgg0k3SU8fwQCs96IdCF1cwVb9PJCiQchR4ujNAaiB/exPxP68dK7/sJpRHsSIcTxf5MYMqhJO/YY8KghUbaYKwoPpWiAdIIKx0OmYaQqXkOGVn/rIOoVIuFu3judI8KtilQvHSylfPwBRZsAf2wSGwgQOq4ALUQANg0Ad34AE8Gsy4N56M52lrxpjN7IIfMF6/AJ79kTw=</latexit>

T a

<latexit sha1_base64="EVrYLN7eLukQAL7AbgGnRekR2p8=">AAAB+nicbVDLSsNAFJ34rPWV6tLN0CIIQknENu1CKLpxWaEvaGKZTKft0MmDmYkSYv/CrRsXirj1S9z1b5ympfg6cOFwzr3ce48bMiqkYUy1ldW19Y3NzFZ2e2d3b1/PHbREEHFMmjhgAe+4SBBGfdKUVDLSCTlBnstI2x1fzfz2HeGCBn5DxiFxPDT06YBiJJXU03OJzT3Y4JNu4xY58AIaPb1gFI0U8C8xF6RQy9unj9NaXO/pn3Y/wJFHfIkZEqJrGqF0EsQlxYxMsnYkSIjwGA1JV1EfeUQ4SXr6BB4rpQ8HAVflS5iq3ycS5AkRe67q9JAcid/eTPzP60ZyUHES6oeRJD6eLxpEDMoAznKAfcoJlixWBGFO1a0QjxBHWKq0smkI1bJlVazlyyqEaqVUMs+XSuusaJaLpRuVxiWYIwOOQB6cABNYoAauQR00AQb34Am8gFftQXvW3rT3eeuKtpg5BD+gfXwB2GqWRQ==</latexit>

Tr[T a] = 0<latexit sha1_base64="oUMOOGynhmUYD7d/nHGtoDDH7dg=">AAAB7nicbVDLSgMxFM34bOur6tLNYBFclRmxnXZXdOOygn1gO5RMmmlDM0lIMmIZ+hFuBBVx685/cefXaDotxdeBC4dz7uXeewJBidKO82EtLa+srq1nsrmNza3tnfzuXlPxWCLcQJxy2Q6gwpQw3NBEU9wWEsMooLgVjM6nfusGS0U4u9Jjgf0IDhgJCYLaSK0u1yTCqpcvOEUnhf2XuHNSqGXFw/Xb7We9l3/v9jmKI8w0olCpjusI7SdQaoIonuS6scICohEc4I6hDJolfpKeO7GPjNK3Qy5NMW2n6veJBEZKjaPAdEZQD9Vvbyr+53ViHVb8hDARa8zQbFEYU1tze/q73ScSI03HhkAkibnVRkMoIdImoVwaQrXseRVv8bIJoVopldzThdI8KbrlYunSpHEGZsiAA3AIjoELPFADF6AOGgCBEbgDj+DJEta99Wy9zFqXrPnMPvgB6/ULyIGTzw==</latexit>⌦

Factorizable corrections 

<latexit sha1_base64="CRPKc5bYEoilepqNmndOYSG9vjw=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VG/1cnmrYKWAf4k9J/nzN/Msev0wa73ce7cf4jggXGGGpOzYVqTcBAlFMSMTsxtLEiE8QgPS0ZSjgEg3SQ+dwCOt9KEfCl1cwVT9PpGgQMpx4OnOAKmh/O1Nxf+8Tqz8sptQHsWKcDxb5McMqhBOv4Z9KghWbKwJwoLqWyEeIoGw0tmYaQiVkuOUncXLOoRKuVi0TxdK86RglwrFupWvXoAZsuAAHIJjYAMHVMEVqIEGwICAO/AAHo0b4954Mp5nrRljPrMPfsB4+QI3LpBs</latexit>

W

<latexit sha1_base64="KuqnMLgiaVG6UdWcX+3vFl0N76U=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VFe9XN4qWCngX2LPSf78zTyLXj/MWi/33u2HOA4IV5ghKTu2FSk3QUJRzMjE7MaSRAiP0IB0NOUoINJN0kMn8EgrfeiHQhdXMFW/TyQokHIceLozQGoof3tT8T+vEyu/7CaUR7EiHM8W+TGDKoTTr2GfCoIVG2uCsKD6VoiHSCCsdDZmGkKl5DhlZ/GyDqFSLhbt04XSPCnYpUKxbuWrF2CGLDgAh+AY2MABVXAFaqABMCDgDjyAR+PGuDeejOdZa8aYz+yDHzBevgBjIpCJ</latexit>

t

<latexit sha1_base64="oUMOOGynhmUYD7d/nHGtoDDH7dg=">AAAB7nicbVDLSgMxFM34bOur6tLNYBFclRmxnXZXdOOygn1gO5RMmmlDM0lIMmIZ+hFuBBVx685/cefXaDotxdeBC4dz7uXeewJBidKO82EtLa+srq1nsrmNza3tnfzuXlPxWCLcQJxy2Q6gwpQw3NBEU9wWEsMooLgVjM6nfusGS0U4u9Jjgf0IDhgJCYLaSK0u1yTCqpcvOEUnhf2XuHNSqGXFw/Xb7We9l3/v9jmKI8w0olCpjusI7SdQaoIonuS6scICohEc4I6hDJolfpKeO7GPjNK3Qy5NMW2n6veJBEZKjaPAdEZQD9Vvbyr+53ViHVb8hDARa8zQbFEYU1tze/q73ScSI03HhkAkibnVRkMoIdImoVwaQrXseRVv8bIJoVopldzThdI8KbrlYunSpHEGZsiAA3AIjoELPFADF6AOGgCBEbgDj+DJEta99Wy9zFqXrPnMPvgB6/ULyIGTzw==</latexit>⌦

Non-factorizable corrections 
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T aT a = CF
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At NNLO QCD, the situation changes: non-factorizable contributions do not vanish anymore. However,   they are color-
suppressed relative to the factorizable ones. As the result, the NNLO QCD corrections to  both single top production 
and to Higgs boson production in WBF were originally computed neglecting the non-factorizable contributions. 
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t

Non-factorizable corrections at NNLO are 
effectively abelian.  This reduces the number 
of diagrams one needs to consider and leads 
to other  simplifications.

Factorizable corrections 

Non-factorizable corrections 
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nfact

fact
⇠ N�2

c ⇠ 10�1
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The color suppression argument does not appear to hold upon a more careful analysis because  there is a peculiar 
dynamical enhancement of the non-factorizable corrections.  This enhancement was discovered when trying to 
understand if it is possible to compute the required two-loop amplitude, if even approximately.
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pj1,j2? > 25 GeV, |yj1,j)2| < 4.5

|yj1 � yj2 | > 4.5, mj1j2 > 600 GeV
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Expansion around the forward limit of tagging jets leads to the eikonal approximation for the loop integrand.
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p?,3 ⇠ p?,4 ⇠ mV ⇠ mH ⌧
p
s

To understand how to construct an  expansion of the amplitude, we employ the kinematics of weak boson fusion 
where forward (tagging) jets with large invariant mass and large rapidity separation are selected.

Liu, Melnikov, Penin



 Kirill Melnikov                                                                                                              Non-factorizable corrections in weak boson fusion processes

The main idea behind the eikonal approximation is that high-energy quarks follow straight lines and do not recoil because 
the exchanged gluons are soft.  Rules for constructing the amplitude are:

6

pj1,j2? > 25 GeV, |yj1,j)2| < 4.5

|yj1 � yj2 | > 4.5, mj1j2 > 600 GeV
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Sudakov, Lipatov, Gribov, Cheng, Wu, Chang, Ma

1) eikonal propagators for quark lines:  

2) eikonal couplings of quarks to gluons: 

3) no longitudinal loop momenta components in gluon and vector boson propagators:   

�2ie pµ
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Typical WBF cuts

g
<latexit sha1_base64="6CZoLmchak7PeUGdbOiCR035cyo=">AAAB6HicbVDLSgNBEOyNrxhfUY96GAyCp7DrJR6DXjwmYB6QLGF20puMmZ1dZmaFsOQLvHhQxKtf4Xd48+anOHkcNLGgoajqprsrSATXxnW/nNza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbD6g0j+WdGSfoR3QgecgZNVaqD3rFklt2ZyCrxFuQUvX0o/4NALVe8bPbj1kaoTRMUK07npsYP6PKcCZwUuimGhPKRnSAHUsljVD72ezQCTm3Sp+EsbIlDZmpvycyGmk9jgLbGVEz1MveVPzP66QmvPIzLpPUoGTzRWEqiInJ9GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc3LsueWvbpN4xrmyMMJnMEFeFCBKtxCDRrAAOERnuHFuXeenFfnbd6acxYzx/AHzvsP2y+PLA==</latexit><latexit sha1_base64="QYiVIz1HWeqSAcfYlxshn5OrYrE=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqvTa+YJbdKcgy8Sbk0LpeFz5fjwZl9v5z1YnYkmI0jBBtW56bmz8lCrDmcBRrpVojCkb0B42LZU0RO2n00NH5MwqHdKNlC1pyFT9PZHSUOthGNjOkJq+XvQm4n9eMzHdKz/lMk4MSjZb1E0EMRGZfE06XCEzYmgJZYrbWwnrU0WZsdnkbAje4svLpHZR9NyiV7FpXMMMWTiCUzgHDy6hBLdQhiowQHiCF3h17p1n5815n7VmnPnMIfyB8/EDuXSQkg==</latexit><latexit sha1_base64="QYiVIz1HWeqSAcfYlxshn5OrYrE=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqvTa+YJbdKcgy8Sbk0LpeFz5fjwZl9v5z1YnYkmI0jBBtW56bmz8lCrDmcBRrpVojCkb0B42LZU0RO2n00NH5MwqHdKNlC1pyFT9PZHSUOthGNjOkJq+XvQm4n9eMzHdKz/lMk4MSjZb1E0EMRGZfE06XCEzYmgJZYrbWwnrU0WZsdnkbAje4svLpHZR9NyiV7FpXMMMWTiCUzgHDy6hBLdQhiowQHiCF3h17p1n5815n7VmnPnMIfyB8/EDuXSQkg==</latexit><latexit sha1_base64="/PJ7Z1iFzXuG81L8a5C962ANKKY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVao0G15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WW2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QPLNYzn</latexit>

V
<latexit sha1_base64="VhmoshLrlAeH741qcsocHS+LHDE=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVat0S2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPbfs1dxS5RpmysMRHMMpeHAOFbiFKtSBAcITvMCrc+88O2/O+6w058x7DuGPnI8fILiOow==</latexit><latexit sha1_base64="Nxheu69uMqdDkPok5Y7OkJTNTNk=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXXyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8SR5AX</latexit><latexit sha1_base64="Nxheu69uMqdDkPok5Y7OkJTNTNk=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXXyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8SR5AX</latexit><latexit sha1_base64="bK4AoZpVsNJfGdmb/OozznVIG0w=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVa7UG15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WW2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QOxcYzW</latexit>

V
<latexit sha1_base64="VhmoshLrlAeH741qcsocHS+LHDE=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVat0S2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPbfs1dxS5RpmysMRHMMpeHAOFbiFKtSBAcITvMCrc+88O2/O+6w058x7DuGPnI8fILiOow==</latexit><latexit sha1_base64="Nxheu69uMqdDkPok5Y7OkJTNTNk=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXXyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8SR5AX</latexit><latexit sha1_base64="Nxheu69uMqdDkPok5Y7OkJTNTNk=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXXyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8SR5AX</latexit><latexit sha1_base64="bK4AoZpVsNJfGdmb/OozznVIG0w=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVa7UG15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WW2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QOxcYzW</latexit>

H
<latexit sha1_base64="F0ndkRFiHMACnNvAGHXwZHm71hQ=">AAAB6HicbZC7SwNBEMbnfMb4ilraLAbBKtzZaCMGbVImYB6QHGFvM5es2ds7dveEcATsbSwUsfWfsbfzv3HzKDTxg4Uf3zfDzkyQCK6N6347K6tr6xubua389s7u3n7h4LCh41QxrLNYxKoVUI2CS6wbbgS2EoU0CgQ2g+HtJG8+oNI8lndmlKAf0b7kIWfUWKtW6RaKbsmdiiyDN4fi9Wf+6hEAqt3CV6cXszRCaZigWrc9NzF+RpXhTOA430k1JpQNaR/bFiWNUPvZdNAxObVOj4Sxsk8aMnV/d2Q00noUBbYyomagF7OJ+V/WTk146WdcJqlByWYfhakgJiaTrUmPK2RGjCxQpridlbABVZQZe5u8PYK3uPIyNM5Lnlvyam6xfAMz5eAYTuAMPLiAMlSgCnVggPAEL/Dq3DvPzpvzPitdceY9R/BHzscPC4COlQ==</latexit><latexit sha1_base64="FAlAosIQa5DYsJs20oqD86uLjs4=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdG23EoE3KBMwFkiXMTs4mY2Znl5lZISx5AhsLRWz1YextxLdxcik08YeBj/8/hznnBAlnSrvut5VbWV1b38hv2lvbO7t7hf2DhopTSbFOYx7LVkAUciawrpnm2Eokkijg2AyGN5O8eY9SsVjc6lGCfkT6goWMEm2sWqVbKLoldypnGbw5FK8+7Mvk/cuudgufnV5M0wiFppwo1fbcRPsZkZpRjmO7kypMCB2SPrYNChKh8rPpoGPnxDg9J4yleUI7U/d3R0YipUZRYCojogdqMZuY/2XtVIcXfsZEkmoUdPZRmHJHx85ka6fHJFLNRwYIlczM6tABkYRqcxvbHMFbXHkZGmclzy15NbdYvoaZ8nAEx3AKHpxDGSpQhTpQQHiAJ3i27qxH68V6nZXmrHnPIfyR9fYD/QCQCQ==</latexit><latexit sha1_base64="FAlAosIQa5DYsJs20oqD86uLjs4=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdG23EoE3KBMwFkiXMTs4mY2Znl5lZISx5AhsLRWz1YextxLdxcik08YeBj/8/hznnBAlnSrvut5VbWV1b38hv2lvbO7t7hf2DhopTSbFOYx7LVkAUciawrpnm2Eokkijg2AyGN5O8eY9SsVjc6lGCfkT6goWMEm2sWqVbKLoldypnGbw5FK8+7Mvk/cuudgufnV5M0wiFppwo1fbcRPsZkZpRjmO7kypMCB2SPrYNChKh8rPpoGPnxDg9J4yleUI7U/d3R0YipUZRYCojogdqMZuY/2XtVIcXfsZEkmoUdPZRmHJHx85ka6fHJFLNRwYIlczM6tABkYRqcxvbHMFbXHkZGmclzy15NbdYvoaZ8nAEx3AKHpxDGSpQhTpQQHiAJ3i27qxH68V6nZXmrHnPIfyR9fYD/QCQCQ==</latexit><latexit sha1_base64="tDL0KQj7rKPwqwJH9dydiNL0U6A=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UhJtKCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0fuF3n1BpHssHM0vQj+hY8pAzaqzUagzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHNz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/VabqV+l8dRhAu4hGvw4Bbq0IAmtIEBwjO8wpvz6Lw4787HqrXg5DPn8AfO5w+cOYzI</latexit>

g
<latexit sha1_base64="6CZoLmchak7PeUGdbOiCR035cyo=">AAAB6HicbVDLSgNBEOyNrxhfUY96GAyCp7DrJR6DXjwmYB6QLGF20puMmZ1dZmaFsOQLvHhQxKtf4Xd48+anOHkcNLGgoajqprsrSATXxnW/nNza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbD6g0j+WdGSfoR3QgecgZNVaqD3rFklt2ZyCrxFuQUvX0o/4NALVe8bPbj1kaoTRMUK07npsYP6PKcCZwUuimGhPKRnSAHUsljVD72ezQCTm3Sp+EsbIlDZmpvycyGmk9jgLbGVEz1MveVPzP66QmvPIzLpPUoGTzRWEqiInJ9GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc3LsueWvbpN4xrmyMMJnMEFeFCBKtxCDRrAAOERnuHFuXeenFfnbd6acxYzx/AHzvsP2y+PLA==</latexit><latexit sha1_base64="QYiVIz1HWeqSAcfYlxshn5OrYrE=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqvTa+YJbdKcgy8Sbk0LpeFz5fjwZl9v5z1YnYkmI0jBBtW56bmz8lCrDmcBRrpVojCkb0B42LZU0RO2n00NH5MwqHdKNlC1pyFT9PZHSUOthGNjOkJq+XvQm4n9eMzHdKz/lMk4MSjZb1E0EMRGZfE06XCEzYmgJZYrbWwnrU0WZsdnkbAje4svLpHZR9NyiV7FpXMMMWTiCUzgHDy6hBLdQhiowQHiCF3h17p1n5815n7VmnPnMIfyB8/EDuXSQkg==</latexit><latexit sha1_base64="QYiVIz1HWeqSAcfYlxshn5OrYrE=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqvTa+YJbdKcgy8Sbk0LpeFz5fjwZl9v5z1YnYkmI0jBBtW56bmz8lCrDmcBRrpVojCkb0B42LZU0RO2n00NH5MwqHdKNlC1pyFT9PZHSUOthGNjOkJq+XvQm4n9eMzHdKz/lMk4MSjZb1E0EMRGZfE06XCEzYmgJZYrbWwnrU0WZsdnkbAje4svLpHZR9NyiV7FpXMMMWTiCUzgHDy6hBLdQhiowQHiCF3h17p1n5815n7VmnPnMIfyB8/EDuXSQkg==</latexit><latexit sha1_base64="/PJ7Z1iFzXuG81L8a5C962ANKKY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVao0G15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WW2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QPLNYzn</latexit>

p1
<latexit sha1_base64="Tw9NfDegvlkvJ+mqwAGhXNz3At4=">AAAB6nicbVDLSgNBEOyNrxhfUY96GAyCp7DrJR6DXjwmaB6QLGF20psMmZ1dZmaFsOQTvHhQxKsf4Xd48+anOHkcNLGgoajqprsrSATXxnW/nNza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbD6g0j+W9GSfoR3QgecgZNVa6S3per1hyy+4MZJV4C1Kqnn7UvwGg1it+dvsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bnToh51bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1IRXfsZlkhqUbL4oTAUxMZn+TfpcITNibAllittbCRtSRZmx6RRsCN7yy6ukeVn23LJXt2lcwxx5OIEzuAAPKlCFW6hBAxgM4BGe4cURzpPz6rzNW3POYuYY/sB5/wEOOo/Z</latexit><latexit sha1_base64="G2nRI9RQJ7VPBa7CQ63Q+R8Mmtw=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmgckS5id9CZDZmeXmVkhhBw9evGgiFc/It/hzW/wJ5w8DppY0FBUddPdFSSCa+O6X05mZXVtfSO7mdva3tndy+8f1HScKoZVFotYNQKqUXCJVcONwEaikEaBwHrQv5n49QdUmsfy3gwS9CPalTzkjBor3SVtr50vuEV3CrJMvDkplI7Hle/Hk3G5nf9sdWKWRigNE1Trpucmxh9SZTgTOMq1Uo0JZX3axaalkkao/eH01BE5s0qHhLGyJQ2Zqr8nhjTSehAFtjOipqcXvYn4n9dMTXjlD7lMUoOSzRaFqSAmJpO/SYcrZEYMLKFMcXsrYT2qKDM2nZwNwVt8eZnULoqeW/QqNo1rmCELR3AK5+DBJZTgFspQBQZdeIIXeHWE8+y8Oe+z1owznzmEP3A+fgDscJE/</latexit><latexit sha1_base64="G2nRI9RQJ7VPBa7CQ63Q+R8Mmtw=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmgckS5id9CZDZmeXmVkhhBw9evGgiFc/It/hzW/wJ5w8DppY0FBUddPdFSSCa+O6X05mZXVtfSO7mdva3tndy+8f1HScKoZVFotYNQKqUXCJVcONwEaikEaBwHrQv5n49QdUmsfy3gwS9CPalTzkjBor3SVtr50vuEV3CrJMvDkplI7Hle/Hk3G5nf9sdWKWRigNE1Trpucmxh9SZTgTOMq1Uo0JZX3axaalkkao/eH01BE5s0qHhLGyJQ2Zqr8nhjTSehAFtjOipqcXvYn4n9dMTXjlD7lMUoOSzRaFqSAmJpO/SYcrZEYMLKFMcXsrYT2qKDM2nZwNwVt8eZnULoqeW/QqNo1rmCELR3AK5+DBJZTgFspQBQZdeIIXeHWE8+y8Oe+z1owznzmEP3A+fgDscJE/</latexit><latexit sha1_base64="ryv5hnunLTqOrMu35lbxOkeQS84=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzGxIns2WhJtLDEKksCF7C1zsGFv77K7Z0Iu/AQbC42x9RfZ+W9c4AoFXzLJy3szmZkXplIYS+m3V1pb39jcKm9Xdnb39g+qh0dtk2SaY4snMtGdkBmUQmHLCiuxk2pkcSjxMRzfzPzHJ9RGJOrBTlIMYjZUIhKcWSfdp32/X63ROp2DrBK/IDUo0OxXv3qDhGcxKsslM6br09QGOdNWcInTSi8zmDI+ZkPsOqpYjCbI56dOyZlTBiRKtCtlyVz9PZGz2JhJHLrOmNmRWfZm4n9eN7PRVZALlWYWFV8sijJJbEJmf5OB0MitnDjCuBbuVsJHTDNuXToVF4K//PIqaV/UfVr372itcV3EUYYTOIVz8OESGnALTWgBhyE8wyu8edJ78d69j0VryStmjuEPvM8f/jGNlA==</latexit>

p2
<latexit sha1_base64="I7LJoXSrIExqoEw2radUUTy0+3U=">AAAB6nicbVDLSgNBEOyNrxhfUY96GAyCp7Cbix6DXjwmaB6QLGF2MpsMmZ1dZnqFsOQTvHhQxKsf4Xd48+anOHkcNLGgoajqprsrSKQw6LpfTm5tfWNzK79d2Nnd2z8oHh41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuDaiFjd4zjhfkQHSoSCUbTSXdKr9Iolt+zOQFaJtyCl6ulH/RsAar3iZ7cfszTiCpmkxnQ8N0E/oxoFk3xS6KaGJ5SN6IB3LFU04sbPZqdOyLlV+iSMtS2FZKb+nshoZMw4CmxnRHFolr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1L23LJXt2lcwxx5OIEzuAAPLqEKt1CDBjAYwCM8w4sjnSfn1Xmbt+acxcwx/IHz/gMPvo/a</latexit><latexit sha1_base64="G9q3t2DXlZ2TPiNKxCsmXrcDtfA=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Cru56DHoxWOC5gHJEmYnnWTI7OwyMyuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3BbHg2rjul7Oyura+sZnZym7v7O7t5w4OazpKFMMqi0SkGgHVKLjEquFGYCNWSMNAYD0Y3Ez8+gMqzSN5b4Yx+iHtSd7ljBor3cXtYjuXdwvuFGSZeHOSL52MK9+Pp+NyO/fZ6kQsCVEaJqjWTc+NjZ9SZTgTOMq2Eo0xZQPaw6alkoao/XR66oicW6VDupGyJQ2Zqr8nUhpqPQwD2xlS09eL3kT8z2smpnvlp1zGiUHJZou6iSAmIpO/SYcrZEYMLaFMcXsrYX2qKDM2nawNwVt8eZnUigXPLXgVm8Y1zJCBYziDC/DgEkpwC2WoAoMePMELvDrCeXbenPdZ64oznzmCP3A+fgDt9JFA</latexit><latexit sha1_base64="G9q3t2DXlZ2TPiNKxCsmXrcDtfA=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Cru56DHoxWOC5gHJEmYnnWTI7OwyMyuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3BbHg2rjul7Oyura+sZnZym7v7O7t5w4OazpKFMMqi0SkGgHVKLjEquFGYCNWSMNAYD0Y3Ez8+gMqzSN5b4Yx+iHtSd7ljBor3cXtYjuXdwvuFGSZeHOSL52MK9+Pp+NyO/fZ6kQsCVEaJqjWTc+NjZ9SZTgTOMq2Eo0xZQPaw6alkoao/XR66oicW6VDupGyJQ2Zqr8nUhpqPQwD2xlS09eL3kT8z2smpnvlp1zGiUHJZou6iSAmIpO/SYcrZEYMLaFMcXsrYX2qKDM2nawNwVt8eZnUigXPLXgVm8Y1zJCBYziDC/DgEkpwC2WoAoMePMELvDrCeXbenPdZ64oznzmCP3A+fgDt9JFA</latexit><latexit sha1_base64="T6W0IOR3snZl9Wh7noVdC7EaWmc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0l60WPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmljc2t7p7xb2ds/ODxyj0/aJsk04y2WyER3Q2q4FIq3UKDk3VRzGoeSd8LJ7dzvPHFtRKIecZryIKYjJSLBKFrpIR3UB27Vq3kLkHXiF6QKBZoD96s/TFgWc4VMUmN6vpdikFONgkk+q/Qzw1PKJnTEe5YqGnMT5ItTZ+TCKkMSJdqWQrJQf0/kNDZmGoe2M6Y4NqveXPzP62UYXQe5UGmGXLHloiiTBBMy/5sMheYM5dQSyrSwtxI2ppoytOlUbAj+6svrpF2v+V7Nv/eqjZsijjKcwTlcgg9X0IA7aEILGIzgGV7hzZHOi/PufCxbS04xcwp/4Hz+AP+1jZU=</latexit>

<latexit sha1_base64="JjXoTyeLrd7CDu94oJgkjA25opY=">AAAB+3icbVDJSgNBEO1xjXEb49FLkyBEgmEmmO0W9OIxglkgiaGn05M06ekZunvEYchfePbiQRGv/oi3/I2dheD2oODxXhVV9ZyAUaksa2qsrW9sbm0ndpK7e/sHh+ZRqin9UGDSwD7zRdtBkjDKSUNRxUg7EAR5DiMtZ3w181v3REjq81sVBaTnoSGnLsVIaalvprIFGMAxzEEKrbO7+Nye9M2MlbfmgH+JvSSZWrqbe5zWonrf/OwOfBx6hCvMkJQd2wpUL0ZCUczIJNkNJQkQHqMh6WjKkUdkL57fPoGnWhlA1xe6uIJz9ftEjDwpI8/RnR5SI/nbm4n/eZ1QuZVeTHkQKsLxYpEbMqh8OAsCDqggWLFIE4QF1bdCPEICYaXjSs5DqJbK5Up59bIOoVopFu2LldIs5O1Svnij07gECyTACUiDLLBBGdTANaiDBsDgATyBF/BqTIxn4814X7SuGcuZY/ADxscXQDyVNA==</latexit>

(2pk + i0)�1

<latexit sha1_base64="aRHqnC8PnEGGsbCgiKGsYSKeiU8=">AAACAXicbVDLSgMxFM3UV62v8QWCm2BR3LTMFPvaFd24rGA7hXYsmTRtw2QeJBmhDHXjN/gHblwo4ta/cOffmE5L8XUgcDjnXm7OcUJGhTSMTy21sLi0vJJezaytb2xu6ds7TRFEHJMGDljAWw4ShFGfNCSVjLRCTpDnMGI57sXEt24JFzTwr+UoJLaHBj7tU4ykkrr6gXsT5wpj2JEBzLndTkh4mChdPWvkjQTwLzFnJFs72bPGD9Z+vat/dHoBjjziS8yQEG3TCKUdIy4pZmSc6USChAi7aEDaivrII8KOkwRjeKyUHuwHXD1fwkT9vhEjT4iR56hJD8mh+O1NxP+8diT7FTumfhhJ4uPpoX7EoIo7qQP2KCdYspEiCHOq/grxEHGEpSotk5RQLZXLlfI8siqhWikWzbO50izkzVK+eKXaOAdTpMEhOAKnwARlUAOXoA4aAIM78AiewYt2rz1pr9rbdDSlzXZ2wQ9o719GXpiY</latexit>

k�2 ! �k�2
?



 Kirill Melnikov                                                                                                              Non-factorizable corrections in weak boson fusion processes

Dramatic simplifications occur if the eikonal approximation for integrands are used and if various diagrams, that 
contribute to the amplitude, are combined before attempting to integrate them over the loop momentum.
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<latexit sha1_base64="aUN6UfrGJuoKG3zYcqhI9HhZGXY=">AAACYnicbZFPa9tAEMVXavOnThM7zbE9DDWFlGIjOYH2UgjtpccU6iTgFWK1HtmLV9KyOyoYoS/ZW0+99IN0ZRvaJB1YeLzfDLP7NjNaOYqin0H45One/sHhs97R8+OT/uD0xY2raitxKitd2btMONSqxCkp0nhnLIoi03ibrT53/PY7Wqeq8hutDSaFWJQqV1KQt9LBmmtVpI1JL4BTBSaNW+Aac4IZ8NwK2cRtM+l8WME7UFELo79g1JGLLQGPuFWLJUEC8BFG266JAm5U2zhP56hJnPMMSbztpYNhNI42BY9FvBNDtqvrdPCDzytZF1iS1MK5WRwZShphSUmNbY/XDo2QK7HAmZelKNAlzSaiFt54Zw55Zf0pCTbuvxONKJxbF5nvLAQt3UPWmf9js5ryD0mjSlMTlnK7KK81+DC7vGGuLErSay+EtMrfFeRS+GTI/0oXQvzwyY/FzWQcR+P46+Xw6tMujkP2kr1m5yxm79kV+8Ku2ZRJ9ivYC06CfvA77IWn4dm2NQx2M2fsXoWv/gCAT7FZ</latexit><latexit sha1_base64="aUN6UfrGJuoKG3zYcqhI9HhZGXY=">AAACYnicbZFPa9tAEMVXavOnThM7zbE9DDWFlGIjOYH2UgjtpccU6iTgFWK1HtmLV9KyOyoYoS/ZW0+99IN0ZRvaJB1YeLzfDLP7NjNaOYqin0H45One/sHhs97R8+OT/uD0xY2raitxKitd2btMONSqxCkp0nhnLIoi03ibrT53/PY7Wqeq8hutDSaFWJQqV1KQt9LBmmtVpI1JL4BTBSaNW+Aac4IZ8NwK2cRtM+l8WME7UFELo79g1JGLLQGPuFWLJUEC8BFG266JAm5U2zhP56hJnPMMSbztpYNhNI42BY9FvBNDtqvrdPCDzytZF1iS1MK5WRwZShphSUmNbY/XDo2QK7HAmZelKNAlzSaiFt54Zw55Zf0pCTbuvxONKJxbF5nvLAQt3UPWmf9js5ryD0mjSlMTlnK7KK81+DC7vGGuLErSay+EtMrfFeRS+GTI/0oXQvzwyY/FzWQcR+P46+Xw6tMujkP2kr1m5yxm79kV+8Ku2ZRJ9ivYC06CfvA77IWn4dm2NQx2M2fsXoWv/gCAT7FZ</latexit><latexit sha1_base64="aUN6UfrGJuoKG3zYcqhI9HhZGXY=">AAACYnicbZFPa9tAEMVXavOnThM7zbE9DDWFlGIjOYH2UgjtpccU6iTgFWK1HtmLV9KyOyoYoS/ZW0+99IN0ZRvaJB1YeLzfDLP7NjNaOYqin0H45One/sHhs97R8+OT/uD0xY2raitxKitd2btMONSqxCkp0nhnLIoi03ibrT53/PY7Wqeq8hutDSaFWJQqV1KQt9LBmmtVpI1JL4BTBSaNW+Aac4IZ8NwK2cRtM+l8WME7UFELo79g1JGLLQGPuFWLJUEC8BFG266JAm5U2zhP56hJnPMMSbztpYNhNI42BY9FvBNDtqvrdPCDzytZF1iS1MK5WRwZShphSUmNbY/XDo2QK7HAmZelKNAlzSaiFt54Zw55Zf0pCTbuvxONKJxbF5nvLAQt3UPWmf9js5ryD0mjSlMTlnK7KK81+DC7vGGuLErSay+EtMrfFeRS+GTI/0oXQvzwyY/FzWQcR+P46+Xw6tMujkP2kr1m5yxm79kV+8Ku2ZRJ9ivYC06CfvA77IWn4dm2NQx2M2fsXoWv/gCAT7FZ</latexit><latexit sha1_base64="aUN6UfrGJuoKG3zYcqhI9HhZGXY=">AAACYnicbZFPa9tAEMVXavOnThM7zbE9DDWFlGIjOYH2UgjtpccU6iTgFWK1HtmLV9KyOyoYoS/ZW0+99IN0ZRvaJB1YeLzfDLP7NjNaOYqin0H45One/sHhs97R8+OT/uD0xY2raitxKitd2btMONSqxCkp0nhnLIoi03ibrT53/PY7Wqeq8hutDSaFWJQqV1KQt9LBmmtVpI1JL4BTBSaNW+Aac4IZ8NwK2cRtM+l8WME7UFELo79g1JGLLQGPuFWLJUEC8BFG266JAm5U2zhP56hJnPMMSbztpYNhNI42BY9FvBNDtqvrdPCDzytZF1iS1MK5WRwZShphSUmNbY/XDo2QK7HAmZelKNAlzSaiFt54Zw55Zf0pCTbuvxONKJxbF5nvLAQt3UPWmf9js5ryD0mjSlMTlnK7KK81+DC7vGGuLErSay+EtMrfFeRS+GTI/0oXQvzwyY/FzWQcR+P46+Xw6tMujkP2kr1m5yxm79kV+8Ku2ZRJ9ivYC06CfvA77IWn4dm2NQx2M2fsXoWv/gCAT7FZ</latexit>

k = ↵p1 + �p2 + k?
<latexit sha1_base64="o1DZ4ZYBisO1Lmvi/ZV6n5Oa9TU=">AAACDXicbZA9SwNBEIbn4nf8ilpqsRgFQQh3abQRgjaWCsYEcuHY20ySJXt3y+6eEI78ARv/io2gIrb2dnb+FDcfhSa+sPDwzgyz84ZScG1c98vJzc0vLC4tr+RX19Y3Ngtb27c6SRXDKktEouoh1Sh4jFXDjcC6VEijUGAt7F0M67U7VJon8Y3pS2xGtBPzNmfUWCsoHPTIGfGpkF1KZOCRY+KHaIZcttwLfIlKBoWiW3JHIrPgTaBY2Xu+/gaAq6Dw6bcSlkYYGyao1g3PlaaZUWU4EzjI+6lGSVmPdrBhMaYR6mY2umZADq3TIu1E2RcbMnJ/T2Q00rofhbYzoqarp2tD879aIzXt02bGY5kajNl4UTsVxCRkGA1pcYXMiL4FyhS3fyWsSxVlxgaYtyF40yfPwm255Lkl79qmcQ5jLcMu7MMReHACFbiEK6gCg3t4hBd4dR6cJ+fNeR+35pzJzA78kfPxA4Wdm4o=</latexit><latexit sha1_base64="oMna6sEiOWewpl7sL9MAEdvJHLU=">AAACDXicbZC7SgNBFIZnvcZ4i1oqMhgFQQi7abQRgjaWCZgLZJdldnI2GTK7O8zMCiGktLHxVWyEKGJrb+cz+BJOLoUm/jDw8Z9zOHP+QHCmtG1/WQuLS8srq5m17PrG5tZ2bme3ppJUUqjShCeyERAFnMVQ1UxzaAgJJAo41IPu9ahevwOpWBLf6p4ALyLtmIWMEm0sP3fcxZfYJVx0CBa+g8+wG4AecdFw13cFSOHn8nbBHgvPgzOFfOlgWPm+PxyW/dyn20poGkGsKSdKNR1baK9PpGaUwyDrpgoEoV3ShqbBmESgvP74mgE+MU4Lh4k0L9Z47P6e6JNIqV4UmM6I6I6arY3M/2rNVIcXXp/FItUQ08miMOVYJ3gUDW4xCVTzngFCJTN/xbRDJKHaBJg1ITizJ89DrVhw7IJTMWlcoYkyaB8doVPkoHNUQjeojKqIogf0hF7Qq/VoPVtv1vukdcGazuyhP7I+fgBj4pzw</latexit><latexit sha1_base64="oMna6sEiOWewpl7sL9MAEdvJHLU=">AAACDXicbZC7SgNBFIZnvcZ4i1oqMhgFQQi7abQRgjaWCZgLZJdldnI2GTK7O8zMCiGktLHxVWyEKGJrb+cz+BJOLoUm/jDw8Z9zOHP+QHCmtG1/WQuLS8srq5m17PrG5tZ2bme3ppJUUqjShCeyERAFnMVQ1UxzaAgJJAo41IPu9ahevwOpWBLf6p4ALyLtmIWMEm0sP3fcxZfYJVx0CBa+g8+wG4AecdFw13cFSOHn8nbBHgvPgzOFfOlgWPm+PxyW/dyn20poGkGsKSdKNR1baK9PpGaUwyDrpgoEoV3ShqbBmESgvP74mgE+MU4Lh4k0L9Z47P6e6JNIqV4UmM6I6I6arY3M/2rNVIcXXp/FItUQ08miMOVYJ3gUDW4xCVTzngFCJTN/xbRDJKHaBJg1ITizJ89DrVhw7IJTMWlcoYkyaB8doVPkoHNUQjeojKqIogf0hF7Qq/VoPVtv1vukdcGazuyhP7I+fgBj4pzw</latexit><latexit sha1_base64="qTTqfQlnyOSMwqdL18015fpVt/E=">AAACDXicbZDLSsNAFIYn9VbrLerSzWAVBKEk3ehGKLpxWcFeoAlhMj1th06SYWYilNAXcOOruHGhiFv37nwbJ20W2vrDwMd/zuHM+UPBmdKO822VVlbX1jfKm5Wt7Z3dPXv/oK2SVFJo0YQnshsSBZzF0NJMc+gKCSQKOXTC8U1e7zyAVCyJ7/VEgB+RYcwGjBJtrMA+GeMr7BEuRgSLwMXn2AtB51w3PA48AVIEdtWpOTPhZXALqKJCzcD+8voJTSOINeVEqZ7rCO1nRGpGOUwrXqpAEDomQ+gZjEkEys9m10zxqXH6eJBI82KNZ+7viYxESk2i0HRGRI/UYi03/6v1Uj249DMWi1RDTOeLBinHOsF5NLjPJFDNJwYIlcz8FdMRkYRqE2DFhOAunrwM7XrNdWrunVNtXBdxlNEROkZnyEUXqIFuURO1EEWP6Bm9ojfryXqx3q2PeWvJKmYO0R9Znz91o5lF</latexit>

|
<latexit sha1_base64="vvNRkAyn0kk6nZuS8Gq4s9/PF1I=">AAAB6HicbVDLSgNBEOyNrxhfUY9ehgRBEMKuFz0GvXhMwDwgWcLspDcZMzu7zMwKYc0XePGgiDfxk7z5N04eB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91gMqzWN5Z8YJ+hEdSB5yRo2V6o+9YtmtuDOQVeItSLla6p5/AECtV/zq9mOWRigNE1Trjucmxs+oMpwJnBS6qcaEshEdYMdSSSPUfjY7dEJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWyNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdgQvOWXV0nzouK5Fa9u07iGOfJwAiU4Aw8uoQq3UIMGMEB4ghd4de6dZ+fNeZ+35pzFzDH8gfP5A/2IjoU=</latexit><latexit sha1_base64="pLqrNSjFtUAZOYcOV86ba5Glrgo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCAIQtj1osegF48JmAckS5iddJIxs7PLzKywrPkCLx4i4tVP8pa/cfI4aGJBQ1HVTXdXEAuujetOnY3Nre2d3dxefv/g8Oi4cHLa0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HofuY3n1FpHslHk8boh3QgeZ8zaqxUe+kWSm7ZnYOsE29JSpVi52oyraTVbuG704tYEqI0TFCt254bGz+jynAmcJzvJBpjykZ0gG1LJQ1R+9n80DG5sEqP9CNlSxoyV39PZDTUOg0D2xlSM9Sr3kz8z2snpn/rZ1zGiUHJFov6iSAmIrOvSY8rZEakllCmuL2VsCFVlBmbTd6G4K2+vE4a12XPLXs1m8YdLJCDcyjCJXhwAxV4gCrUgQHCK0zg3Xly3pwP53PRuuEsZ87gD5yvHwcBkAs=</latexit><latexit sha1_base64="pLqrNSjFtUAZOYcOV86ba5Glrgo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCAIQtj1osegF48JmAckS5iddJIxs7PLzKywrPkCLx4i4tVP8pa/cfI4aGJBQ1HVTXdXEAuujetOnY3Nre2d3dxefv/g8Oi4cHLa0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HofuY3n1FpHslHk8boh3QgeZ8zaqxUe+kWSm7ZnYOsE29JSpVi52oyraTVbuG704tYEqI0TFCt254bGz+jynAmcJzvJBpjykZ0gG1LJQ1R+9n80DG5sEqP9CNlSxoyV39PZDTUOg0D2xlSM9Sr3kz8z2snpn/rZ1zGiUHJFov6iSAmIrOvSY8rZEakllCmuL2VsCFVlBmbTd6G4K2+vE4a12XPLXs1m8YdLJCDcyjCJXhwAxV4gCrUgQHCK0zg3Xly3pwP53PRuuEsZ87gD5yvHwcBkAs=</latexit><latexit sha1_base64="4xmbLRTmnKpcJlXMyaKjhXHfOHU=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UhJtLCGRjwQuZG+Zg5W9vcvungk5+QU2Fhpj60+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/c7j6g0j+W9mSboR3QkecgZNVZqPg3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/WabqV+k8dRhDM4h0vw4BrqcAcNaAEDhGd4hTfnwXlx3p2PZWvByWdO4Q+czx/rCYz8</latexit>
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<latexit sha1_base64="NDN3vZMtfe9XMyY9P4tmWaJD1Pk=">AAAC+HicbVJNb9MwGHbC1ygwOjhyecWE1Gm0SrJKTOIy4MIFaUi0m9SkkeM6rRUnMbYzqVj5JVw4gBBXfgG/gRsHfgV/AKctA9q+Uqwnz4c/XjsRnCnteT8c98rVa9dv7Nxs3bp9Z/due+/eUJWVJHRASl7K8wQryllBB5ppTs+FpDhPOD1LsheNfnZBpWJl8UbPBY1yPC1YygjWlor3nN2QFRrCVGJiTChzmNTjPmS16QShYAfjfh0+Xap+bbI4FFSKcVDDJddZkdCFt7E5erz4qQ/GARzCq3i43XvYePtbvK2Q01TD6G8mABH7kFkH82o7XgrdQMRHf/hQsulMQ7SZ7zYTBNsmsPn+ej5u73s9b1GwCfwV2D959vPXN4TQadz+Hk5KUuW00IRjpUa+J3RksNSMcGrPUykqMMnwlI4sLHBOVWQWF1fDI8tMIC2l/ewtLNh/EwbnSs3zxDpzrGdqXWvIbdqo0ulxZFghKk0LslworTjoEppXABMmKdF8bgEmktm9Aplh2xdt30rLNsFfP/ImGAY93+v5r203nqNl7aAH6CHqIB89QSfoJTpFA0ScynnvfHQ+ue/cD+5n98vS6jqrzH30X7lffwPje+mb</latexit><latexit sha1_base64="roPJ1XgR3DaNGhcqwJ+SU5hMDAE="></latexit><latexit sha1_base64="roPJ1XgR3DaNGhcqwJ+SU5hMDAE="></latexit><latexit sha1_base64="mxG/TrjxbHcKKCeCbQrmWSa0pUw=">AAAC+HicbVLLjtMwFHXCaygwdGDJ5ooKqaOhVZKpBBKbEWzYIA0S7YxUp5HjOq0VJzG2g1SifAkbFiDElk9hx9/gtGGAtleKdXIeflw7loJr43m/HPfa9Rs3bx3c7ty5e+/wfvfowUQXpaJsTAtRqMuYaCZ4zsaGG8EupWIkiwW7iNNXjX7xgSnNi/ydWUkWZmSR84RTYiwVHTmHmOcGcKIIrSqsMpjXsxGkddUPsOTHs1GNX2xUv67SCEum5Cyo4YrrtyQM4H1UnT5d/9THswBO4E002e89abyjPd4OFiwxMP2bCUBGPqTWwb3ajlfCIJDR6R8eK75YGgh384NmgmDfBDY/2s5H3Z439NYFu8BvQQ+1dR51f+J5QcuM5YYKovXU96QJK6IMp4LZ85SaSUJTsmBTC3OSMR1W64ur4Yll5pAUyn72Ftbsv4mKZFqvstg6M2KWeltryH3atDTJ87DiuSwNy+lmoaQUYApoXgHMuWLUiJUFhCpu9wp0SWxfjH0rHdsEf/vIu2ASDH1v6L/1emcv23YcoEfoMeojHz1DZ+g1OkdjRJ3S+eR8cb66H93P7jf3+8bqOm3mIfqv3B+/Ab/35oo=</latexit>
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<latexit sha1_base64="aMhcJ9PnzAFm/bjAjrmAwsgPTf0="></latexit><latexit sha1_base64="DN7+F9DXwQM+rZoRFzCxkj95ap4="></latexit><latexit sha1_base64="DN7+F9DXwQM+rZoRFzCxkj95ap4="></latexit><latexit sha1_base64="qzIRfZrs4N5Q06qw133C1t1h9O0=">AAADMnicbVJdi9NAFJ3Er7V+bFcffblYCi1rS5ItKIiw6Mu+CCvY7kKnDdPppB06ScaZiVCG/CZf/CWCD/qgLPvqj3DS1lW7vZBwcs65ZyZ3ZiIF1yYIvnn+jZu3bt/Zu1u7d//Bw/36waOBzgtFWZ/mIlfnE6KZ4BnrG24EO5eKkXQi2Nlk8abSzz4ypXmevTdLyUYpmWU84ZQYR8UH3kkT88wAThSh1mKVwrQc92BR2laEJW+PeyV+uVbD0i5iLJmS46iEK661IaEDH2J79Gz1UbbHERzC23iw23tYeXs7vLUmFiwxMPzbFIGMQ1g4Cw9K974SOpGMj/7wWPHZ3MCohgVPIbYy7gE2ueutNrCd2alCo12hLrO3nQmvoLM2RMDBjaW02qlTJgxpYSLknLTjeiPoBquC6yDcgAba1Glc/4KnOS1SlhkqiNbDMJBmZIkynApW1nChmSR0QWZs6GBGUqZHdnXkJTQdM4UkV+5xx7di/+2wJNV6mU6cMyVmrre1itylDQuTvBhZnsnCsIyuF0oKAW6S1f2BKVeMGrF0gFDF3V6BzokbjXG3rOaGEG7/8nUwiLph0A3fBY3j15tx7KEn6ClqoRA9R8foBJ2iPqLeJ++r98P76X/2v/sX/uXa6nubnsfov/J//QbRMfwe</latexit>

p1
<latexit sha1_base64="Tw9NfDegvlkvJ+mqwAGhXNz3At4=">AAAB6nicbVDLSgNBEOyNrxhfUY96GAyCp7DrJR6DXjwmaB6QLGF20psMmZ1dZmaFsOQTvHhQxKsf4Xd48+anOHkcNLGgoajqprsrSATXxnW/nNza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbD6g0j+W9GSfoR3QgecgZNVa6S3per1hyy+4MZJV4C1Kqnn7UvwGg1it+dvsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bnToh51bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1IRXfsZlkhqUbL4oTAUxMZn+TfpcITNibAllittbCRtSRZmx6RRsCN7yy6ukeVn23LJXt2lcwxx5OIEzuAAPKlCFW6hBAxgM4BGe4cURzpPz6rzNW3POYuYY/sB5/wEOOo/Z</latexit><latexit sha1_base64="G2nRI9RQJ7VPBa7CQ63Q+R8Mmtw=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmgckS5id9CZDZmeXmVkhhBw9evGgiFc/It/hzW/wJ5w8DppY0FBUddPdFSSCa+O6X05mZXVtfSO7mdva3tndy+8f1HScKoZVFotYNQKqUXCJVcONwEaikEaBwHrQv5n49QdUmsfy3gwS9CPalTzkjBor3SVtr50vuEV3CrJMvDkplI7Hle/Hk3G5nf9sdWKWRigNE1Trpucmxh9SZTgTOMq1Uo0JZX3axaalkkao/eH01BE5s0qHhLGyJQ2Zqr8nhjTSehAFtjOipqcXvYn4n9dMTXjlD7lMUoOSzRaFqSAmJpO/SYcrZEYMLKFMcXsrYT2qKDM2nZwNwVt8eZnULoqeW/QqNo1rmCELR3AK5+DBJZTgFspQBQZdeIIXeHWE8+y8Oe+z1owznzmEP3A+fgDscJE/</latexit><latexit sha1_base64="G2nRI9RQJ7VPBa7CQ63Q+R8Mmtw=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmgckS5id9CZDZmeXmVkhhBw9evGgiFc/It/hzW/wJ5w8DppY0FBUddPdFSSCa+O6X05mZXVtfSO7mdva3tndy+8f1HScKoZVFotYNQKqUXCJVcONwEaikEaBwHrQv5n49QdUmsfy3gwS9CPalTzkjBor3SVtr50vuEV3CrJMvDkplI7Hle/Hk3G5nf9sdWKWRigNE1Trpucmxh9SZTgTOMq1Uo0JZX3axaalkkao/eH01BE5s0qHhLGyJQ2Zqr8nhjTSehAFtjOipqcXvYn4n9dMTXjlD7lMUoOSzRaFqSAmJpO/SYcrZEYMLKFMcXsrYT2qKDM2nZwNwVt8eZnULoqeW/QqNo1rmCELR3AK5+DBJZTgFspQBQZdeIIXeHWE8+y8Oe+z1owznzmEP3A+fgDscJE/</latexit><latexit sha1_base64="ryv5hnunLTqOrMu35lbxOkeQS84=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzGxIns2WhJtLDEKksCF7C1zsGFv77K7Z0Iu/AQbC42x9RfZ+W9c4AoFXzLJy3szmZkXplIYS+m3V1pb39jcKm9Xdnb39g+qh0dtk2SaY4snMtGdkBmUQmHLCiuxk2pkcSjxMRzfzPzHJ9RGJOrBTlIMYjZUIhKcWSfdp32/X63ROp2DrBK/IDUo0OxXv3qDhGcxKsslM6br09QGOdNWcInTSi8zmDI+ZkPsOqpYjCbI56dOyZlTBiRKtCtlyVz9PZGz2JhJHLrOmNmRWfZm4n9eN7PRVZALlWYWFV8sijJJbEJmf5OB0MitnDjCuBbuVsJHTDNuXToVF4K//PIqaV/UfVr372itcV3EUYYTOIVz8OESGnALTWgBhyE8wyu8edJ78d69j0VryStmjuEPvM8f/jGNlA==</latexit>

p2
<latexit sha1_base64="I7LJoXSrIExqoEw2radUUTy0+3U=">AAAB6nicbVDLSgNBEOyNrxhfUY96GAyCp7Cbix6DXjwmaB6QLGF2MpsMmZ1dZnqFsOQTvHhQxKsf4Xd48+anOHkcNLGgoajqprsrSKQw6LpfTm5tfWNzK79d2Nnd2z8oHh41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuDaiFjd4zjhfkQHSoSCUbTSXdKr9Iolt+zOQFaJtyCl6ulH/RsAar3iZ7cfszTiCpmkxnQ8N0E/oxoFk3xS6KaGJ5SN6IB3LFU04sbPZqdOyLlV+iSMtS2FZKb+nshoZMw4CmxnRHFolr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1L23LJXt2lcwxx5OIEzuAAPLqEKt1CDBjAYwCM8w4sjnSfn1Xmbt+acxcwx/IHz/gMPvo/a</latexit><latexit sha1_base64="G9q3t2DXlZ2TPiNKxCsmXrcDtfA=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Cru56DHoxWOC5gHJEmYnnWTI7OwyMyuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3BbHg2rjul7Oyura+sZnZym7v7O7t5w4OazpKFMMqi0SkGgHVKLjEquFGYCNWSMNAYD0Y3Ez8+gMqzSN5b4Yx+iHtSd7ljBor3cXtYjuXdwvuFGSZeHOSL52MK9+Pp+NyO/fZ6kQsCVEaJqjWTc+NjZ9SZTgTOMq2Eo0xZQPaw6alkoao/XR66oicW6VDupGyJQ2Zqr8nUhpqPQwD2xlS09eL3kT8z2smpnvlp1zGiUHJZou6iSAmIpO/SYcrZEYMLaFMcXsrYX2qKDM2nawNwVt8eZnUigXPLXgVm8Y1zJCBYziDC/DgEkpwC2WoAoMePMELvDrCeXbenPdZ64oznzmCP3A+fgDt9JFA</latexit><latexit sha1_base64="G9q3t2DXlZ2TPiNKxCsmXrcDtfA=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Cru56DHoxWOC5gHJEmYnnWTI7OwyMyuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3BbHg2rjul7Oyura+sZnZym7v7O7t5w4OazpKFMMqi0SkGgHVKLjEquFGYCNWSMNAYD0Y3Ez8+gMqzSN5b4Yx+iHtSd7ljBor3cXtYjuXdwvuFGSZeHOSL52MK9+Pp+NyO/fZ6kQsCVEaJqjWTc+NjZ9SZTgTOMq2Eo0xZQPaw6alkoao/XR66oicW6VDupGyJQ2Zqr8nUhpqPQwD2xlS09eL3kT8z2smpnvlp1zGiUHJZou6iSAmIpO/SYcrZEYMLaFMcXsrYX2qKDM2nawNwVt8eZnUigXPLXgVm8Y1zJCBYziDC/DgEkpwC2WoAoMePMELvDrCeXbenPdZ64oznzmCP3A+fgDt9JFA</latexit><latexit sha1_base64="T6W0IOR3snZl9Wh7noVdC7EaWmc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0l60WPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmljc2t7p7xb2ds/ODxyj0/aJsk04y2WyER3Q2q4FIq3UKDk3VRzGoeSd8LJ7dzvPHFtRKIecZryIKYjJSLBKFrpIR3UB27Vq3kLkHXiF6QKBZoD96s/TFgWc4VMUmN6vpdikFONgkk+q/Qzw1PKJnTEe5YqGnMT5ItTZ+TCKkMSJdqWQrJQf0/kNDZmGoe2M6Y4NqveXPzP62UYXQe5UGmGXLHloiiTBBMy/5sMheYM5dQSyrSwtxI2ppoytOlUbAj+6svrpF2v+V7Nv/eqjZsijjKcwTlcgg9X0IA7aEILGIzgGV7hzZHOi/PufCxbS04xcwp/4Hz+AP+1jZU=</latexit>

p3
<latexit sha1_base64="pR5+ljf7NzNKv2B33yQmPXox0rE=">AAAB6nicbVDLSgNBEOyNrxhfUY96GAyCp7CrBz0GvXhM0DwgWcLsZDYZMju7zPQKYcknePGgiFc/wu/w5s1PcfI4aGJBQ1HVTXdXkEhh0HW/nNzK6tr6Rn6zsLW9s7tX3D9omDjVjNdZLGPdCqjhUiheR4GStxLNaRRI3gyGNxO/+cC1EbG6x1HC/Yj2lQgFo2ilu6R70S2W3LI7BVkm3pyUKscftW8AqHaLn51ezNKIK2SSGtP23AT9jGoUTPJxoZManlA2pH3etlTRiBs/m546JqdW6ZEw1rYUkqn6eyKjkTGjKLCdEcWBWfQm4n9eO8Xwys+ESlLkis0WhakkGJPJ36QnNGcoR5ZQpoW9lbAB1ZShTadgQ/AWX14mjfOy55a9mk3jGmbIwxGcwBl4cAkVuIUq1IFBHx7hGV4c6Tw5r87brDXnzGcO4Q+c9x8RQo/b</latexit><latexit sha1_base64="1GFtfpLazMuWkhl4ba/vTDTSd8c=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Crt60GPQi8cEzQOSJcxOJsmQ2dllplcIS44evXhQxKsfke/w5jf4E04eB00saCiquunuCmIpDLrul7O0vLK6tp7ZyG5ube/s5vb2qyZKNOMVFslI1wNquBSKV1Cg5PVYcxoGkteC/s3Yrz1wbUSk7nEQcz+kXSU6glG00l3cumjl8m7BnYAsEm9G8sWjUfn78XhUauU+m+2IJSFXyCQ1puG5Mfop1SiY5MNsMzE8pqxPu7xhqaIhN346OXVITq3SJp1I21JIJurviZSGxgzCwHaGFHtm3huL/3mNBDtXfipUnCBXbLqok0iCERn/TdpCc4ZyYAllWthbCetRTRnadLI2BG/+5UVSPS94bsEr2zSuYYoMHMIJnIEHl1CEWyhBBRh04Qle4NWRzrPz5rxPW5ec2cwB/IHz8QPveJFB</latexit><latexit sha1_base64="1GFtfpLazMuWkhl4ba/vTDTSd8c=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Crt60GPQi8cEzQOSJcxOJsmQ2dllplcIS44evXhQxKsfke/w5jf4E04eB00saCiquunuCmIpDLrul7O0vLK6tp7ZyG5ube/s5vb2qyZKNOMVFslI1wNquBSKV1Cg5PVYcxoGkteC/s3Yrz1wbUSk7nEQcz+kXSU6glG00l3cumjl8m7BnYAsEm9G8sWjUfn78XhUauU+m+2IJSFXyCQ1puG5Mfop1SiY5MNsMzE8pqxPu7xhqaIhN346OXVITq3SJp1I21JIJurviZSGxgzCwHaGFHtm3huL/3mNBDtXfipUnCBXbLqok0iCERn/TdpCc4ZyYAllWthbCetRTRnadLI2BG/+5UVSPS94bsEr2zSuYYoMHMIJnIEHl1CEWyhBBRh04Qle4NWRzrPz5rxPW5ec2cwB/IHz8QPveJFB</latexit><latexit sha1_base64="yrIsjGOVV5t1e2B2ZcAbxXbBTR8=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0n0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLa+sbmVnm7srO7t3/gHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ9q/7LtVr+bNQVaJX5AqFGj03a/eIGFZzBUySY3p+l6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSH4yy+vktZFzfdq/r1Xrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzBwFIjZY=</latexit>

p4
<latexit sha1_base64="x+0v5mI2wRZrtRK3Vuzqvp4fHjg=">AAAB6nicbVDLSgNBEOyNrxhfUY96GAyCp7Argh6DXjwmaB6QLGF2MpsMmZ1dZnqFsOQTvHhQxKsf4Xd48+anOHkcNLGgoajqprsrSKQw6LpfTm5ldW19I79Z2Nre2d0r7h80TJxqxusslrFuBdRwKRSvo0DJW4nmNAokbwbDm4nffODaiFjd4yjhfkT7SoSCUbTSXdK96BZLbtmdgiwTb05KleOP2jcAVLvFz04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW6poxI2fTU8dk1Or9EgYa1sKyVT9PZHRyJhRFNjOiOLALHoT8T+vnWJ45WdCJSlyxWaLwlQSjMnkb9ITmjOUI0so08LeStiAasrQplOwIXiLLy+TxnnZc8tezaZxDTPk4QhO4Aw8uIQK3EIV6sCgD4/wDC+OdJ6cV+dt1ppz5jOH8AfO+w8Sxo/c</latexit><latexit sha1_base64="OOavC2e6augqbA47gfeC2L0Ba2A=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Crsi6DHoxWOC5gHJEmYnk2TI7Owy0yuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3BbEUBl33y1laXlldW89sZDe3tnd2c3v7VRMlmvEKi2Sk6wE1XArFKyhQ8nqsOQ0DyWtB/2bs1x64NiJS9ziIuR/SrhIdwSha6S5uXbRyebfgTkAWiTcj+eLRqPz9eDwqtXKfzXbEkpArZJIa0/DcGP2UahRM8mG2mRgeU9anXd6wVNGQGz+dnDokp1Zpk06kbSkkE/X3REpDYwZhYDtDij0z743F/7xGgp0rPxUqTpArNl3USSTBiIz/Jm2hOUM5sIQyLeythPWopgxtOlkbgjf/8iKpnhc8t+CVbRrXMEUGDuEEzsCDSyjCLZSgAgy68AQv8OpI59l5c96nrUvObOYA/sD5+AHw/JFC</latexit><latexit sha1_base64="OOavC2e6augqbA47gfeC2L0Ba2A=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4Crsi6DHoxWOC5gHJEmYnk2TI7Owy0yuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3BbEUBl33y1laXlldW89sZDe3tnd2c3v7VRMlmvEKi2Sk6wE1XArFKyhQ8nqsOQ0DyWtB/2bs1x64NiJS9ziIuR/SrhIdwSha6S5uXbRyebfgTkAWiTcj+eLRqPz9eDwqtXKfzXbEkpArZJIa0/DcGP2UahRM8mG2mRgeU9anXd6wVNGQGz+dnDokp1Zpk06kbSkkE/X3REpDYwZhYDtDij0z743F/7xGgp0rPxUqTpArNl3USSTBiIz/Jm2hOUM5sIQyLeythPWopgxtOlkbgjf/8iKpnhc8t+CVbRrXMEUGDuEEzsCDSyjCLZSgAgy68AQv8OpI59l5c96nrUvObOYA/sD5+AHw/JFC</latexit><latexit sha1_base64="TgxkHnJY9c7s6nC573F+SdZznnk=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpIe1f9t2qV/PmIKvEL0gVCjT67ldvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wug5yodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BD85ZdXSeui5ns1/96r1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AwLMjZc=</latexit>
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Numerics: Jets

transverse momentum distribution rapidity distribution
(2nd jet) (1st jet)

A. Penin, U of A RADCOR 2019 – p. 16/19

We find non-factorizable corrections to Higgs production in WBF to be between 0.5 and 1 percent, depending on a 
kinematic distribution.  This result is not significantly smaller than NNLO QCD factorizable corrections and is more 
important than the N3LO QCD ones.  

For the single top production, the exact calculation can be done using semi-numerical methods and very similar 
results are obtained. 
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Figure 7: The top-quark transverse momentum distribution. In the upper pane, the
blue line corresponds to the leading order distribution whereas the dashed, red line
to the distribution with NNLO QCD non-factorisable corrections included. In the
lower pane, the ratio of non-factorisable corrections to the leading order distribution
is presented. See text for further details.

17] which means that the relative importance of factorisable and non-factorisable
corrections remains constant across the phase space.

In Figure 8, we show the impact of non-factorisable corrections on the top-quark
rapidity distribution and on the distribution of the invariant mass of the top quark
and the light-quark jet which for a 2 ! 2 process is equivalent to the partonic centre-
of-mass energy

p
ŝ. It follows from Figure 8a that non-factorisable corrections to the

rapidity distributions are O(0.3%) for |yt| < 2.5; for larger rapidities corrections
quickly become negative. The non-factorisable corrections to the

p
ŝ distribution

shown in Figure 8b are positive and change from O(0.6%) at the threshold to O(0.1%)

at large partonic centre-of-mass energies.

6 Conclusions

In this paper, we computed the contribution of two-loop non-factorisable virtual cor-
rections to t-channel single-top production cross section. This is the last missing part
of the two-loop amplitude needed for a complete description of this process through

– 19 –
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Since non-factorizable contributions may be somewhat relevant, two questions arise: 

1) how reliable is the leading eikonal approximation for  Higgs boson production in WBF? 

2) how important are  all other contributions to NNLO corrections (the emission of two gluons or a one-loop correction 
to the single gluon emission) in the non-factorizable case? This question applies to both single top production and to 
Higgs production in WBF.
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To go beyond the leading eikonal approximation, we need to parametrise the external momenta in a way that makes it 
clear how the forward scattering limit is approached. 

It follows from the Higgs boson on-shell condition that changes in the “longitudinal” momenta fractions  are proportional 
to the absolute value of the transverse momentum, not the transverse momentum squared. 
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amplitude was computed in the leading eikonal approximation [1]. To better understand

these two-loop e↵ects and to establish the validity of the eikonal approximation for phe-

nomenological analyses of Higgs boson production in weak boson fusion, it is essential to

go beyond the leading term in the eikonal expansion.

Since the calculation of exact non-factorizable contributions, which requires the two-

loop five-point amplitude with five independent kinematic variables and two masses, is

currently not possible, it is reasonable to explore the possibility to extend the eikonal

expansion beyond the forward limit. In this paper we make the first step in that direction

and compute the leading power correction to the eikonal limit of non-factorizable five-point

WBF amplitude.

The remainder of this paper is organized as follows. In the next section, we describe

kinematics of weak boson fusion and explain how we use it to set up an expansion around the

eikonal limit. In Sections 3 and 4, we derive integral representations for one- and two-loop

amplitudes which contribute to non-factorizable corrections to WBF; these representations

retain the next-to-eikonal accuracy. In Section 5, we explain how the infra-red finite, two-

loop non-factorizable correction can be derived from these integral representations. In

Section 6 we analyze the numerical impact of the computed next-to-eikonal corrections

and show that they change the current estimate of the non-factorizable contribution to

the WBF cross section by about O(30) percent. We conclude in Section 7. Discussion of

the analytic computation of one- and two-loop non-factorizable amplitudes is relegated to

appendix. The analytic results for the amplitudes can be found in an ancillary file provided

with this submission.

2 Kinematics of Higgs production in weak boson fusion

We begin with the discussion of the kinematics of Higgs production in the WBF process

q(p1) + q(p2) ! q(p3) + q(p4) + H(pH) . (2.1)

We perform the Sudakov decomposition of the four-momenta of the outgoing quarks and

write

p3 = ↵3p1 + �3p2 + p3,? ,

p4 = ↵4p1 + �4p2 + p4,? .
(2.2)

Employing the on-shell conditions p
2
3

= 0, p
2
4

= 0, we find1

�3 =
p2

3,?
s↵3

, ↵4 =
p2

4,?
s�4

, (2.3)

where s = 2p1 · p2 is the partonic center-of-mass energy squared. The WBF events are

selected by requiring that two tagging jets with a relatively small transverse momentum are

present in opposite hemispheres; this ensures that ↵3 ⇠ �4 ⇠ 1 and that p2

3,? ⇠ p2

4,? ⌧ s.

1
Throughout the paper, the bold-faced notation is used for two-dimensional Euclidian vectors.
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We define two auxiliary vectors q1 and q2 which describe momentum transfers from

the quark lines to the Higgs boson. They read

q1 = p1 � p3 = �3p1 � �3p2 � p3,? ,

q2 = p2 � p4 = �↵4p1 + �4p2 � p4,? ,
(2.4)

where �3 = 1 � ↵3 and �4 = 1 � �4. It follows from the momentum conservation condition

that

pH = q1 + q2 . (2.5)

Upon squaring the two sides of this equation and some rearrangements, we find

�3�4s = m
2

H +
p2

3,?
↵3

+
p2

4,?
�4

+ 2p3,? · p4,? �
p2

3,?p
2

4,?
↵3�4s

. (2.6)

We can use Eq. (2.6) to fully specify the relevant aspects of WBF kinematics around the

forward limit. Indeed, given the proximity of the Higgs boson mass and electroweak boson

masses, and the fact that the important contribution to WBF cross section comes from

kinematical configurations where the transverse momenta of tagging jets are comparable

to mH and mW,Z , the above equation implies

�3�4 ⇠
m

2

V

s
⇠

m
2

H

s
⇠

p2

3,?
s

⇠
p2

4,?
s

⇠ � ⌧ 1 . (2.7)

Note that we introduced a parameter � to indicate the smallness of various ratios in the

above equation. We consider central production of Higgs bosons so that neither forward

nor backward direction is preferred. Then �3 ⇠ �4 and

�3 ⇠ �4 ⇠

p

� � � . (2.8)

We note that, with the required accuracy, the two parameters �3,4 can be written as

follows

�3,4 =

s
p2

H,? + m
2

H

s
e
±yH , (2.9)

where pH,? is the transverse momentum and yH is the rapidity of the Higgs boson in the

partonic center-of-mass frame. We will use the above relations between kinematic param-

eters to construct the expansion of one- and two-loop non-factorizable WBF amplitudes in

the following sections.

3 One-loop non-factorizable contributions to WBF

We consider the one-loop non-factorizable QCD corrections to Higgs boson production in

WBF. To avoid confusion, we note that they do not contribute to the WBF cross section

at NLO since their interference with the leading order amplitude vanishes because of color

conservation. Nevertheless, since the one-loop amplitude is needed for the construction of

the NNLO QCD corrections, we need to discuss it.
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To understand how to expand the virtual amplitude for Higgs boson production in WBF around the eikonal limit, we 
study the dependence of the integrand on the small parameter  and identify  various “integration regions”.  A power 
counting applied to individual diagrams indicates that, already at leading power,  a large number of various regions 
contributes.
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Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-

ric regions are not shown.
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µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find

M
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, M
(c)

⇠ �
�2

, M
(d)

⇠ �
�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.
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To write the non-factorizable amplitude in a convenient way, we assume that the

coupling of the vector boson V to the Higgs boson is given by igV V H gµ⌫ and that the

coupling of the massive vector boson to quarks is vector-like, �igW�
µ. Since we work with

massless quarks, their helicities are conserved and we can reconstruct non-factorizable

contributions for V = Z and V = W from the results that are reported below.

We write the one-loop non-factorizable amplitude as follows
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A1 , (3.1)

where T
a

ij
denote the generators of the SU(3) color group and A1 stands for the color-

stripped one-loop amplitude2

A1 =

Z
dd

k1

(2⇡)d
1

d1d3d4

Jµ⌫(k1, �k1 � q1) J̃
µ⌫(�k1, k1 � q2) . (3.2)

In Eq. (3.2), we used the notation

d1 = k
2

1 + i0, d3 = (k1 + q1)
2
� m

2

V + i0, d4 = (k1 � q2)
2
� m

2

V + i0 , (3.3)

to define propagators of virtual bosons. In addition, following the conventions in Fig. 1,

we introduced two quark currents

J
µ⌫(k1, �k1 � q1) = h3|

"
�
⌫(p̂1 + k̂1)�µ

⇢1(k1)
+
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(3.4)

where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write

k1 = ↵1p1 + �1p2 + k1,? . (3.6)

The integration measure in Eq. (3.2) becomes

dd
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2
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. (3.7)

The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,

integration over either one of these two variables can be easily performed using the residue

2
Throughout this paper, we use dimensional regularization, with the dimensionality of space-time being

d = 4 � 2".
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theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find
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We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.

– 5 –



 Kirill Melnikov                                                                                                                         Non-factorizable QCD corrrections  to  hadron collider processes 12

We now proceed in a standard way. Starting from the general expression for the integrand, we apply scaling of the 
external momenta and the loop momentum in a particular region to simplify the various propagators and,  eventually, the 
integrand. 
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where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write
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The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,
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where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write

k1 = ↵1p1 + �1p2 + k1,? . (3.6)

The integration measure in Eq. (3.2) becomes
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The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,

integration over either one of these two variables can be easily performed using the residue
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Throughout this paper, we use dimensional regularization, with the dimensionality of space-time being

d = 4 � 2".
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where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write
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The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,

integration over either one of these two variables can be easily performed using the residue
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Throughout this paper, we use dimensional regularization, with the dimensionality of space-time being

d = 4 � 2".
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Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-

ric regions are not shown.
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p2 p4
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W/Z

W/Z

g

p1 p3

µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find

M
(a)

⇠ �
�2

, M
(b)

⇠ �
�2

, M
(c)

⇠ �
�2

, M
(d)

⇠ �
�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.
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The possibility  to compute both leading and first subleading correction to the non-factorizable amplitude in WBF 
with a relative ease is the consequence of the fact that integrations over two longitudinal components of the loop 
momentum factorize and that gauge cancellations ensure that contributions of many regions are suppressed relative 
to expectations based on “naive” power counting.

Region ↵1 �1 k1,?

a � �
p

�

b �
p

�
p

�

c
p

�
p

�
p

�

d 1 �
p

�

e 1 1 1

Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-

ric regions are not shown.

k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find

M
(a)

⇠ �
�2

, M
(b)

⇠ �
�2

, M
(c)

⇠ �
�2

, M
(d)

⇠ �
�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.

– 5 –

To write the non-factorizable amplitude in a convenient way, we assume that the
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coupling of the massive vector boson to quarks is vector-like, �igW�
µ. Since we work with
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to define propagators of virtual bosons. In addition, following the conventions in Fig. 1,
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where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write

k1 = ↵1p1 + �1p2 + k1,? . (3.6)

The integration measure in Eq. (3.2) becomes
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The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,

integration over either one of these two variables can be easily performed using the residue
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Throughout this paper, we use dimensional regularization, with the dimensionality of space-time being
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result in a compact way, we introduce the following quantities

�1 = �k2

1,?, �3,1 = �(k1,? � p3,?)2 � m
2

V , �4,1 = �(k1,? + p4,?)2 � m
2

V ,

⇥3,1 = �
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1,? � 2k1,? · p3,?
�

, ⇥4,1 = �
�
k2

1,? + 2k1,? · p4,?
�

.
(3.9)

In region a), all inverse propagators scale as O(�). To compute the first subleading cor-

rection we need to keep all terms that scale as �
3/2 and neglect all terms that scale as �

2.

We find

d1 ⇡ �1 + i0, d3 ⇡ s�3(�1 � �3) + �3,1 + i0, d4 ⇡ �s�4(↵1 + ↵4) + �4,1 + i0 ,

⇢1(k1) ⇡ s�1 + �1 + i0 , ⇢2(�k1) ⇡ �s↵1 + �1 + i0 ,

⇢3(�k1) ⇡ �s↵3�1 + ⇥3,1 + i0 , ⇢4(k1) ⇡ s�4↵1 + ⇥4,1 + i0 .

(3.10)

If we use the simplified propagators shown in Eq. (3.10) to compute the amplitude A1, we

observe that integrations over ↵1 and �1 factorize. We then write

A
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Z
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(3.13)

In Eq. (3.11) � is a cut-o↵ parameter that forces �1 and ↵1 to stay in the region ↵1 ⇠ �1 ⇠ �.

It is convenient to choose � such that

� ⌧ � ⌧

p

� , (3.14)

since this choice will allow us to use the same cut-o↵ � to study the Glauber-soft region.

We note that we replaced k̂1 with k̂1,? in the currents when writing Eq. (3.11); this is

justified since ↵1 and �1 terms in the Sudakov expansion of k provide O(�) and not O(
p

�)

corrections in region a). Hence, if we aim at computing the non-factorizable amplitude

with O(
p

�) relative accuracy, we can discard them. In fact, to compute the amplitude

with O(
p

�) relative accuracy, terms with k̂1,? in Eq. (3.11) can be dropped altogether.

Indeed, since k1,? ⇠
p

�, if we retain it in one of the terms that appear either in �µ⌫ or in

�̃µ⌫ , the other current should be computed at leading �-power. However, in this case
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p̂2,4�

⌫
|2] ⇡ 4p
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2
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In region “b”, gauge cancellations ensure  additional suppression of one of the currents.  Similar cancellations allow us 
to completely discard regions “c” and “d” at next-to-leading power. 

Region ↵1 �1 k1,?

a � �
p

�

b �
p

�
p

�

c
p

�
p

�
p

�

d 1 �
p

�

e 1 1 1

Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-

ric regions are not shown.

k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find

M
(a)

⇠ �
�2

, M
(b)

⇠ �
�2

, M
(c)

⇠ �
�2

, M
(d)

⇠ �
�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.
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To write the non-factorizable amplitude in a convenient way, we assume that the

coupling of the vector boson V to the Higgs boson is given by igV V H gµ⌫ and that the

coupling of the massive vector boson to quarks is vector-like, �igW�
µ. Since we work with

massless quarks, their helicities are conserved and we can reconstruct non-factorizable

contributions for V = Z and V = W from the results that are reported below.

We write the one-loop non-factorizable amplitude as follows

M1 = g
2

sg
2

W gV V H T
a

i3i1
T
a

i4i2
A1 , (3.1)

where T
a

ij
denote the generators of the SU(3) color group and A1 stands for the color-

stripped one-loop amplitude2

A1 =

Z
dd

k1

(2⇡)d
1

d1d3d4

Jµ⌫(k1, �k1 � q1) J̃
µ⌫(�k1, k1 � q2) . (3.2)

In Eq. (3.2), we used the notation

d1 = k
2

1 + i0, d3 = (k1 + q1)
2
� m

2

V + i0, d4 = (k1 � q2)
2
� m

2

V + i0 , (3.3)

to define propagators of virtual bosons. In addition, following the conventions in Fig. 1,

we introduced two quark currents

J
µ⌫(k1, �k1 � q1) = h3|

"
�
⌫(p̂1 + k̂1)�µ

⇢1(k1)
+

�
µ(p̂3 � k̂1)�⌫

⇢3(�k1)

#
|1] ,

J̃
µ⌫(�k1, k1 � q2) = h4|

"
�
⌫(p̂2 + k̂1)�µ

⇢2(k1)
+

�
⌫(p̂4 � k̂1)�µ

⇢4(�k1)

#
|2] ,

(3.4)

where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write

k1 = ↵1p1 + �1p2 + k1,? . (3.6)

The integration measure in Eq. (3.2) becomes

dd
k1

(2⇡)d
=

s

2

d↵1

2⇡

d�1

2⇡

dd�2k1,?
(2⇡)d�2

. (3.7)

The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,

integration over either one of these two variables can be easily performed using the residue

2
Throughout this paper, we use dimensional regularization, with the dimensionality of space-time being

d = 4 � 2".

– 4 –

result in a compact way, we introduce the following quantities

�1 = �k2

1,?, �3,1 = �(k1,? � p3,?)2 � m
2

V , �4,1 = �(k1,? + p4,?)2 � m
2

V ,

⇥3,1 = �
�
k2

1,? � 2k1,? · p3,?
�

, ⇥4,1 = �
�
k2

1,? + 2k1,? · p4,?
�

.
(3.9)

In region a), all inverse propagators scale as O(�). To compute the first subleading cor-

rection we need to keep all terms that scale as �
3/2 and neglect all terms that scale as �

2.

We find

d1 ⇡ �1 + i0, d3 ⇡ s�3(�1 � �3) + �3,1 + i0, d4 ⇡ �s�4(↵1 + ↵4) + �4,1 + i0 ,

⇢1(k1) ⇡ s�1 + �1 + i0 , ⇢2(�k1) ⇡ �s↵1 + �1 + i0 ,

⇢3(�k1) ⇡ �s↵3�1 + ⇥3,1 + i0 , ⇢4(k1) ⇡ s�4↵1 + ⇥4,1 + i0 .

(3.10)

If we use the simplified propagators shown in Eq. (3.10) to compute the amplitude A1, we

observe that integrations over ↵1 and �1 factorize. We then write

A
(a)

1
= �

s

2

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

�µ⌫ �̃µ⌫ , (3.11)

where

�µ⌫ =

�Z

��

d�1

2⇡i

�3,1

s�3(�1 � �3) + �3,1 + i0

⇥ h3|

"
�
⌫(p̂1 + k̂1,?)�µ

s�1 + �1 + i0
+

�
µ(p̂3 � k̂1,?)�⌫

�s↵3�1 + ⇥3,1 + i0

#
|1] ,

(3.12)

�̃µ⌫ =

�Z

��

d↵1

2⇡i

�4,1

�s�4(↵1 + ↵4) + �4,1 + i0

⇥ h4|

"
�
⌫(p2 + k̂1,?)�µ

�s↵1 + �1 + i0
+

�
⌫(p4 � k̂1,?)�µ

s�4↵1 + ⇥4,1 + i0

#
|2] .

(3.13)

In Eq. (3.11) � is a cut-o↵ parameter that forces �1 and ↵1 to stay in the region ↵1 ⇠ �1 ⇠ �.

It is convenient to choose � such that

� ⌧ � ⌧

p

� , (3.14)

since this choice will allow us to use the same cut-o↵ � to study the Glauber-soft region.

We note that we replaced k̂1 with k̂1,? in the currents when writing Eq. (3.11); this is

justified since ↵1 and �1 terms in the Sudakov expansion of k provide O(�) and not O(
p

�)

corrections in region a). Hence, if we aim at computing the non-factorizable amplitude

with O(
p

�) relative accuracy, we can discard them. In fact, to compute the amplitude

with O(
p

�) relative accuracy, terms with k̂1,? in Eq. (3.11) can be dropped altogether.

Indeed, since k1,? ⇠
p

�, if we retain it in one of the terms that appear either in �µ⌫ or in

�̃µ⌫ , the other current should be computed at leading �-power. However, in this case

h4|�
µ
p̂2,4�

⌫
|2] ⇡ 4p

µ

2
p
⌫

2 , h3|�
µ
p̂3,1�

⌫
|1] ⇡ 4p

µ

1
p
⌫

1 , (3.15)
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Region ↵1 �1 k1,?

a � �
p

�

b �
p

�
p

�

c
p

�
p

�
p

�

d 1 �
p

�

e 1 1 1

Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-

ric regions are not shown.

k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find

M
(a)

⇠ �
�2

, M
(b)

⇠ �
�2

, M
(c)

⇠ �
�2

, M
(d)

⇠ �
�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.
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Combining these results for � and �̃ and neglecting all terms beyond desired O(
p

�) cor-

rections, we obtain the following contribution to the one-loop amplitude from the Glauber

region

A
(a)

1
= �h3|�

µ
|1]h4|�µ|2]

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

⇥

✓
1 +

�3

2�3,1

(2s�3 + �1 � ⇥3,1) +
�4

2�4,1

(2s�4 + �1 � ⇥4,1)

◆
.

(3.25)

We then proceed with the discussion of the contribution of region b) with the mixed

scaling ↵1 ⇠ � and �1 ⇠
p

�. According to Eq. (3.8), we require the contribution of this

region through first subleading terms. However, it is easy to see that, in actuality, the

contribution of region b) starts at O(��3/2) and, therefore, should be computed at leading

power only.

To understand why this is the case, we first discuss the currents J
µ⌫ and J̃

µ⌫ and, in

particular, the numerators of the contributing terms. Since we work with O(
p

�) accuracy,

in region b) we should replace k1 with k1 ! �1p2 + k1,? in both currents. Suppose we

do this replacement in J
µ⌫ . Since these terms already provide an O(

p
�) correction, the

current J̃
µ⌫ should be taken at leading power. Since at leading power J̃

µ⌫
⇠ p

µ

2
p
⌫

2
, it is

easy to see that all contributions of vector k1 drop from the current J
µ⌫ once the Lorentz

indices are contracted.

However, if we account for k1 in the current J̃
µ⌫ , the situation is di↵erent. In this

case, since i) k1 is independent of ↵1, ii) it appears with di↵erent signs in the two terms

in J̃
µ⌫ , and iii) J̃

µ⌫ is contracted with J
µ⌫ computed at leading power, the corresponding

contribution vanishes after integration over ↵1.

Having concluded that, similar to the Glauber region, we can drop k1 from the fermion

currents, we note that the current J
µ⌫(k1, �q1 � k1) in region b) can be further simplified.

Indeed, using the fact that �1 � �1/s, ⇥3,1/s, we expand the current and obtain

J
µ⌫(k1, �q1 � k1) ⇡ p

µ

1
p
⌫

1

✓
1

s�1 + �1 + i0
+

↵3

�s↵3�1 + ⇥3,1 + i0

◆

⇡ �
p
µ

1
p
⌫

1

s�
2
1

(�1 + ⇥3,1) .

(3.26)

This equation implies that in region b) the current scales as O(1) and not as O(��1/2) as a

naive estimate suggests. This suppression occurs because of the cancellation between two

terms in brackets in Eq. (3.26). This means that the contribution of the region b) starts

at �
�3/2, so that all ingredients needed to compute the amplitude in region b), except the

current J
µ⌫(k1, �q1 � k1), are to be taken at leading power in �.

Hence, we find

A
(b)

1
= �h3|�µ|1]h4|�

µ
|2]

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

�� �̃, (3.27)
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|1]h4|�µ|2]

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

⇥

✓
1 +

�3

2�3,1

(2s�3 + �1 � ⇥3,1) +
�4

2�4,1

(2s�4 + �1 � ⇥4,1)

◆
.

(3.25)

We then proceed with the discussion of the contribution of region b) with the mixed

scaling ↵1 ⇠ � and �1 ⇠
p

�. According to Eq. (3.8), we require the contribution of this

region through first subleading terms. However, it is easy to see that, in actuality, the

contribution of region b) starts at O(��3/2) and, therefore, should be computed at leading

power only.

To understand why this is the case, we first discuss the currents J
µ⌫ and J̃

µ⌫ and, in

particular, the numerators of the contributing terms. Since we work with O(
p

�) accuracy,

in region b) we should replace k1 with k1 ! �1p2 + k1,? in both currents. Suppose we

do this replacement in J
µ⌫ . Since these terms already provide an O(

p
�) correction, the

current J̃
µ⌫ should be taken at leading power. Since at leading power J̃

µ⌫
⇠ p

µ

2
p
⌫

2
, it is

easy to see that all contributions of vector k1 drop from the current J
µ⌫ once the Lorentz

indices are contracted.

However, if we account for k1 in the current J̃
µ⌫ , the situation is di↵erent. In this

case, since i) k1 is independent of ↵1, ii) it appears with di↵erent signs in the two terms

in J̃
µ⌫ , and iii) J̃

µ⌫ is contracted with J
µ⌫ computed at leading power, the corresponding

contribution vanishes after integration over ↵1.

Having concluded that, similar to the Glauber region, we can drop k1 from the fermion

currents, we note that the current J
µ⌫(k1, �q1 � k1) in region b) can be further simplified.

Indeed, using the fact that �1 � �1/s, ⇥3,1/s, we expand the current and obtain

J
µ⌫(k1, �q1 � k1) ⇡ p

µ

1
p
⌫

1

✓
1

s�1 + �1 + i0
+

↵3

�s↵3�1 + ⇥3,1 + i0

◆

⇡ �
p
µ

1
p
⌫

1

s�
2
1

(�1 + ⇥3,1) .

(3.26)

This equation implies that in region b) the current scales as O(1) and not as O(��1/2) as a

naive estimate suggests. This suppression occurs because of the cancellation between two

terms in brackets in Eq. (3.26). This means that the contribution of the region b) starts

at �
�3/2, so that all ingredients needed to compute the amplitude in region b), except the

current J
µ⌫(k1, �q1 � k1), are to be taken at leading power in �.

Hence, we find

A
(b)

1
= �h3|�µ|1]h4|�

µ
|2]

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

�� �̃, (3.27)
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where �̃ is still given by Eq. (3.24) and

�� =

✓
�

�1

s
�

⇥3,1

s

◆ 1Z

�1

d�1

2⇡i

(✓(�1 � �) + ✓(�� � �1))�3,1

(s�3�1 + �3,1 + i0) �
2
1

. (3.28)

Calculation of this integral is straightforward. We obtain5

�� =
�3

2�3,1

(�1 + ⇥3,1) . (3.29)

Performing a similar computation for a symmetric region � ⇠ �, ↵ ⇠
p

�, we obtain

��̃ =
�4

2�4,1

(�1 + ⇥4,1) . (3.30)

Combining the contributions of regions a) and b), we find

A
a&b

1 = �h3|�
µ
|1]h4|�µ|2]

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

⇥

✓
1 +

�3

�3,1

(s�3 � ⇥3,1) +
�4

�4,1

(s↵4 � ⇥4,1)

◆
.

(3.31)

We turn our attention to region c) which corresponds to the soft scaling ↵1 ⇠ �1 ⇠

|k1,?| ⇠
p

�. According to Eq. (3.8) we require the contribution of this region through

first subleading power. However, a more careful analysis shows that the contribution of

this region is suppressed stronger than originally expected. To see this we note that in

the soft region, to leading power, the currents vanish. For example, the expression for

J
µ⌫(k1, �q1 � k1) reads

J
µ⌫(k1, �q1 � k1) ⇡ p

µ

1
p
⌫

1

✓
1

s�1 + i0
+

↵3

�s↵3�1 + i0

◆
= p

µ

1
p
⌫

1(�2i⇡)�(�1) ! 0 , (3.32)

and we have set it to zero because poles of the fermion propagators have already been

accounted for when the Glauber region was analyzed. Hence, to obtain a non-vanishing

contribution from the soft region, subleading terms in both currents J
µ⌫ and J̃

µ⌫ are needed.

The subleading contributions to the currents scale as O(1) and not as 1/
p

� as a naive

estimate for the currents’ scaling would suggest. This implies that at variance with the

original estimate M
(c)

⇠ �
�2 in Eq. (3.8), the contribution of the soft region is suppressed

by an additional power of �. For this reason, the soft region is not needed for computing

the two-loop non-factorizable amplitude with O(
p

�) accuracy.

The contribution of the collinear region can be analyzed in the same way. Since, in

this case, the amplitude scales as M
d

⇠ �
�3/2, both currents need to be taken at leading

5
We do not display contributions that scale as �3,1/� since they cancel against the contribution of the

Glauber region.
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result in a compact way, we introduce the following quantities

�1 = �k2

1,?, �3,1 = �(k1,? � p3,?)2 � m
2

V , �4,1 = �(k1,? + p4,?)2 � m
2

V ,

⇥3,1 = �
�
k2

1,? � 2k1,? · p3,?
�

, ⇥4,1 = �
�
k2

1,? + 2k1,? · p4,?
�

.
(3.9)

In region a), all inverse propagators scale as O(�). To compute the first subleading cor-

rection we need to keep all terms that scale as �
3/2 and neglect all terms that scale as �

2.

We find

d1 ⇡ �1 + i0, d3 ⇡ s�3(�1 � �3) + �3,1 + i0, d4 ⇡ �s�4(↵1 + ↵4) + �4,1 + i0 ,

⇢1(k1) ⇡ s�1 + �1 + i0 , ⇢2(�k1) ⇡ �s↵1 + �1 + i0 ,

⇢3(�k1) ⇡ �s↵3�1 + ⇥3,1 + i0 , ⇢4(k1) ⇡ s�4↵1 + ⇥4,1 + i0 .

(3.10)

If we use the simplified propagators shown in Eq. (3.10) to compute the amplitude A1, we

observe that integrations over ↵1 and �1 factorize. We then write

A
(a)

1
= �

s

2

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

�µ⌫ �̃µ⌫ , (3.11)

where

�µ⌫ =

�Z

��

d�1

2⇡i

�3,1

s�3(�1 � �3) + �3,1 + i0

⇥ h3|

"
�
⌫(p̂1 + k̂1,?)�µ

s�1 + �1 + i0
+

�
µ(p̂3 � k̂1,?)�⌫

�s↵3�1 + ⇥3,1 + i0

#
|1] ,

(3.12)

�̃µ⌫ =

�Z

��

d↵1

2⇡i

�4,1

�s�4(↵1 + ↵4) + �4,1 + i0

⇥ h4|

"
�
⌫(p2 + k̂1,?)�µ

�s↵1 + �1 + i0
+

�
⌫(p4 � k̂1,?)�µ

s�4↵1 + ⇥4,1 + i0

#
|2] .

(3.13)

In Eq. (3.11) � is a cut-o↵ parameter that forces �1 and ↵1 to stay in the region ↵1 ⇠ �1 ⇠ �.

It is convenient to choose � such that

� ⌧ � ⌧

p

� , (3.14)

since this choice will allow us to use the same cut-o↵ � to study the Glauber-soft region.

We note that we replaced k̂1 with k̂1,? in the currents when writing Eq. (3.11); this is

justified since ↵1 and �1 terms in the Sudakov expansion of k provide O(�) and not O(
p

�)

corrections in region a). Hence, if we aim at computing the non-factorizable amplitude

with O(
p

�) relative accuracy, we can discard them. In fact, to compute the amplitude

with O(
p

�) relative accuracy, terms with k̂1,? in Eq. (3.11) can be dropped altogether.

Indeed, since k1,? ⇠
p

�, if we retain it in one of the terms that appear either in �µ⌫ or in

�̃µ⌫ , the other current should be computed at leading �-power. However, in this case

h4|�
µ
p̂2,4�

⌫
|2] ⇡ 4p

µ

2
p
⌫

2 , h3|�
µ
p̂3,1�

⌫
|1] ⇡ 4p

µ

1
p
⌫

1 , (3.15)
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1 +

�4
2�4,1

(2s↵4 +�1 �⇥4,1)

�
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The final result for the one-loop non-factorisable amplitude with next-to-eikonal accuracy is given by a simple integral 
over transversal components of the loop momentum.

Region ↵1 �1 k1,?

a � �
p

�

b �
p

�
p

�

c
p

�
p

�
p

�

d 1 �
p

�

e 1 1 1

Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-

ric regions are not shown.

k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this

analysis and assuming that the transverse loop momentum can either be of the same order

as the transverse momenta of the outgoing jets or of the same order as the center-of-mass

energy, we come to the conclusion that the following loop-momenta regions,3 shown in

Table 1, need to be considered. The first region is the so-called Glauber region; the second

one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

Using the scaling of the loop-momentum components as indicated in Table 1, we esti-

mate the contributions of the various regions to the one-loop amplitude. We find

M
(a)

⇠ �
�2

, M
(b)

⇠ �
�2

, M
(c)

⇠ �
�2

, M
(d)

⇠ �
�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.
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To write the non-factorizable amplitude in a convenient way, we assume that the

coupling of the vector boson V to the Higgs boson is given by igV V H gµ⌫ and that the

coupling of the massive vector boson to quarks is vector-like, �igW�
µ. Since we work with

massless quarks, their helicities are conserved and we can reconstruct non-factorizable

contributions for V = Z and V = W from the results that are reported below.

We write the one-loop non-factorizable amplitude as follows

M1 = g
2

sg
2

W gV V H T
a

i3i1
T
a

i4i2
A1 , (3.1)

where T
a

ij
denote the generators of the SU(3) color group and A1 stands for the color-

stripped one-loop amplitude2

A1 =

Z
dd

k1

(2⇡)d
1

d1d3d4

Jµ⌫(k1, �k1 � q1) J̃
µ⌫(�k1, k1 � q2) . (3.2)

In Eq. (3.2), we used the notation

d1 = k
2

1 + i0, d3 = (k1 + q1)
2
� m

2

V + i0, d4 = (k1 � q2)
2
� m

2

V + i0 , (3.3)

to define propagators of virtual bosons. In addition, following the conventions in Fig. 1,

we introduced two quark currents

J
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(3.4)

where we assumed that the incoming fermions are left-handed. In writing Eq. (3.4) we

employed the quantities ⇢i(k), i = 1, 2, 3, 4 to describe quark propagators; they read

⇢i(k) =
1

(pi + k)2 + i0
. (3.5)

We would like to construct an expansion of the amplitude in Eq. (3.2) in powers of

�. To understand how to do tatt, we introduce the Sudakov parametrization of the loop

momentum k1 and write
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The various propagators in Eq. (3.2) are linear polynomials in ↵1 and �1. Hence,

integration over either one of these two variables can be easily performed using the residue

2
Throughout this paper, we use dimensional regularization, with the dimensionality of space-time being

d = 4 � 2".
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power. We find
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It is clear that the contraction of the two currents in Eq. (3.33) vanishes. Hence, we

conclude that collinear regions do not provide the O(
p

�) corrections to the leading term

in the eikonal expansion. Since, obviously, the hard region is not relevant as well, we

conclude that, with O(
p

�) accuracy, the one-loop non-factorizable contribution is given

by the sum of the Glauber and Glauber-soft contributions in Eq. (3.31).

Having performed this analysis, we note that the final result for the two regions a)

and b) can be obtained by simply computing the functions � and �̃ from the following

unexpanded expressions
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It is straightforward to integrate over �1 and ↵1 in Eq. (3.34). Indeed, focusing on the

function �, we note that, if we close the integration contour in the upper half plane, only

the residue at �1 = ⇥3,1/(s↵3) contributes. We then find

� = (�1)
�3,1

�3,1 + �3(⇥3,1 � s�3)
. (3.35)

Expanding this result in �3, performing a similar computation for �̃, and keeping only the

relevant terms in the product of � and �̃, we obtain Eq. (3.31).

Finally, it is convenient to write the one-loop non-factorizable amplitude by extracting

exact (i.e. not expanded in powers of �) Born amplitude. The latter reads
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result in a compact way, we introduce the following quantities

�1 = �k2

1,?, �3,1 = �(k1,? � p3,?)2 � m
2

V , �4,1 = �(k1,? + p4,?)2 � m
2

V ,

⇥3,1 = �
�
k2

1,? � 2k1,? · p3,?
�

, ⇥4,1 = �
�
k2

1,? + 2k1,? · p4,?
�

.
(3.9)

In region a), all inverse propagators scale as O(�). To compute the first subleading cor-

rection we need to keep all terms that scale as �
3/2 and neglect all terms that scale as �

2.

We find

d1 ⇡ �1 + i0, d3 ⇡ s�3(�1 � �3) + �3,1 + i0, d4 ⇡ �s�4(↵1 + ↵4) + �4,1 + i0 ,

⇢1(k1) ⇡ s�1 + �1 + i0 , ⇢2(�k1) ⇡ �s↵1 + �1 + i0 ,

⇢3(�k1) ⇡ �s↵3�1 + ⇥3,1 + i0 , ⇢4(k1) ⇡ s�4↵1 + ⇥4,1 + i0 .

(3.10)

If we use the simplified propagators shown in Eq. (3.10) to compute the amplitude A1, we

observe that integrations over ↵1 and �1 factorize. We then write

A
(a)

1
= �

s

2

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

�µ⌫ �̃µ⌫ , (3.11)

where

�µ⌫ =

�Z
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s�1 + �1 + i0
+

�
µ(p̂3 � k̂1,?)�⌫

�s↵3�1 + ⇥3,1 + i0

#
|1] ,

(3.12)

�̃µ⌫ =

�Z
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d↵1
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�s↵1 + �1 + i0
+

�
⌫(p4 � k̂1,?)�µ

s�4↵1 + ⇥4,1 + i0

#
|2] .

(3.13)

In Eq. (3.11) � is a cut-o↵ parameter that forces �1 and ↵1 to stay in the region ↵1 ⇠ �1 ⇠ �.

It is convenient to choose � such that

� ⌧ � ⌧

p

� , (3.14)

since this choice will allow us to use the same cut-o↵ � to study the Glauber-soft region.

We note that we replaced k̂1 with k̂1,? in the currents when writing Eq. (3.11); this is

justified since ↵1 and �1 terms in the Sudakov expansion of k provide O(�) and not O(
p

�)

corrections in region a). Hence, if we aim at computing the non-factorizable amplitude

with O(
p

�) relative accuracy, we can discard them. In fact, to compute the amplitude

with O(
p

�) relative accuracy, terms with k̂1,? in Eq. (3.11) can be dropped altogether.

Indeed, since k1,? ⇠
p

�, if we retain it in one of the terms that appear either in �µ⌫ or in

�̃µ⌫ , the other current should be computed at leading �-power. However, in this case

h4|�
µ
p̂2,4�

⌫
|2] ⇡ 4p

µ

2
p
⌫

2 , h3|�
µ
p̂3,1�

⌫
|1] ⇡ 4p

µ

1
p
⌫

1 , (3.15)
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Table 1: Kinematic regions relevant for one-loop non-factorizable contributions. Symmet-
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k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ⌫

k1 �k1 � q1

Figure 1: The one-loop amplitude, shown on the left, can be constructed by contracting

the currents for the upper and lower fermion lines. The current for the upper fermion line

J
µ⌫(k1, �k1 � q1) is shown on the right.

theorem. The resulting integrand is a product of (at most) quadratic polynomials in the

other variable so that the structure of singularities can be easily analyzed. Performing this
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M
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, M
(b)
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�2

, M
(c)

⇠ �
�2

, M
(d)
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�3/2

, M
(e)

⇠ 1 . (3.8)

We note that the leading order WBF amplitude scales as �
�2 and that, as follows from

Eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of
p

�. To compute

O(
p

�) correction to the virtual amplitude, we need to account for the contributions of

regions a), b) and c) to first subleading power and the contribution of region d) to leading

power in the expansion in �.

We begin with the discussion of region a). Using momentum scaling in Table 1, we

simplify the various propagators that appear in the integrand in Eq. (3.4). To present the

3
See Refs. [14–16] for the discussion of the strategy of regions and its application to computing loop

integrals.
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A similar analysis  of the two-loop amplitude  leads to the conclusion that contributions of momenta regions 
which are identical to the one-loop case need to be considered.  Importantly, factorization works in a very 
similar manner, so that the “upper-line” and the “lower-line” currents factorize and can be treated separately. 

It remains to analyze the contributions of the other regions to the two-loop non-

factorizable amplitude. This analysis proceeds along the lines of the discussion of the

one-loop case. It relies on the fact that for soft and collinear gluons, fermion currents

simplify dramatically. Consider, for example, the case where k1 is Glauber and k2 is soft.

Naively, this region would contribute at O(��2) so that we need to account for subleading

contributions from this region. In practice, the contribution is O(�) suppressed compared

to a naive estimate.

Indeed, if k2 is soft and k1 is Glauber, then k12 is also soft. To understand how

the currents simplify in this case, consider Eq. (4.12). Since �12 ⇠ �1 ⇠
p

� � �, the

leading contribution in the last line of Eq. (4.12) vanishes; we then find that the current in

Eq. (4.12) scales as �
�1, at variance with the naive scaling �

�3/2. We note that we ignore

the pole at �1,2 = 0 for the same reason as in the one-loop case, see Eq. (3.32). Since

both currents exhibit this behavior, we conclude that the contribution of this region to the

amplitude scales as O(��1) and not as O(��2) as naively expected. For this reason, it is

not relevant for the calculation of the two-loop amplitude with the O(
p

�) accuracy.

Similar to the one-loop case, we write the two-loop amplitude as
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where M0 is defined in Eq. (3.36) and the function C2 reads
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This function looks analogous to the one-loop function C1, c.f. Eq. (3.38). It is relatively

straightforward to compute C2 analytically; the corresponding discussion can be found in

appendix.

5 Infrared pole cancellation and the finite remainder function

To compute the double-virtual non-factorizable contribution to the di↵erential WBF cross

section, we square the one-loop amplitude in Eq. (3.37) and calculate the interference of

the two-loop amplitude in Eq. (4.19) with the Born amplitude. Summing over spins and

colours, we find

d�̂
NNLO

nf =
N

2
c � 1

4N2
c

↵
2

s Cnf d�̂
LO

, (5.1)

where ↵s = g
2
s/4⇡ is the strong coupling constant,7 d�̂

LO is the exact Born di↵erential

cross section for Higgs boson production in WBF and Cnf characterizes the non-factorizable

7
Strictly speaking, this is the bare coupling constant. However, as we will explain shortly, the function

Cnf is "-finite. Because of this, the di↵erence between bare and renormalized coupling constants can be

ignored.
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Figure 2: The two-loop amplitude, shown on the left, is thought in terms of the currents

that make it up. On the right, we define of the generalized upper current J
µ⌫↵(k1, k2, �k12�

q1) used in the calculation of the two-loop amplitude.

To integrate over the loop momenta k1,2, for each of them (and also for their linear

combinations) we need to consider regions shown in Table 1. We write

ki = ↵ip1 + �ip2 + ki,?, i = 1, 2 . (4.6)

The leading contribution comes from the Glauber region where ↵1 ⇠ �1 ⇠ ↵2 ⇠ �2 ⇠ �

and |k1,?| ⇠ |k2,?| ⇠
p

�. Similar to the one-loop case, the leading correction arises from

the mixed region where some of the ↵- or �-components scale as
p

�. Both in the Glauber

region and in the mixed region, the loop momenta in the numerators of both currents J
µ⌫↵

and J̃
µ⌫↵ can be discarded. The reason for this is the same as in the one-loop case and we

do not repeat this analysis here.

Building on the experience with the one-loop calculation reported in the previous

section, we can make the following observation. To obtain O(
p

�) correction, we only need

to consider the cases where i) one or both �1,2 components of the loop momenta scale as
p

� and both ↵1,2 scale as �, or ii) the other way around. If one of the two ↵’s and one of

the two �’s scale as
p

�, then ↵12 and �12 also scale as
p

�. As the result, both currents in

Eq. (4.4) and Eq. (4.5) are suppressed by O(
p

�). Thus, the contribution of this region is

suppressed by O(�) and can be discarded. We conclude that, if we want to construct an

integrand which is valid both in the Glauber region and in the mixed region, we need to

write an expression that incorporates
p

� corrections to one of the currents and that the

other current should be taken at leading order.

These considerations also guide the expansion of the propagators in powers of � to make

them valid in both the Glauber region and in the mixed region. To write the approximate

expressions, we define

�i = �k2

i,? , �3,i = �(ki,? � p3,?)2 � m
2

V , �4,i = �(ki,? + p4,?)2 � m
2

V ,

⇥3,i = �
�
k2

i,? � 2ki,? · p3,?
�

, ⇥4,i = �
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k2

i,? + 2ki,? · p4,?
�

,
(4.7)

for i 2 {1, 2, 12}, where ↵12 = ↵1 + ↵2, �12 = �1 + �2 etc. and obtain

d1,2 ⇡ �1,2 + i0 , d3 ⇡ s�3(�12 � �3) + �3,12 + i0 ,

d4 ⇡ �s�4(↵12 + ↵4) + �4,12 + i0 ,
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The cross section is obtained by computing the sum of the square of the one-loop amplitude and the 
interference of the two-loop amplitude with  the Born amplitude.   In this combination, the infra-red 
divergences cancel out and the finite remainder is obtained.  The finite remainder can be  computed 
analytically, by applying standard methods of multi-loop computations, albeit at d = 2.

corrections. The function Cnf reads

Cnf = C
2

1 � C2 , (5.2)

and all terms that are suppressed stronger than O(
p

�) are supposed to be discarded when

computing it.

We note that functions C1 and C2 are infra-red divergent; these divergences arise when

the loop momenta ki,?, i = 1, 2, vanish. Computing these functions and expanding in ✏,

we find

C1 = �
1

✏
+ C1,0 + ✏ C1,1 + O(✏2) ,

C2 =
1

✏2
�

2

✏
C1,0 + C2,0 + O(✏1) .

(5.3)

Using these results in Eq. (5.2), we obtain

Cnf = C
2

1,0 � 2 C1,1 � C2,0 , (5.4)

which is infra-red finite and can be computed for " = 0. The fact that the double-virtual

contribution to non-factorizable corrections in WBF is finite through O(
p

�) is in accord

with Catani’s formula for infra-red divergences of generic two-loop amplitudes applied to

the WBF process [17]. Analytic results for the function Cnf can be found in the ancillary

file provided with this submission.

6 Numerical results and phenomenology

It is instructive to study the results of the calculation in several ways. First, we compare the

analytic results for the function Cnf at leading order in the �-expansion against numerical

results8 reported in Ref. [1] and find good agreement. Second, to explore the accuracy

of our result in a realistic setting, we compare the one-loop amplitude including leading

and first sub-leading terms in the �-expansion, with the exact one-loop non-factorizable

amplitude A1. To this end, we generate events that pass the WBF cuts [19], use them to

evaluate both amplitudes, and compute the following quantity

X� =
A1 � A

a&b

1

Aa&b

1
� A

(0)

1

. (6.1)

In Eq. (6.1), A1 is the exact amplitude, A
(0)

1
is the leading eikonal amplitude

A
(0)

1
= �h3|�

µ
|1]h4|�µ|2]

Z
dd�2k1,?
(2⇡)d�2

1

�1�3,1�4,1

, (6.2)

and A
a&b

1
is given in Eq. (3.31). We expect that in WBF kinematics X� ⇠ O(

p
�) and we

would like to check if this is indeed the case.

WBF events are required to contain at least two jets with transverse momenta p?,j >

25 GeV and rapidities |yj | < 4.5. The two jets must have well-separated rapidities, |yj1 �

8
We note that very recently an analytic result for Cnf at leading order in the �-expansion was com-

puted [18].
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It remains to analyze the contributions of the other regions to the two-loop non-

factorizable amplitude. This analysis proceeds along the lines of the discussion of the

one-loop case. It relies on the fact that for soft and collinear gluons, fermion currents

simplify dramatically. Consider, for example, the case where k1 is Glauber and k2 is soft.

Naively, this region would contribute at O(��2) so that we need to account for subleading

contributions from this region. In practice, the contribution is O(�) suppressed compared

to a naive estimate.

Indeed, if k2 is soft and k1 is Glauber, then k12 is also soft. To understand how

the currents simplify in this case, consider Eq. (4.12). Since �12 ⇠ �1 ⇠
p

� � �, the

leading contribution in the last line of Eq. (4.12) vanishes; we then find that the current in

Eq. (4.12) scales as �
�1, at variance with the naive scaling �

�3/2. We note that we ignore

the pole at �1,2 = 0 for the same reason as in the one-loop case, see Eq. (3.32). Since

both currents exhibit this behavior, we conclude that the contribution of this region to the

amplitude scales as O(��1) and not as O(��2) as naively expected. For this reason, it is

not relevant for the calculation of the two-loop amplitude with the O(
p

�) accuracy.

Similar to the one-loop case, we write the two-loop amplitude as

M2 = �
1

2

g
4
s
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2
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a
, T

b
}

◆

i3i1

✓
1

2
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a
, T

b
}

◆

i4i2

M0 C2, (4.19)

where M0 is defined in Eq. (3.36) and the function C2 reads

C2 = 4

Z
dd�2k1,?
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dd�2k2,?
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(p2
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!
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m

2

V

p2

4,? + m
2

V

+
m

2

V

�4,12

!#
.

(4.20)

This function looks analogous to the one-loop function C1, c.f. Eq. (3.38). It is relatively

straightforward to compute C2 analytically; the corresponding discussion can be found in

appendix.

5 Infrared pole cancellation and the finite remainder function

To compute the double-virtual non-factorizable contribution to the di↵erential WBF cross

section, we square the one-loop amplitude in Eq. (3.37) and calculate the interference of

the two-loop amplitude in Eq. (4.19) with the Born amplitude. Summing over spins and

colours, we find

d�̂
NNLO

nf =
N

2
c � 1

4N2
c

↵
2

s Cnf d�̂
LO

, (5.1)

where ↵s = g
2
s/4⇡ is the strong coupling constant,7 d�̂

LO is the exact Born di↵erential

cross section for Higgs boson production in WBF and Cnf characterizes the non-factorizable

7
Strictly speaking, this is the bare coupling constant. However, as we will explain shortly, the function

Cnf is "-finite. Because of this, the di↵erence between bare and renormalized coupling constants can be

ignored.
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As a final comment, we note that other sources of non-factorizable contributions to

WBF cross sections, including double-real emission and the real-virtual corrections, were

recently studied in Ref. [22]. It was found that, thanks to the WBF cuts, all the contri-

butions beyond the double-virtual ones are tiny and cannot impact the phenomenological

studies of Higgs production in WBF in any way. The results reported in this reference

allow us to estimate the contribution of the non-factorizable double-virtual corrections to

the WBF cross section with a precision that is likely better than O(10) percent. Since the

non-factorizable contribution itself is just O(1) percent of the total WBF cross section, the

remaining uncertainties stemming from the imprecise knowledge of the two-loop virtual

amplitude are irrelevant. We conclude that the current understanding of non-factorizable

e↵ects is su�cient for phenomenological studies of Higgs production in weak boson fusion

envisaged for the Run III and the high-luminosity phase of the LHC.
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A Calculation of two-dimensional master integrals

The goal of this appendix is to explain how the d = 2 Feynman integrals that contribute

to the coe�cients C1,2 can be computed. We begin with the discussion of the two-loop

case. Two-loop d = 2 integrals that are required for computing C2 belong to the following

integral family

j[a1, a2, a3, a4] =
(m2

V
)2✏

⇡d�2�(1 + ✏)2

Z dkd�2

1,? dkd�2

2,?
�a1

1
�a2

2
�a3

3,12
�a4

4,12

. (A.1)

These integrals depend on the transverse momenta of the outgoing jets and of the Higgs

boson, as well as on the mass of the vector boson V . For later convenience, we introduce

three dimensionless variables as

x =
p2

3,?
m

2

V

, y =
p2

4,?
m

2

V

, z =
p2

H,?
m

2

V

. (A.2)

It is straighforward to write down integration-by-parts (IBP) identities [24, 25] for the

integral family j[a1, a2, a4, a4]. Performing the IBP reduction with LiteRed [26, 27], we

find that there are six master integrals. They are

f1 = j[2, 1, 2, 0], f2 = j[2, 2, 1, 0], f3 = j[2, 1, 0, 2],

f4 = j[2, 2, 0, 1], f5 = j[2, 1, 1, 1], f6 = j[2, 1, 2, 1].
(A.3)
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Figure 6: Two-dimensional two-loop master integrals. The thick and thin internal lines

represent massive and massless propagators, respectively. Red lines have mass mV . The

black thick lines correspond to external ”massive” legs. A dot on the internal line means

raising the power of corresponding propagator by one.

The master integrals are displayed in Fig. 6. Although we need these integrals at

d = 2, we find it more convenient to study them first in four dimensions. In particular, at

d = 4, we easily obtain the canonical basis [28] using the Magnus series expansion method

[29]. We then transform the integrals to d = 2 using the dimensional recurrence relations

[30]. In four dimensions, the canonical basis reads

g1 = x✏
2
m

2

V f1,

g2 = 2✏
2
m

2

V f1 + (x + 1)✏2m2

V f2,

g3 = y✏
2
m

2

V f3,

g4 = 2✏
2
m

2

V f3 + (y + 1)✏2m2

V f4,

g5 = 2✏
3
m

2

V r2f5, (A.4)

g6 =
✏
2
r1m

2

V

4[2(y � x) + z(1 + y)]

(
4m

2

V [(x � y)2 � (x + 1)(y + 1)z]f6

� 6✏[(x � y)(y � 1) + z(1 + y)]f5 + (y + 1)2(f4 + 2f3)

� (x + 1)(y + 1)(f2 + 2f1)

)
,

where r1,2 represent two square roots,

r1 =
p

z(z + 4), r2 =
p

(x + y � z)2 � 4xy. (A.5)

Note that all the g’s are normalized to be dimensionless and can be regarded as functions of

x, y and z only. The canonical basis vector ~g = (g1, g2, g3, g4, g5, g6)T satisfies a di↵erential
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µ ⌫ ↵

k1 k2 �k12 � q1

Figure 2: The two-loop amplitude, shown on the left, is thought in terms of the currents

that make it up. On the right, we define of the generalized upper current J
µ⌫↵(k1, k2, �k12�

q1) used in the calculation of the two-loop amplitude.

To integrate over the loop momenta k1,2, for each of them (and also for their linear

combinations) we need to consider regions shown in Table 1. We write

ki = ↵ip1 + �ip2 + ki,?, i = 1, 2 . (4.6)

The leading contribution comes from the Glauber region where ↵1 ⇠ �1 ⇠ ↵2 ⇠ �2 ⇠ �

and |k1,?| ⇠ |k2,?| ⇠
p

�. Similar to the one-loop case, the leading correction arises from

the mixed region where some of the ↵- or �-components scale as
p

�. Both in the Glauber

region and in the mixed region, the loop momenta in the numerators of both currents J
µ⌫↵

and J̃
µ⌫↵ can be discarded. The reason for this is the same as in the one-loop case and we

do not repeat this analysis here.

Building on the experience with the one-loop calculation reported in the previous

section, we can make the following observation. To obtain O(
p

�) correction, we only need

to consider the cases where i) one or both �1,2 components of the loop momenta scale as
p

� and both ↵1,2 scale as �, or ii) the other way around. If one of the two ↵’s and one of

the two �’s scale as
p

�, then ↵12 and �12 also scale as
p

�. As the result, both currents in

Eq. (4.4) and Eq. (4.5) are suppressed by O(
p

�). Thus, the contribution of this region is

suppressed by O(�) and can be discarded. We conclude that, if we want to construct an

integrand which is valid both in the Glauber region and in the mixed region, we need to

write an expression that incorporates
p

� corrections to one of the currents and that the

other current should be taken at leading order.

These considerations also guide the expansion of the propagators in powers of � to make

them valid in both the Glauber region and in the mixed region. To write the approximate

expressions, we define

�i = �k2

i,? , �3,i = �(ki,? � p3,?)2 � m
2

V , �4,i = �(ki,? + p4,?)2 � m
2

V ,

⇥3,i = �
�
k2

i,? � 2ki,? · p3,?
�

, ⇥4,i = �
�
k2

i,? + 2ki,? · p4,?
�

,
(4.7)

for i 2 {1, 2, 12}, where ↵12 = ↵1 + ↵2, �12 = �1 + �2 etc. and obtain

d1,2 ⇡ �1,2 + i0 , d3 ⇡ s�3(�12 � �3) + �3,12 + i0 ,

d4 ⇡ �s�4(↵12 + ↵4) + �4,12 + i0 ,
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d1,2 ⇡ �1,2 + i0 , d3 ⇡ s�3(�12 � �3) + �3,12 + i0 ,

d4 ⇡ �s�4(↵12 + ↵4) + �4,12 + i0 ,
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that make it up. On the right, we define of the generalized upper current J
µ⌫↵(k1, k2, �k12�

q1) used in the calculation of the two-loop amplitude.
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for i 2 {1, 2, 12}, where ↵12 = ↵1 + ↵2, �12 = �1 + �2 etc. and obtain

d1,2 ⇡ �1,2 + i0 , d3 ⇡ s�3(�12 � �3) + �3,12 + i0 ,

d4 ⇡ �s�4(↵12 + ↵4) + �4,12 + i0 ,
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The next-to-leading  terms change the leading eikonal contribution to the non-factorizable corrections by thirty  percent, 
depending on the observable.  Hence, the eikonal expansion is not perfect but,  most likely, it  provides a reasonable 
order-of-magnitude estimate for non-factorizable corrections. 
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Figure 4: Eikonal and next-to-eikonal contributions to the transverse momentum and

rapidity distributions of the leading jet. In the upper pane, leading eikonal contribution is

plotted with a red, dashed line and the next-to-eikonal one with a green, solid line. In the

lower pane, we show the ratio of next-to-eikonal to eikonal contributions. We note that in

the upper left pane, absolute values are shown. See text for further details.

use dynamical renormalization and factorization scales9

µF = µR =
mH

2

"
1 +

4p
2

H,?
m

2

H

#1/4

. (6.4)

We set the mass of the W boson to mW = 80.398 GeV, the mass of the Z boson to

mZ = 91.1876 GeV, and the mass of the Higgs boson to mH = 125 GeV. The Fermi

constant is taken to be GF = 1.16637 ⇥ 10�5 GeV�2.

For 13 TeV proton-proton collisions, we find that the non-factorizable, double-virtual

contribution to Higgs boson production in WBF evaluates to

�V V = (�3.1 + 0.53) fb , (6.5)

where we display contributions of leading and next-to-leading terms in the �-expansion.

We emphasise that the next-to-eikonal correction is calculated by excluding kinematic con-

figurations where |yH | > 1 in the partonic center-of-mass frame, in addition to conventional

WBF cuts that we listed earlier. It follows from Eq. (6.5) that the correction to the leading

eikonal approximation amounts to O(17%).

We now turn to the discussion of kinematic distributions. In Fig. 4, we display non-

factorizable corrections to transverse momentum and rapidity distributions of the leading

jet. The comparison of leading and next-to-leading eikonal contributions in lower panes

shows that next-to-leading eikonal corrections range from ten to fifty percent. They appear

to modify the leading order eikonal contribution by O(50%) for higher values of p?,j1 . This

enhancement is partially related to the fact that the leading eikonal contribution changes

sign at around p?,j1 ⇠ 2mW , which is the reason for rapidly changing ratio of eikonal

factors shown in the lower pane.

9
It is not clear that this popular choice of the renormalization and factorization scales [10] is the optimal

choice for non-factorizable contributions.
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It remains to analyze the contributions of the other regions to the two-loop non-

factorizable amplitude. This analysis proceeds along the lines of the discussion of the

one-loop case. It relies on the fact that for soft and collinear gluons, fermion currents

simplify dramatically. Consider, for example, the case where k1 is Glauber and k2 is soft.

Naively, this region would contribute at O(��2) so that we need to account for subleading

contributions from this region. In practice, the contribution is O(�) suppressed compared

to a naive estimate.

Indeed, if k2 is soft and k1 is Glauber, then k12 is also soft. To understand how

the currents simplify in this case, consider Eq. (4.12). Since �12 ⇠ �1 ⇠
p

� � �, the

leading contribution in the last line of Eq. (4.12) vanishes; we then find that the current in

Eq. (4.12) scales as �
�1, at variance with the naive scaling �

�3/2. We note that we ignore

the pole at �1,2 = 0 for the same reason as in the one-loop case, see Eq. (3.32). Since

both currents exhibit this behavior, we conclude that the contribution of this region to the

amplitude scales as O(��1) and not as O(��2) as naively expected. For this reason, it is

not relevant for the calculation of the two-loop amplitude with the O(
p

�) accuracy.

Similar to the one-loop case, we write the two-loop amplitude as

M2 = �
1

2

g
4
s

(4⇡)2
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2
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a
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b
}

◆

i3i1

✓
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2
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}

◆

i4i2

M0 C2, (4.19)

where M0 is defined in Eq. (3.36) and the function C2 reads

C2 = 4

Z
dd�2k1,?
(2⇡)1�2✏

dd�2k2,?
⇡(2⇡)1�2✏

(p2
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2
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)(p2
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2

V
)
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2

V
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2
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�3,12

!
� �4

 
m

2

V

p2

4,? + m
2

V

+
m

2

V

�4,12

!#
.

(4.20)

This function looks analogous to the one-loop function C1, c.f. Eq. (3.38). It is relatively

straightforward to compute C2 analytically; the corresponding discussion can be found in

appendix.

5 Infrared pole cancellation and the finite remainder function

To compute the double-virtual non-factorizable contribution to the di↵erential WBF cross

section, we square the one-loop amplitude in Eq. (3.37) and calculate the interference of

the two-loop amplitude in Eq. (4.19) with the Born amplitude. Summing over spins and

colours, we find

d�̂
NNLO

nf =
N

2
c � 1

4N2
c

↵
2

s Cnf d�̂
LO

, (5.1)

where ↵s = g
2
s/4⇡ is the strong coupling constant,7 d�̂

LO is the exact Born di↵erential

cross section for Higgs boson production in WBF and Cnf characterizes the non-factorizable

7
Strictly speaking, this is the bare coupling constant. However, as we will explain shortly, the function

Cnf is "-finite. Because of this, the di↵erence between bare and renormalized coupling constants can be

ignored.
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pj1,j2? > 25 GeV, |yj1,j)2| < 4.5

|yj1 � yj2 | > 4.5, mj1j2 > 600 GeV
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Other contributions that need to be considered  for computing physical quantities (such as the cross section) are 
the double-real emission contribution and the real-virtual contribution.   An important problem that one faces, when 
dealing with these terms,  is to extract and remove singularities that arise upon integration over energies and angles 
of the emitted gluon (soft and collinear singularities).  

A general solution to this problem requires the development of intricate infra-red subtraction schemes.  However, in 
case of non-factorizable corrections,  this problem simplifies because 1)  there are no collinear singularities 
(emissions and absorptions must occur on different lines) and 2) the non-factorizable corrections are, effectively, 
abelian. 

Real-virtual contribution to NNLO corrections Double-real contribution to NNLO corrections
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Iterative subtraction of soft singularities from the double-real and real-virtual contributions as well as the 
use of Catani’s formula for divergences of double-virtual corrections leads to the following compact result 
for complete NNLO contribution to differential cross section.

6

c.f. Eq. (24). We write

⌦
F

nf
LVV(1, 2, 3, 4)

↵
=

✓
↵̃s

2⇡

◆2⌦
2 I1(✏)

2
F

nf
LM(1, 2, 3, 4)

↵

+
↵̃s

2⇡
qQ

⌦
2 I1(✏)F

nf
LV,fin(1, 2, 3, 4)

↵

+
⌦
F

nf
LVV,fin(1, 2, 3, 4)

↵
,

(31)

where F
nf
LVV,fin is the finite result for the two-loop ampli-

tude.

Explicit pole cancellation and IR finite result

The final result for the cross section is obtained by com-
bining the double-real, real-virtual and double-virtual
contributions given in Eq. (19), Eq. (29) and Eq. (31),
respectively. We write the partonic cross section as
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In Eq. (32) we introduced a finite function W(E; 1, 2, 3, 4)
defined as4

W(E; 1, 2, 3, 4) ⌘ qQ
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(33)

where ⌘ij = 1�cos ✓ij with angles defined in the partonic
centre-of-mass frame. The representation of the partonic

4 The ✏-expansion of function Knf can be found in the appendix,
see Eq. (A.2).

cross section given in Eq. (32) makes the cancellation of
all 1/✏ poles manifest and allows us to take the ✏ ! 0
limit right away. Note that upon doing so, the coupling
constant ↵̃s becomes ↵s(µ), the standard MS coupling
constant.

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the non-factorizable
contribution Eq. (32) requires double-real amplitudes as
well as finite parts of real-virtual amplitudes and double-
virtual amplitudes. To obtain the required double-real
amplitudes, we extend the calculation of the factorizable
NNLO QCD corrections reported in Ref. [4].

To compute the real-virtual contributions, we require
non-factorizable one-loop amplitudes for the processes
q + Q ! q

0 + Q
0 + H and q + Q ! q

0 + Q
0 + H + g.

These amplitudes were computed in Ref. [11] and we em-
ploy them in our numerical implementation. Extracting
the non-factorizable contribution from the existing code
requires only minor changes.5 However, it turns out to
be non-trivial to achieve stable and reliable numerical
results close to singular limits.

The existing implementation uses on-the-fly numeri-
cal Passarino-Veltman reduction and the OneLOop li-
brary [17] for the evaluation of scalar integrals. To reach
sufficient numerical accuracy we limit catastrophic can-
cellation by working with scaleless O(1) quantities. This
is achieved by scaling out the energy of the incoming par-
tons in all momenta and masses in each phase space point
and re-introducing it at the very end of the calculation.

Furthermore, we find it necessary to work with quadru-
ple precision. With these two measures we achieve agree-
ment with the infrared pole prediction in Eq. (24) to more
than 10 digits for most phase space points. In addition
to checking the amplitude’s pole structure, we also find a
satisfactory agreement between the exact six-point am-
plitude and its expected limit when the energy of the
final-state gluon becomes small, see Eq. (25). Obviously,
this last feature is a necessary requirement for being able
to use Eq. (32) for phenomenological studies.

For the finite remainder of the two-loop amplitude,
F

nf
LVV,fin, we use the results of Ref. [8]. These results are

obtained in the eikonal approximation which provides the
leading term in the expansion of this amplitude in p?/

p
s

5 We are grateful to T. Figy for making the code used for the
computations reported in Ref. [11] available to us.
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where F
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LVV,fin is the finite result for the two-loop ampli-

tude.

Explicit pole cancellation and IR finite result

The final result for the cross section is obtained by com-
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contributions given in Eq. (19), Eq. (29) and Eq. (31),
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In Eq. (32) we introduced a finite function W(E; 1, 2, 3, 4)
defined as4
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where ⌘ij = 1�cos ✓ij with angles defined in the partonic
centre-of-mass frame. The representation of the partonic

4 The ✏-expansion of function Knf can be found in the appendix,
see Eq. (A.2).

cross section given in Eq. (32) makes the cancellation of
all 1/✏ poles manifest and allows us to take the ✏ ! 0
limit right away. Note that upon doing so, the coupling
constant ↵̃s becomes ↵s(µ), the standard MS coupling
constant.

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the non-factorizable
contribution Eq. (32) requires double-real amplitudes as
well as finite parts of real-virtual amplitudes and double-
virtual amplitudes. To obtain the required double-real
amplitudes, we extend the calculation of the factorizable
NNLO QCD corrections reported in Ref. [4].

To compute the real-virtual contributions, we require
non-factorizable one-loop amplitudes for the processes
q + Q ! q

0 + Q
0 + H and q + Q ! q

0 + Q
0 + H + g.

These amplitudes were computed in Ref. [11] and we em-
ploy them in our numerical implementation. Extracting
the non-factorizable contribution from the existing code
requires only minor changes.5 However, it turns out to
be non-trivial to achieve stable and reliable numerical
results close to singular limits.

The existing implementation uses on-the-fly numeri-
cal Passarino-Veltman reduction and the OneLOop li-
brary [17] for the evaluation of scalar integrals. To reach
sufficient numerical accuracy we limit catastrophic can-
cellation by working with scaleless O(1) quantities. This
is achieved by scaling out the energy of the incoming par-
tons in all momenta and masses in each phase space point
and re-introducing it at the very end of the calculation.

Furthermore, we find it necessary to work with quadru-
ple precision. With these two measures we achieve agree-
ment with the infrared pole prediction in Eq. (24) to more
than 10 digits for most phase space points. In addition
to checking the amplitude’s pole structure, we also find a
satisfactory agreement between the exact six-point am-
plitude and its expected limit when the energy of the
final-state gluon becomes small, see Eq. (25). Obviously,
this last feature is a necessary requirement for being able
to use Eq. (32) for phenomenological studies.

For the finite remainder of the two-loop amplitude,
F

nf
LVV,fin, we use the results of Ref. [8]. These results are

obtained in the eikonal approximation which provides the
leading term in the expansion of this amplitude in p?/

p
s

5 We are grateful to T. Figy for making the code used for the
computations reported in Ref. [11] available to us.
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The non-factorizable contributions  are dominated by the  virtual corrections. This is true for both the 
single top and the Higgs production in  WBF,  but this feature  becomes extreme (a factor of a 105 
difference) in the latter case (the  consequence of how WBF events are selected).
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• Non-factorisable corrections are       dependent.

• Non-factorisable corrections are small and negative at low values of     .

• They vanish at                      (in agreement with results for virtual corrections)

• Factorisable corrections vanish around                      .

• Factorisable and non-factorisable corrections are comparable in the region 
around the maximum of the      distribution. 
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To understand this suppression, consider  emission of soft gluon, compare the change of the cross 
section caused by the emission of two soft gluons with the double-virtual corrections. 

8

Figure 3. Non-factorizable contribution to the transverse momentum distributions of the leading jet (left) and to the distribution
of the invariant mass of the tag-jet system (right). Contributions are shown individually for different terms on the right-hand
side of Eq. (32) and we label them with the present matrix element, e.g. the plot label F nf

LM(1, 2, 3, 4 | 5) refers to the contribution
of the full second term. Note that, in the plots we use ellipses for the sequence of Born momenta, 1, 2, 3, 4, for representational
purposes. For each plot (and differently in upper and lower panes) contributions are scaled to be of similar orders. The lower
pane shows the ratio with respect to double-virtual contributions. See text for further details.

To understand the reason for this unusual suppression of
the double-real and the real-virtual contributions, con-
sider the quantity

L(1, 2, 3, 4) = ln

✓
p1 · p4 p3 · p2

p1 · p2 p3 · p4

◆
, (36)

which arises upon integration of the eikonal current de-
scribing single gluon emission. We note that this quantity
appears in the integrated subtraction term described by
the function W(E; 1, 2, 3, 4) defined in Eq. (33).

For instance, to estimate the contribution of two soft
gluons to the non-factorizable corrections in the presence
of fiducial WBF cuts, we consdier the following integral
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To proceed we use the fact that in the relevant phase-
space region p3 and p4 are nearly collinear to p1 and p2,
respectively, and compute the function L in this limit.

To this end, we write

p3 = ↵3 p1 + �3 p2 + p3,? ,

p4 = ↵4 p1 + �4 p2 + p4,? ,
(38)

where ↵3,�4 ⇠ 1 and

pi,? · p1 = pi,? · p2 = 0 , (39)

for i 2 {3, 4}. From the mass-shell condition for outgoing
quarks, we obtain

�3 ⇠
p
2

3,?
s

⌧ 1 , ↵4 ⇠
p
2

4,?
s

⌧ 1 . (40)

We thus find

L(1, 2, 3, 4) = � ln

✓
1 +

�3 ↵4

↵3 �4

�
2 ~p3,? · ~p4,?
s↵3 �4

◆

⇡
2~p3,? · ~p4,?

s
.

(41)

A typical transverse momentum in Higgs production in
weak boson fusion is ⇠ 60 GeV and a typical partonic
centre-of-mass energy is approximately

p
s ⇡ 600 GeV.

Therefore, L ⇠ 10�2 in the relevant region of the partonic
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phase space and we find
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where we used N
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= �LO.

In comparison, virtual corrections do not vanish in the
forward region. In fact, as shown in Ref. [8], they are
characterised by a phase-space dependent function �nf

which is O(⇡2) in the forward region. We then estimate
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where we used ⇡
2
⇡ 10. Taking the ratio, we obtain

�RR

�V V

⇠ 10�5
, (44)

which is consistent with the results of the explicit com-
putation presented earlier in this section.

We have checked that the extraordinarily strong suppres-
sion of the double-real and real-virtual corrections is a
consequence of the fiducial cuts which are used to identify
events when the Higgs boson is produced in weak boson
fusion. If the cuts are relaxed so that one does not require
strong rapidity separation of the two tagging jets and a
strong constraint on their invariant mass, the double-real
and real-virtual contributions increase by several orders
of magnitude. In fact, they become comparable to the
double-virtual corrections which only grows by an O(1)
factor.

V. CONCLUSIONS

In this paper we extended the calculation of non-
factorizable contributions to Higgs boson production in
weak boson fusion at O(↵2

s
) by combining the results for

the double-virtual contributions in the eikonal approxi-
mation [8] with non-factorizable real-virtual and double-
real QCD corrections. We observed that, thanks to the
fiducial cuts used to identify WBF events, and a pe-
culiar enhancement of the double-virtual contributions,
the non-factorizable NNLO QCD corrections are entirely
dominated by two-loop virtual effects. We have checked
that the striking dominance of the two-loop virtual cor-
rections extends to all major kinematic distributions rel-
evant for Higgs production in WBF.

Outside the fiducial region the relative importance of the
various contributions levels out. However, the eikonal
approximation will also start to break down. It would,
therefore, be interesting to understand how to go beyond
the eikonal approximation for the double-virtual ampli-
tude and estimate the impact of non-vanishing transverse
momenta of the final-state jets on the two-loop correc-
tion. This question may be of some relevance for studies
that select harder Higgs bosons which happens, for ex-
ample, when one considers Higgs decays into a b-quark
pair. We leave this question for future investigations.
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Appendix: Integrated soft eikonal

In this appendix we present results for the integrated soft eikonal function that we have written in terms of the
function Knf, c.f. Eq. (12). The exact form of Knf reads
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F
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(1q, 2q, 3q, 4q)

↵
= �LO.

In comparison, virtual corrections do not vanish in the
forward region. In fact, as shown in Ref. [8], they are
characterised by a phase-space dependent function �nf

which is O(⇡2) in the forward region. We then estimate
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✓
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where we used ⇡
2
⇡ 10. Taking the ratio, we obtain

�RR

�V V

⇠ 10�5
, (44)

which is consistent with the results of the explicit com-
putation presented earlier in this section.

We have checked that the extraordinarily strong suppres-
sion of the double-real and real-virtual corrections is a
consequence of the fiducial cuts which are used to identify
events when the Higgs boson is produced in weak boson
fusion. If the cuts are relaxed so that one does not require
strong rapidity separation of the two tagging jets and a
strong constraint on their invariant mass, the double-real
and real-virtual contributions increase by several orders
of magnitude. In fact, they become comparable to the
double-virtual corrections which only grows by an O(1)
factor.

V. CONCLUSIONS

In this paper we extended the calculation of non-
factorizable contributions to Higgs boson production in
weak boson fusion at O(↵2

s
) by combining the results for

the double-virtual contributions in the eikonal approxi-
mation [8] with non-factorizable real-virtual and double-
real QCD corrections. We observed that, thanks to the
fiducial cuts used to identify WBF events, and a pe-
culiar enhancement of the double-virtual contributions,
the non-factorizable NNLO QCD corrections are entirely
dominated by two-loop virtual effects. We have checked
that the striking dominance of the two-loop virtual cor-
rections extends to all major kinematic distributions rel-
evant for Higgs production in WBF.

Outside the fiducial region the relative importance of the
various contributions levels out. However, the eikonal
approximation will also start to break down. It would,
therefore, be interesting to understand how to go beyond
the eikonal approximation for the double-virtual ampli-
tude and estimate the impact of non-vanishing transverse
momenta of the final-state jets on the two-loop correc-
tion. This question may be of some relevance for studies
that select harder Higgs bosons which happens, for ex-
ample, when one considers Higgs decays into a b-quark
pair. We leave this question for future investigations.
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c.f. Eq. (24). We write

⌦
F

nf
LVV(1, 2, 3, 4)

↵
=

✓
↵̃s

2⇡

◆2⌦
2 I1(✏)

2
F

nf
LM(1, 2, 3, 4)

↵

+
↵̃s

2⇡
qQ

⌦
2 I1(✏)F

nf
LV,fin(1, 2, 3, 4)

↵

+
⌦
F

nf
LVV,fin(1, 2, 3, 4)

↵
,

(31)

where F
nf
LVV,fin is the finite result for the two-loop ampli-

tude.

Explicit pole cancellation and IR finite result

The final result for the cross section is obtained by com-
bining the double-real, real-virtual and double-virtual
contributions given in Eq. (19), Eq. (29) and Eq. (31),
respectively. We write the partonic cross section as

d�nf
nnlo =

T
2

R
(N2

c
� 1)

2s

h⌦
F

nf
LM(1, 2, 3, 4 | 5, 6)

↵

+
⌦
F

nf
LV(1, 2, 3, 4 | 5)

↵
+
⌦
F

nf
LVV(1, 2, 3, 4)

↵i

=
T

2

R
(N2

c
� 1)

2s

⌦⇥
I � S6

⇤
F

nf
LM(1, 2, 3, 4 | 5, 6)

↵

� 2
↵̃s

2⇡

⌦⇥
I � S5

⇤
W(E5; 1, .., 4)F

nf
LM(1, 2, 3, 4 | 5)

↵

+ 2

✓
↵̃s

2⇡

◆2⌦
W(Emax; 1, .., 4)

2
F

nf
LM(1, 2, 3, 4)

↵ (32)

+
⌦⇥
I � S5

⇤
F

nf
LV,fin(1, 2, 3, 4 | 5)

↵

� 2
↵̃s

2⇡

⌦
W(Emax; 1, .., 4)F

nf
LV,fin(1, 2, 3, 4)

↵

+
⌦
F

nf
LVV,fin(1, 2, 3, 4)

↵ �
.

In Eq. (32) we introduced a finite function W(E; 1, 2, 3, 4)
defined as4

W(E; 1, 2, 3, 4) ⌘ qQ

✓
2E

µ

◆�2✏

Knf(✏)� I1(✏)
�

= qQ


� 2 ln

✓
2E

µ

◆
ln

✓
p1 · p4 p3 · p2

p1 · p2 p3 · p4

◆

+
X

i2{1,3}
j2{2,4}

�ij

✓
1

2
ln2(⌘ij) + Li2(1� ⌘ij)

◆�
+O(✏) ,

(33)

where ⌘ij = 1�cos ✓ij with angles defined in the partonic
centre-of-mass frame. The representation of the partonic

4 The ✏-expansion of function Knf can be found in the appendix,
see Eq. (A.2).

cross section given in Eq. (32) makes the cancellation of
all 1/✏ poles manifest and allows us to take the ✏ ! 0
limit right away. Note that upon doing so, the coupling
constant ↵̃s becomes ↵s(µ), the standard MS coupling
constant.

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the non-factorizable
contribution Eq. (32) requires double-real amplitudes as
well as finite parts of real-virtual amplitudes and double-
virtual amplitudes. To obtain the required double-real
amplitudes, we extend the calculation of the factorizable
NNLO QCD corrections reported in Ref. [4].

To compute the real-virtual contributions, we require
non-factorizable one-loop amplitudes for the processes
q + Q ! q

0 + Q
0 + H and q + Q ! q

0 + Q
0 + H + g.

These amplitudes were computed in Ref. [11] and we em-
ploy them in our numerical implementation. Extracting
the non-factorizable contribution from the existing code
requires only minor changes.5 However, it turns out to
be non-trivial to achieve stable and reliable numerical
results close to singular limits.

The existing implementation uses on-the-fly numeri-
cal Passarino-Veltman reduction and the OneLOop li-
brary [17] for the evaluation of scalar integrals. To reach
sufficient numerical accuracy we limit catastrophic can-
cellation by working with scaleless O(1) quantities. This
is achieved by scaling out the energy of the incoming par-
tons in all momenta and masses in each phase space point
and re-introducing it at the very end of the calculation.

Furthermore, we find it necessary to work with quadru-
ple precision. With these two measures we achieve agree-
ment with the infrared pole prediction in Eq. (24) to more
than 10 digits for most phase space points. In addition
to checking the amplitude’s pole structure, we also find a
satisfactory agreement between the exact six-point am-
plitude and its expected limit when the energy of the
final-state gluon becomes small, see Eq. (25). Obviously,
this last feature is a necessary requirement for being able
to use Eq. (32) for phenomenological studies.

For the finite remainder of the two-loop amplitude,
F

nf
LVV,fin, we use the results of Ref. [8]. These results are

obtained in the eikonal approximation which provides the
leading term in the expansion of this amplitude in p?/

p
s

5 We are grateful to T. Figy for making the code used for the
computations reported in Ref. [11] available to us.

→
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The dependence of not-factorizable corrections on the renormalization scale is quite strong; one can try to 
accommodate effects of the running coupling constant into the calculation by employing Brodsky-Lepage-
Mackenzie  philosophy.   

Bronum-Hansen, Long, Melnikov 

on Cnf but, since we are interested in computing O(�0↵3
s) corrections to Higgs boson

production in WBF, we only use this formula for bookkeeping purposes. As we explain

below, eventually, we expand Eq. (2.8) in powers of ↵s to the required order. To compute

O(�0↵3
s) corrections, we focus on contributions of diagrams with fermion bubbles inserted

into one of the two gluon propagators, see Figure 2 for an example.

Figure 2: A representative fermion-bubble insertion diagram that contributes to the

O(�0↵3
s) corrections. One should sum over Nf flavors running in the bubble.

Although one can work with Cnf in Eq. (2.8), it is more convenient to compute C1 and

C2 separately. However, C1,2 are infrared divergent so that extracting them from Eq. (2.8)

and calculating them separately requires an infrared regulator. Since this regulator should

work e�ciently for integrands with 1/k2 and 1/k2 lnk2, it seems that the best option is

an analytic regulator where each gluon propagator is raised to the power 1 + ⌫. Hence, we

define

C1(⌫) = �2

Z
d2k1

2⇡

�3 �4 m
2⌫

V

�1+⌫

1
�3,1�4,1

,

C2(⌫1, ⌫2) = 4

Z
d2k1

2⇡

d2k2

2⇡

�3 �4 m
2(⌫1+⌫2)

V

�1+⌫1
1

�1+⌫2
2

�3,12�4,12

,

(2.10)

and we will use these two auxiliary functions to compute Cnf through O(�0↵s).

We begin with the calculation of C1(⌫). Introducing Feynman parameters and in-

tegrating over the transverse momentum, we obtain the following representation for this

function

C1(⌫) = �
�(2 + ⌫)�x�y

�(1 + ⌫)

1Z

0

dt

1Z

0

d⇠ ⇠
�1�⌫(1 � ⇠)⌫

(r12(t) � r1(t) ⇠)
2+⌫

=
�(2 + ⌫)�(1 � ⌫) �x�y

⌫

1Z

0

dt

(r12(t))
2+⌫

F21

✓
2 + ⌫,�⌫, 1,

r1(t)

r12(t)

◆
,

(2.11)

where F21 is the hypergeometric function. To write Eq. (2.11) we introduced the following

functions

�x = 1 + x, �y = 1 + y,

r1 = xt + y(1 � t) � zt(1 � t), r2 = 1 + zt(1 � t), r12 = r1 + r2,
(2.12)

and the following dimensionless quantities

x =
p2
3

m
2

V

, y =
p2
4

m
2

V

, z =
p2

H

m
2

V

, (2.13)

– 4 –

where

C1 = �2

Z
dd�2k1

(2⇡)d�3

�3�4

�1�3,1�4,1

,

C2 = 4

Z
dd�2k1

(2⇡)d�3

dd�2k2

(2⇡)d�3

�3�4

�1�2�3,12�4,12

.

(2.3)

In the above equation, we have used

�i = k2

i , �3,i = (ki � p3)
2 + m

2

V , �4,i = (ki + p4)
2 + m

2

V , i = 1, 2, 12, (2.4)

as well as k12 = k1 + k2 and

�3 = p2

3 + m
2

V , �4 = p2

4 + m
2

V . (2.5)

Furthermore, mV is the mass of the electroweak gauge boson3 and we employ boldface

fonts to denote two-dimensional Euclidean vectors. For example, p3,4 are the transverse

momenta of the tagging jets in the WBF process pp ! 2j + H. We also use pH to denote

the transverse momentum of Higgs.

An important feature of non-factorizable corrections is that the function Cnf is infrared

finite although the functions C1,2 are infrared divergent. To see this, it is simplest to use

the integral representations for C1,2 and write Cnf as

Cnf = 4

Z
dd�2k1

(2⇡)d�3

dd�2k2

(2⇡)d�3

�3�4

�1�2

✓
�3�4

�3,1�4,1�3,2�4,2

�
1

�3,12�4,12

◆
. (2.6)

Using explicit expressions for the �-functions, it is easy to show that

�3�4

�3,1�4,1�3,2�4,2

�
1

�3,12�4,12

= ki

1k
j

2
Tij(k1,k2, ..), (2.7)

where the rank-2 tensor Tij is non-singular in the limit of vanishing k1,2. This fact ensures

that Cnf is not infrared divergent and, as a consequence, in Eq. (2.6) we can replace the

space-time dimensionality d with 4, so that d � 2 ! 2.

It is now straightforward to introduce the running coupling constant into Eq. (2.6)

since all we need to do is to modify the gluon propagators �1 and �2 in Eq. (2.6). We

find4

Cnf = 4
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d2k1

(2⇡)

d2k2

(2⇡)

�3�4

�̃1�̃2

✓
�3�4

�3,1�4,1�3,2�4,2

�
1

�3,12�4,12

◆
, (2.8)

where

�̃i = �i

✓
1 +

�0↵s

2⇡
ln

k2

i

µ2e5/3

◆
, (2.9)

�0 = 11/6CA � 2/3NfTR, CA = 3, TR = 1/2, Nf is the number of massless quark flavors

and µ is the renormalization scale of the coupling ↵s in Eq. (2.1). We note that by using

Eq. (2.9) in Eq. (2.8) we describe the all-order impact of the running coupling constant

3
Note that in Eq. (2.1) one needs to sum over contributions of Z and W bosons.

4
For simplicity, we still use Cnf instead of introducing a new notation.
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on Cnf but, since we are interested in computing O(�0↵3
s) corrections to Higgs boson

production in WBF, we only use this formula for bookkeeping purposes. As we explain

below, eventually, we expand Eq. (2.8) in powers of ↵s to the required order. To compute

O(�0↵3
s) corrections, we focus on contributions of diagrams with fermion bubbles inserted

into one of the two gluon propagators, see Figure 2 for an example.

Figure 2: A representative fermion-bubble insertion diagram that contributes to the

O(�0↵3
s) corrections. One should sum over Nf flavors running in the bubble.

Although one can work with Cnf in Eq. (2.8), it is more convenient to compute C1 and

C2 separately. However, C1,2 are infrared divergent so that extracting them from Eq. (2.8)

and calculating them separately requires an infrared regulator. Since this regulator should

work e�ciently for integrands with 1/k2 and 1/k2 lnk2, it seems that the best option is

an analytic regulator where each gluon propagator is raised to the power 1 + ⌫. Hence, we

define

C1(⌫) = �2

Z
d2k1
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�3 �4 m
2⌫
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1
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,

C2(⌫1, ⌫2) = 4

Z
d2k1

2⇡

d2k2

2⇡

�3 �4 m
2(⌫1+⌫2)

V

�1+⌫1
1

�1+⌫2
2

�3,12�4,12

,

(2.10)

and we will use these two auxiliary functions to compute Cnf through O(�0↵s).

We begin with the calculation of C1(⌫). Introducing Feynman parameters and in-

tegrating over the transverse momentum, we obtain the following representation for this

function

C1(⌫) = �
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(2.11)

where F21 is the hypergeometric function. To write Eq. (2.11) we introduced the following

functions

�x = 1 + x, �y = 1 + y,

r1 = xt + y(1 � t) � zt(1 � t), r2 = 1 + zt(1 � t), r12 = r1 + r2,
(2.12)

and the following dimensionless quantities

x =
p2
3

m
2

V

, y =
p2
4

m
2

V

, z =
p2

H

m
2

V

, (2.13)
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that we will use throughout the calculation.

With this result at hand, it is straightforward to compute C2(⌫1, ⌫2). Indeed, in this

case we can first integrate over one of the two loop momenta, keeping their sum fixed. We

obtain
Z
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12

)1+⌫12
,

(2.14)

where ⌫12 = ⌫1 + ⌫2. Using this expression in Eq. (2.10), we find that the remaining

integration over k12 is identical to the one-loop case provided that we replace ⌫ with ⌫12.

Hence, we find

C2(⌫1, ⌫2) =
⌫12

⌫1⌫2

�(1 + ⌫12)

�(1 + ⌫1)�(1 + ⌫2)
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�(1 � ⌫12)
C1(⌫12). (2.15)

It is now easy to see that to compute Cnf through O(�0↵s) we need to take ⌫1 = ⌫2 = ⌫,

expand the quantity  
µ
2
e
5/3

m
2

V

!2 ⌫ �
C1(⌫)2 � C2(⌫, ⌫)

�
(2.16)

through first order in ⌫ and identify ⌫ with ↵s�0/(2⇡). Writing the expansion of C1(⌫) in

powers of ⌫ as follows5
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1
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⌫
i
, (2.17)

we obtain
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1
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We can easily derive convenient one-dimensional integral representations for the coef-

5
Using Eq. (2.11) and the fact that F21(2+ ⌫,�⌫, 1, x) = 1+O(⌫), it is easy to check that the first term

in such an expansion is 1/⌫.
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BLM corrections can be computed  analytically; the scale dependence stabilizes. ficients C
(i)

1
, i = 0, 1, 2, by expanding Eq. (2.11) in powers of ⌫ [15, 16]. We find
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(2.20)

We will discuss below how to use these representations to complete the analytic compu-

tation of C(0),(1),(2)

1
but we emphasize that the integral representations in Eq. (2.20) are

quite convenient for numerical calculations.

Before we discuss the analytic computation in full generality, we study Cnf in some

kinematic limits where compact formulas can be derived. The simplest case to consider is

when all transverse momenta are small |p3| ⇠ |p4| ⌧ mV . Then, r1 ! 0 and r12 ! 1. As

the result, the expression for C1(⌫) simplifies and we obtain

lim
|p3,4|⌧mV

C1(⌫) ⇡
�(2 + ⌫)�(1 � ⌫)

⌫
. (2.21)

We then find

Cnf = 1 �
⇡
2

3
+

↵s�0

⇡

"✓
1 �

⇡
2

3

◆
ln

 
µ
2
e
5/3

m
2

V

!
�

⇡
2

3
+ 2⇣3

#
+ O(↵2

s�
2

0). (2.22)

Following Ref. [14], we define the appropriate renormalization scale µ⇤ as the scale for

which corrections proportional to �0 vanish. From the above equation it follows that at

small transverse momenta, the appropriate renormalization scale for the non-factorizable

corrections in WBF is

µ⇤ = mV e
�5/6

e

⇡2�6⇣3
2(3�⇡2) ⇡ 0.36 mV . (2.23)

Another interesting limit is that of the small Higgs boson momentum |pH | ⌧ |p3| ⇠

|p4|. Then, |p3| = |p4| and we find

r1 ⇡ x, r12 = 1 + x. (2.24)
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GF = 1.16639 ⇥ 10�5 GeV�2 is used to derive the weak couplings and the CKM matrix is

set equal to the identity matrix.

We use NNPDF31-nnlo-as-118 parton distribution functions [17] and ↵s(mZ) = 0.118

for all calculations reported below. The evolution of both parton distribution functions

and the strong coupling constant is obtained directly from LHAPDF [18]. We fix the

factorization scale µF = mH throughout this calculation.

We require that a WBF event contains at least two jets with transverse momenta higher

than 25 GeV. The tagging jets are required to have rapidities between �4.5 < y < 4.5

and should be separated by a large rapidity interval |yj1 � yj2 | > 4.5. Their invariant mass

should be larger than 600 GeV. The two jets should be in opposite hemispheres in the

laboratory frame; this is enforced by requiring the product of their rapidities to be negative,

yj1yj2 < 0. In principle, jet identification requires a particular jet algorithm but this is not

relevant with only two quarks in the final state. For the results reported below, we employ

the two-loop amplitude in the leading eikonal approximation as summarized in Eq. (2.8),

and we do not include the next-to-eikonal power correction computed in Ref. [13].

The main conclusion of our analysis is that the O(�0↵3
s) corrections significantly reduce

the scale dependence of the non-factorizable contributions. To illustrate this point, we first

show results for fiducial non-factorizable contributions to the WBF cross section at leading

O(↵2
s) order, and then compare them with the results at next-to-leading order where we

only include the O(�0↵3
s) correction. We find

�
LO

nf = �2.97�0.69

+0.52
fb, �

NLO

nf = �3.20�0.01

+0.14
fb, (4.1)

where we have used the renormalization scale µ = mH to obtain the central values, and

µ = mH/2 and µ = 2mH to obtain values described by superscripts and subscripts in

Eq. (4.1), respectively. It follows from Eq. (4.1) that the scale variation is reduced very

significantly once O(�0↵3
s) contributions are included.

The same statement applies to kinematic distributions. We illustrate this in Figures 3

and 4 where examples of transverse momenta, rapidity and two-jet invariant mass dis-

tributions are shown. In all plots, the upper pane displays the leading order (tree-level)

distribution. In the lower pane ratios of non-factorizable corrections to leading order distri-

butions are shown. Bands correspond to the range of theoretical predictions obtained with

the renormalization scales from the interval mH/2  µ  2mH at leading O(↵2
s) and next-

to-leading O(�0↵3
s) orders, respectively. We observe that accounting for NLO O(�0↵3

s)

corrections stabilizes theoretical predictions by strongly reducing their dependence on the

renormalization scale. We note that the O(�0↵3
s) results are sometimes outside the O(↵2

s)

scale-variation bands; this mostly happens at large(r) values of the transverse momenta

and invariant masses.

5 Conclusions

In this paper we computed O(�0↵3
s) corrections to the non-factorizable contribution to

Higgs boson production in weak boson fusion. These corrections reflect the impact of

the running of the QCD coupling constant on the non-factorizable contribution to the
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Figure 3: Transverse momenta distributions of hardest and next-to-hardest jets in Higgs

boson production in weak boson fusion. The upper panes show the LO (tree-level) dis-

tributions and the lower panes show the ratio of non-factorizable contributions to LO for

corrections of O(↵2
s) (blue) and O(�0↵3

s) (red). The factorization scale, µF , is kept fixed

and only the renormalization scale, µ, is varied. See text for further details.

WBF cross section and are responsible for stabilizing the dependence of the theoretical

prediction on the renormalization scale. Indeed, we find that after including these O(�0↵3
s)

corrections, the dependence of the cross section on the renormalization scale reduces from

about O(20) percent to below O(5) percent. Similar reductions of the scale dependence are

observed in theoretical predictions for major kinematic distributions including transverse

momenta and rapidity distributions of the tagging jets and the Higgs boson.

We provided a simple one-dimensional integral representation of the O(�0↵3
s) non-

factorizable corrections as well as the analytic formulas for these corrections. Although

the analytic results are complex, they can easily be implemented into partonic Monte

Carlo and used to obtain phenomenological predictions. In fact, we have used the one-

dimensional integral representation of these corrections to cross check the results of the

analytic computation. Under realistic running conditions, analytic formulas provide a

significant speed-up whereas a one-dimensional integral representation is a slow but robust

way to compute cross sections and distributions.
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Non-factorizable corrections have the following properties:  

1) they start contributing  at next-to-next-to-leading order for the first time;  

2) they are colour-suppressed but dynamically  enhanced;  the enhancement is related to the Coulomb (Glauber) phase;    

3) they can reach a percent level  in kinematic distributions and they are strongly kinematic-dependent;   they can be 
studied independently of real-emission contributions since they are infra-red finite.  

4) for Higgs production in WBF, the non-factorizable corrections can be studied using expansion around the forward limit 
(eikonal expansion),  that can also be extended to provide the next-to-leading power accuracy;  

5) the non-factorizable corrections  are (very) strongly dominated by the double-virtual contributions; the real-emission 
contributions are very much suppressed.  

6) the scale-dependence of non-factorizable contributions  can be strongly reduced by computing O(nf) three-loop 
corrections and treating them in the spirit of BLM scale-setting procedure. 

25

We discussed the non-factorizable corrections to process of the weak boson fusion type (Higgs production in WBF,  
single top production).  Our interest to understand these effect is related to an impressive progress in computing 
factorizable corrections, e.g. where N3LO QCD corrections to inclusive WBF have been computed. 

H
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