EDMs - A Global Analysis

Nina Elmer

March 2024

arXiv: 2403.02052

with S. Degenkolb, M. Mühlleitner, T. Modak, T.Plehn

- Missing explanation of baryon asymmetry in SM
- Need Sakharov conditions: C- and CP-violation
- CP-violation in QCD too small
- EDMs violate time (T) and parity (P)
- EDMs sensitive to CP-violation
- **Strongest evidence** for BSM physics to explain baryon asymmetry

Electric dipole moments

- EDMs measured below electroweak scale
- Degrees of freedom: leptons, non-relativistic nucleons N and pions $\vec{\pi}$
- Possible Lagrangians: weak-scale and hadronic-scale
- **short-range nucleon** EDM parameter $d_p^{sr} \approx -d_n^{sr}$
- effective **pion-nucleon interaction** $g_{\pi}^{(0)}, g_{\pi}^{(1)}$
- e N interactions $C_S^{(0)}, C_P^{(0)}, C_T^{(0)}$
- 7D parameter space: $d_e, C_S^{(0)}, C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$

Paramagnetic molecules [2212.11841, Nature 562 7727, Nature 473 493]

• ThO, HfF⁺, YbF (constraints d_e , $C_S^{(0)}$)

Paramagnetic atoms [PhysRevLett.88.071805, PhysRevLett.63.965]

• ²⁰⁵Tl, ¹³³Cs

Diamagnetic atoms [1601.04339, 1902.02864, 2207.08140, 1606.04931, PhysRevA.44.2783]

• ¹⁹⁹Hg, ¹²⁹Xe, ¹⁷¹Yb, ²²⁵Ra, TIF (constraints $C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$)

Nucleons [2001.11966]

• neutron (constraints $g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$)

- Easy to **add new measurements** from different experiments
- Adaptable parameters and predictions
- **statistical/systematic/theory** uncertainties
- Likelihood construction: profiling/marginalization
- Markov chains to construct exclusive likelihoods

- Linear relation of data and parameters: $d_i = \sum \alpha_{i,c_j} c_j$
- Experimental uncertainties approximated as uncorrelated Gaussians
- Example: $d_e C_S$ implementation

$$\begin{pmatrix} d_{\mathrm{HfF}^{+}} \\ d_{\mathrm{ThO}} \end{pmatrix} = \begin{pmatrix} \alpha_{\mathrm{HfF}^{+},d_{e}} & \alpha_{\mathrm{HfF}^{+},C_{S}^{(0)}} \\ \alpha_{\mathrm{ThO},d_{e}} & \alpha_{\mathrm{ThO},C_{S}^{(0)}} \end{pmatrix} \begin{pmatrix} d_{e} \\ C_{S}^{(0)} \end{pmatrix}$$
$$= \begin{pmatrix} 1. & 9.17 \cdot 10^{-21} \\ 1. & 1.51 \cdot 10^{-20} \end{pmatrix} \begin{pmatrix} d_{e} \\ C_{S}^{(0)} \end{pmatrix}$$
$$= \begin{pmatrix} 1. & 0 \\ 0 & 5.93 \cdot 10^{-21} \end{pmatrix} \begin{pmatrix} d_{e} \\ C_{S}^{(0)} \end{pmatrix}$$

- Strongest measurements: HfF⁺, ThO, n, Hg
- **4D sub-space** to understand correlations
- Well-constrained (hopefully) parameters: $d_e, C_S^{(0)}, g_{\pi}^{(0)}, d_n^{sr}$
- $d_e C_S^{(0)}$ constrained by ThO and HfF⁺
- $g_{\pi}^{(0)} d_n^{sr}$ constrained by Hg and n

Well-constrained 4D-space

Hadronic sector

- Expand hadronic analysis to $g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_{n}^{sr}$
- Hg, neutron measurements: strongest constraints
- Rich correlations for $g_{\pi}^{(0)}, g_{\pi}^{(1)}$, aligned correlations for $g_{\pi}^{(0)}, d_n^{sr}$

- 2D-subspace $d_e C_s^{(0)}$ from ThO and HfF⁺ factorized
- 5D parameter-set: $C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$
- Ignoring 10^{-3} -correlations from Hg and n
- Not enough strong measurements means profile likelihood dominated by typical measurements
- n and Hg without impact and numerically hard \rightarrow remove from dataset

Global analysis

Theory uncertainties in correlations

- 11 measurement for 7 parameters $d_e, C_S^{(0)}, C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$
- Four strongest measurements constraining $d_e, C_S^{(0)}, g_{\pi}^{(0)}, d_n^{sr}$
- Strong limits on $d_e C_S^{(0)}$ factorizing
- Hadronic sector highly correlated
- Theory uncertainties

 (1) d_e C_S⁽⁰⁾: mild impact
 (2) hadronic: weaker constraints

Backup slides

System i	$d_e [e \text{ cm}]$	C_S	C_P	C_T
Tl Cs	$(7.2 \pm 7.7) \cdot 10^{-28}$ $(-1.4 \pm 5.6) \cdot 10^{-26}$	$(5.9 \pm 6.4) \cdot 10^{-8}$ (-2.3 ± 8.9) · 10^{-6}	$(-2.7 \pm 3.0) \cdot 10^{-6}$ $(1.3 \pm 5) \cdot 10^{-4}$	$(-4.5 \pm 4.9) \cdot 10^{-5}$ $(-1.1 \pm 4.2) \cdot 10^{-4}$
<u> </u>	$\left \left(-1.4 \pm 3.0 \right)^{10} \right $	(-2.3 ± 0.9) • 10	$(1.3 \pm 3)^{\circ} 10$	$(-1.1 \pm 4.2) \cdot 10$
¹⁹⁹ Hg	$(-1.8 \pm 2.6) \cdot 10^{-28}$	$(-1.7 \pm 2.5) \cdot 10^{-9}$	$(3.4 \pm 4.8) \cdot 10^{-8}$	$(-3.4 \pm 4.9) \cdot 10^{-10}$
¹²⁹ Xe	$(2.2 \pm 2.3) \cdot 10^{-25}$	$(8.3 \pm 8.7) \cdot 10^{-7}$	$(-1.0 \pm 1.1) \cdot 10^{-5}$	$(-1.4 \pm 1.5) \cdot 10^{-7}$
¹⁷¹ Yb	$(5.7 \pm 4.4) \cdot 10^{-25}$	$(7.5 \pm 5.7) \cdot 10^{-6}$	$(-1.5 \pm 1.2) \cdot 10^{-4}$	$(1.6 \pm 1.2) \cdot 10^{-6}$
²²⁵ Ra	$(-7.4 \pm 1.1) \cdot 10^{-23}$	$(4.7 \pm 7) \cdot 10^{-4}$	$(-5.7\pm8.5)\cdot10^{-3}$	$(-8.9 \pm 13) \cdot 10^{-5}$
TlF	$(-2.1\pm3.6)\cdot10^{-25}$	$(-3.0 \pm 5.1) \cdot 10^{-6}$	$(-7.1 \pm 12) \cdot 10^{-5}$	$(-3.6\pm6.1)\cdot10^{-8}$
HfF^+	$(-1.3 \pm 2.1) \cdot 10^{-30}$	$(-1.4 \pm 2.3) \cdot 10^{-10}$		
ThO	$(4.3 \pm 4.1) \cdot 10^{-30}$	$(2.9 \pm 2.7) \cdot 10^{-10}$		
YbF	$(-2.4 \pm 5.9) \cdot 10^{-28}$	$(-2.7\pm6.6)\cdot10^{-8}$		
	$g_{\pi}^{(0)}$	$g^{(1)}_{\pi}$	$d_n^{ m sr}$	$d_p^{ m sr}$
n	$(0 \pm 8.1) \cdot 10^{-13}$	$(0 \pm 4.1) \cdot 10^{-11}$	$(0 \pm 1.1) \cdot 10^{-26}$	$(0 \pm 1.1) \cdot 10^{-26}$
¹⁹⁹ Hg	$(-1.9 \pm 2.7) \cdot 10^{-13}$	$(1.4 \pm 2.0) \cdot 10^{-13}$	$(-1.4 \pm 2.0) \cdot 10^{-26}$	$(-1.4 \pm 2.0) \cdot 10^{-25}$
¹²⁹ Xe	$(4.4 \pm 4.6) \cdot 10^{-9}$	$(8 \pm 8.3) \cdot 10^{-10}$	$(-1.0 \pm 1.1) \cdot 10^{-23}$	$(-5.0 \pm 5.2) \cdot 10^{-23}$
¹⁷¹ Yb	$(7.2 \pm 5.5) \cdot 10^{-10}$	$(-5.2 \pm 4.0) \cdot 10^{-10}$	$(6.0 \pm 4.6) \cdot 10^{-23}$	$(6.0 \pm 4.6) \cdot 10^{-22}$
²²⁵ Ra	$(2.4 \pm 3.5) \cdot 10^{-9}$	$(-5.8\pm8.7)\cdot10^{-10}$	$(-7.5 \pm 11) \cdot 10^{-21}$	$(-3.6 \pm 5.4) \cdot 10^{-20}$
TlF	$(-9.0 \pm 15) \cdot 10^{-10}$	$(1.1 \pm 1.8) \cdot 10^{-10}$	$(1.8 \pm 3.1) \cdot 10^{-22}$	$(3.7 \pm 6.3) \cdot 10^{-23}$

EDMs from Lagrangian

• Relation of data and parameters:
$$d_i = \sum \alpha_{i,c_j} c_j$$

- Linearization different from other global analyses
- Experimental uncertainties **uncorrelated Gaussians**

System <i>i</i>	$lpha_{i,d_e}$	$\alpha_{i,C_S^{(0)}}[e \text{ cm}]$	$\alpha_{i,C_p^{(0)}}[e \text{ cm}]$	$\alpha_{i,C_T^{(0)}}[e \text{ cm}]$	$a_{i,g_{\pi}^{(0)}}[e \text{ cm}]$	$\alpha_{i,g_{\pi}^{(1)}}[e \text{ cm}]$	$lpha_{i,d_n^{ m sr}}$	$lpha_{i,d_p^{ m sr}}$
n	_	_	_	_	$1.38^{\pm 0.02} \cdot 10^{-14}$	$2.73^{\pm 0.02} \cdot 10^{-16}$	1	-1
²⁰⁵ Tl ¹³³ Cs	$-558^{\pm 28}$ [74] 123 ^{±4}	$-6.77^{\pm0.34}\cdot10^{-18}\\7.80^{+0.2}_{-0.8}\cdot10^{-19}$	$\begin{array}{c} 1.5^{+2}_{-0.7}\cdot 10^{-19} \\ -1.4^{+0.8}_{-2}\cdot 10^{-20} \end{array}$	$\begin{array}{c} 8.8^{\pm0.9}\cdot10^{-21} \\ 1.7^{\pm0.2}\cdot10^{-20} \end{array}$	n/a _	n/a _	n/a —	n/a —
¹⁹⁹ Hg ¹²⁹ Xe ¹⁷¹ Yb ²²⁵ Ra TlF	$\begin{array}{c} -0.012^{+0.0094}_{-0.002} \ [75,76] \\ -8^{+0}_{-8} \cdot 10^{-4} \ [76,77] \\ (-0.012^{+0.01145}_{-0.002}) \ [78] \\ -0.054^{\pm 0.002} \ [76] \\ 81^{\pm 20} \ [50,70] \end{array}$	$\begin{array}{r} -1.26^{+0.7}_{-1.2}\cdot 10^{-21} \\ -2.1^{+1.2}_{-2.5}\cdot 10^{-22} \\ -9.1^{+5}_{-11}\cdot 10^{-22} \\ 8.6^{+9.5}_{-4.5}\cdot 10^{-21} \\ 5.6^{+4.9}_{-2.5}\cdot 10^{-18} \end{array}$	$\begin{array}{c} 6.6^{+1.2}_{-0.3} \cdot 10^{-23} \\ 1.7^{+0.5}_{-0.4} \cdot 10^{-23} \\ 4.5^{+1.8}_{-1.1} \cdot 10^{-23} \\ -7.0^{+1.7}_{-2.6} \cdot 10^{-22} \\ 2.4^{+1.0}_{-1.9} \cdot 10^{-19} \end{array}$	$\begin{array}{c} -6.4^{+3}_{-4}\cdot 10^{-21} \\ 1.24^{+0.78}_{-0.61}\cdot 10^{-21} \\ -4.4^{+2.2}_{-2.9}\cdot 10^{-21} \\ -4.5^{+2.0}_{-2.5}\cdot 10^{-20} \\ 4.8^{+1.2}_{-1.1}\cdot 10^{-16} \end{array}$	$\begin{array}{c} -1.18^{+0.19}_{-2.62} \cdot 10^{-17} \\ -0.4^{+1.2}_{-23} \cdot 10^{-19} \\ -9.5^{\pm 2.4} \cdot 10^{-18} \\ 1.7^{+5.2}_{-0.8} \cdot 10^{-15} \\ 1.9^{+0.1}_{-1.4} \cdot 10^{-14} \end{array}$	$\begin{array}{c} 1.6^{+0}_{-6.5} \cdot 10^{-17} \\ -2.2^{+1.1}_{-17} \cdot 10^{-19} \\ 1.3^{\pm 0.33} \cdot 10^{-17} \\ -6.9^{+3.1}_{-21} \cdot 10^{-15} \\ -1.6^{\pm 0.4} \cdot 10^{-13} \end{array}$	$\begin{array}{c} -1.56^{\pm0.39}\cdot10^{-4}\\ 1.7^{+0.7}_{-0}\cdot10^{-5}\\ -1.13^{\pm0.28}\cdot10^{-4}\\ -5.36^{\pm1.34}\cdot10^{-4}\\ -9.47^{\pm2.37}\cdot10^{-2}\end{array}$	$\begin{array}{c} -1.56^{\pm0.39}\cdot10^{-5}\\ 3.51^{\pm0.88}\cdot10^{-6}\\ -1.13^{\pm0.28}\cdot10^{-5}\\ -1.11^{\pm0.28}\cdot10^{-4}\\ -4.59^{\pm1.15}\cdot10^{-1}\end{array}$
HfF ⁺ ThO YbF	1 1 1	$\begin{array}{c}9.17^{\pm0.06}\cdot10^{-21}\\1.51^{+0}_{-0.2}\cdot10^{-20}\\8.99^{\pm0.70}\cdot10^{-21}\end{array}$	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	
	$\eta_{i,d_e}^{(m)} \bigg[rac{\mathrm{mrad}}{\mathrm{s} \ e \ \mathrm{cm}} \bigg]$	$k_{i,C_S}^{(m)}\left[rac{\mathrm{mrad}}{\mathrm{s}} ight]$	$lpha_{i,C_P}$	α_{i,C_T}	$lpha_{i,g_\pi^{(0)}}$	$lpha_{i,g_\pi^{(1)}}$	$lpha_{i,d_n^{ m sr}}$	$lpha_{i,d_p^{ m sr}}$
HfF ⁺ ThO YbF	$\begin{array}{c} 3.49^{\pm0.14}\cdot10^{28}\left[75,79{-}82\right]\\ -1.21^{+0.05}_{-0.39}\cdot10^{29}\left[75,83{-}85\right]^{\dagger}\\ -1.96^{\pm0.15}\cdot10^{28}\left[75,86{-}89\right]\end{array}$	$ \begin{array}{r} \hline 3.2^{+0.1}_{-0.2} \cdot 10^8 \ [75,79,80] \\ -1.82^{+0.42}_{-0.27} \cdot 10^9 \ [75,83,85{-}87]^\dagger \\ -1.76^{\pm 0.2} \cdot 10^8 \ [75,86{-}88] \end{array} $	-			-		