

QCD and electroweak corrections to Higgs Boson Pair Production

CRC meeting 2024, 11-12 March 2024

Matthias Steinhauser | TTP KIT

A3b: Precision predictions for Higgs boson properties as a probe for New Physics

PI: Margarete Mühlleitner, Matthias Steinhauser

Christoph Borschensky, Sauro Carlotti,

Surabhi Tiwari, Marco Vitti, Hantian Zhang

Matthias Steinhauser - CRC 2024

Analytic expansions

 (s, t, m_t, m_Z, m_H)

- Numeric calculations [Heinrich,...,Mühlleitner,...]
- Analytic calculations [Duhr,...,Tancredi,...]
- Analytic expansions:
 - large-mass expansion: $m_t^2 \gg s, t, \ldots$

exp [Harlander,Seidensticker,Steinhauser'98]

"simple": vacuum integrals and massless integrals

• high energy: $m_t^2 \ll s, t, \ldots$

involved asymptotic expansion complicated MIs

• $t \rightarrow 0$

(often) Taylor expansion

High energy expansion

[Davies, Mishima, Steinhauser, Wellmann'18,..., Davies, Mishima, Schönwald, Steinhauser, Zhang'22]

- Taylor expansion in m_H
- IBP reduction (*s*, *t*, *m*_{*t*})
- differential equations in m_t^2/s ; ansatz for $m_t^2 \ll s, t$
- BCs depend on s and t (can be quite complicated)
- deep expansion: $(m_t^2)^{16} \dots (m_t^2)^{50} \dots$

Padé improvement

$$\sum_{k=0}^{N} c_k (m_t^2)^k = \frac{a_0 + \dots + a_r (m_t^2)^r}{1 + b_1 + \dots + b_s (m_t^2)^s} = [r/s](m_t^2) \qquad r+s=N$$

r Central value and corresponding uncertainty for each phase-space point (\sqrt{s}, p_T)

$$p_T^2 = (tu - m_H^4)/s, s + t + u = 2m_H^2$$

High energy expansion \oplus PA

• expansion up to $N_{
m max}=(m_t^2)^{56}$

• construct PAs with input for (N_{\min}, N_{\max})

High energy expansion \oplus PA

• construct PAs with input for (N_{\min}, N_{\max})

PA is a precision tool

High energy expansion for $gg \rightarrow HH$

... electroweak corrections: H exchange

- A: $s, t \gg m_t^2 \gg (m_H^{\text{int}})^2, (m_H^{\text{ext}})^2$
- B: $s, t \gg m_t^2 \approx (m_{\mu}^{\text{int}})^2 \gg (m_{\mu}^{\text{ext}})^2$

[Davies.Mishima,Schönwald,Steinhauser,Zhang'22]

مورو

$t \rightarrow 0$ expansion

[Bonciani, Degrassi, Giardino, Gröber'18] [Bellafronte, Degrassi, Giardino, Gröber, Vitti'22; ...] [Davies, Mishima, Schönwald, Steinhauser'23]

- forward scattering kinematics
- Taylor expansion
- same differential equations as for high-energy expansion $(\{s, t, m_t^2\})$
- construct for each MI expansion in t
- BC at t = 0: $f(s/m_t^2)$
- compute $f(s/m_t^2)$ with "expand and match" [Fael,Lange,Schönwald,Steinhauser'21'22]

"Expand and match" [Fael,Lange,Schönwald,Steinhauser'21'22]

- semi-analytic results for $f(s/m_t^2)$
- differential equation for MIs in s/m_t^2
- (Power-log) ansatz for MIs
 ⇒ insert in differential equation
 ⇒ linear equations
- BCs for $s/m_t^2 \rightarrow 0$ ("simple")
- move step-by-step to $s/m_t^2
 ightarrow \infty$

• thresholds are properly taken into account by the ansatz

Expansion of (unknown) function $f(s/m_t^2)$ around properly chosen s/m_t^2 values with precise numerical coefficients

Similar approaches: [Blümlein,Czakon,Laporta,Lee,Liu,Smirnov,...]

Combine: $t \rightarrow 0$ and h.e. at 2 loops (QCD)

[Davies, Mishima, Schönwald, Steinhauser'23]

$\mathcal{V}_{\mathrm{fin}}\text{:}$ virtual NLO QCD corrections

Comparison to "pySecDec"

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke'16]

gg
ightarrow HH at NLO

gg ightarrow HH at 3 loops (NNLO)

large-mass expansion: DONE [Davies,Steinhauser19] high-energy: NO

- $t \rightarrow 0$: YES, if we can do the reduction for
- Currently not possible

But: invert order:

1. expand in $t \Rightarrow$ no t dependence

Fermionic corrections

- *t* = 0, *m*_H = 0
- 31 integral families
- 176 Mls

tapir: [Gerlach,Herren,Lang]

kira: [Klappert,Lange,Maierhöfer,Usovitsch'20]

- Useful: LiteRed [Lee], LIMIT [Herren], Feynson [Magerya]
- reduction: about 1 week for most complicated family

2-loop results for t = 0

3-loop n_l for $t = 0, m_H = 0$

Matthias Steinhauser - CBC 2024

Full electroweak corrections to gg ightarrow HH

in large-m_t limit

- $m_t \gg m_H, m_Z, m_W$, check that ξ_Z, ξ_W drop out
- expansion up to 1/m¹⁰_t
- on-shell renormalization (exact in m_t, m_H, m_Z, m_W)

NLO: ratio to m_t^0

no $\sqrt{s} = m_t + m_W$ cut

[Davies.Mishima.Schönwald.Steinhauser.Zhang'23]

- leading Yukawa correction [Mühlleitner,Schlenk,Spira'22]
- full numerical calculation [Bi,Huang,Huang,Ma,Yu'23] $d\sigma/dM_{HH}: +15\%...-10\%$

Matthias Steinhauser - CRC 2024

Full electroweak corrections to $gg \rightarrow Hg$ in large- m_t limit

[Davies, Mishima, Schönwald, Steinhauser, Zhang'23]

NLO $|\mathcal{M}|^2$

Conclusions

- Combine expansions (large- m_t , high-energy, $t \rightarrow 0$)
- "Expand and match"
- QCD: 3-loop $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$, ... (with massive m_t , m_H , m_Z) in reach semi-analytic $t \rightarrow 0$ expansion
- Electroweak corrections: expand (in addition) in mass differences, e.g. 1 – m_H/m_t
- Semi-analytic expressions I fast and flexible

