

MENERERED

Margarete Mühlleitner (KIT) Annual Meeting CRC TRR 257 11 March 2024

Outline

Higgs Mass Predictions in the CP-Violating High-Scale **NMSSM**

 $(\alpha_{\rm t}{}^2)$ corrections to the trilinear Higgs self-coupling in the CP-violating NMSSM

NLO QCD Corrections w/ full top-mass dependence to 2HDM hH and AA production

Top-Yukawa induced EW corrections to SM HH

Involved ITP members in A3a and A3b projects: Thomas Biekötter, Lisa Biermann, Christoph Borschensky, Sauro Carlotti, Pedro Gabriel, Stefan Liebler, Dat Nguyen

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257

Higgs boson mass:

- * SM: fundamental parameter, not predicted by the theory
- * Supersymmetry: calculable from input parameters; quantum corrections Δm^2 _H are important!

MSSM: $m_H^2 \approx M_Z^2 \cos^2 2\beta$ $+\Delta m_H^2$ $\leftarrow (85 \text{ GeV})^2$! NMSSM: $m_H^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_H^2 \leftarrow (55 \text{ GeV})^2$

NMSSM:

- * less important loop corrections compared to the MSSM
- * solves little hierarchy problem [Kim, Nilles, '84]

Comparison of calculated mass value (at high precision) w/ experimental data:

* indirect constraint on (N)MSSM parameter space

SUSY Higgs Masses

- ✦ Supersymmetry: requires at least 2 complex Higgs doublets
- ✦ Minimal Supersymmetric extension (MSSM): 2 complex Higgs doublets

4 neutralinos: $\tilde{\chi}_i^0$ $(i = 1, ..., 4)$ 5 *h, H, A, H+, H—*

- ✦ Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field
- ✦ Enlarged Higgs and neutralino sector:

Spectrum Calculations

* Fixed-order calculation and large mass scales:

FO contains terms $\sim y_x \ln(M_{Sx}^2/M_x^2)$ with y_x Yukawa coupling, $M_x(M_{Sx})$ mass of (SUSY) particle most important contribution from top/stop sector \rightarrow large hierarchy \rightarrow large logs! \rightarrow resummation needed for reliable results

* EFT calculation: SUSY couplings matched to corresponding couplings in EFT theory such that physics at matching scale μ_R is the same; only light SM-like particles & heavy BSM particles: SM = EFT => $\lambda^{5M}(\mu_R)$ = $\lambda^{BSM}(\mu_R)$ [receives only BSM contributions]; we have terms like $y_x \ln(M_{5x}^2/M_x^2)$, respectively $y_x(ln(M_{Sx}^2/\mu_R^2) + ln(\mu_R^2/M_x^2))$. With $\mu_R = M_{Sx} \Rightarrow y_x ln(\mu_R^2/M_x^2) \Leftarrow$ resummed via RGEs for y_x

Spectrum Calculations

Status MSSM spectrum calculations:

FO: up to 2-loop in on-shell (OS) and DR scheme, partial 3-loop in DR scheme

EFT: up to N2LL (included in calculators), N3LL

Hybrid: FeynHiggs, FlexibleEFTHiggs, N3LO+N3LL QCD corrections [Harlander,Klappert,Voigt,´19]

Status NMSSM spectrum calculations: FO: up to 2-loop in mixed OS-DR scheme and in DR-scheme EFT: matching to quartic coupling in NMSSM w/ all BSM particles at TeV scale e.g. [Gabelmann,MM,Staub,´18,´19][Bagnaschi eal,´22] Hybrid: FlexibleEFTHiggs, SARAH+SPheno

NMSSM Spectrum Calculators

- FlexibleSUSY [Athron,Bach,Harries,Kotlarski,Kwasnitza,Park,Stöckinger,Voigt,Ziebell]: DR, FO & hybrid,

through FlexibleEFTHiggs

- NMSSMCALC:[Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,Le,MM,Rzehak,Spira,Streicher,Walz]:
	- FO, real & complex NMSSM, DR and mixed OS-DR
- NMSSMTools [Ellwanger,Gunion,Hugonie]: FO, DR scheme
- SOFTSUSY [Allanach,Athron,Bednyakov,Tunstall,Voig,RuizdeAustri,Williams]: FO, DR scheme
- SPheno [Porod,Staub]: FO, DR scheme, quartic and pole mass matching

 $-\frac{1}{b}$ (S) $-\frac{1}{b}$ (h_k) $-\frac{1}{b}$ (h_k) $-\frac{1}{b}$ (h_k) $-\frac{1}{b}$ (H_iH_j) $-\frac{1}{b}$ h^+ \uparrow H_{η}

 h_i

 h_i h_i

Remarks:

- comparison of codes in DR scheme: [Staub,Athron,Ellwanger,Gröber,MM,Slavich,Voigt,'15] FlexibleSUSY,NMSSMCALC,NMSSMTools, SOFTSUSY,SPheno
- comparison of codes in mixed OS-DR scheme: [Drechsel,Gröber,Heinemeyer,MM,Rzehak,Weiglein,'16] FeynHiggs, NMSSMCALC
- solution of Goldstone boson catastrophe [Braathen,Goodsell,'16], [Braathen,Goodsell,Staub,'17]
- advances in FeynHiggs: [Drechsel,Galeta,Heinemeyer,Hollik,Liebler,Moortgat-Pick,Paßehr,Weiglein] real&complex NMSSM, GNMSSM: 1-loop in, 2-loop&resummation of HO log-effects only in MSSM limit, no public code yet
- OS masses CP-violating NMSSM, consistent description production/decay [Domingo,Drechsel,Paßehr]

Quartic Coupling Matching (unbroken EW symmetry; v_u , $v_d \rightarrow 0$, $tan\beta = v_u/v_d = const.$, $v_s \ne 0$):

$$
\lambda_H^{\text{SM},\,\overline{\text{MS}}}(Q_{\text{match}})=\lambda_H^{\text{NMSSM},\,\overline{\text{MS}}}(Q_{\text{match}})
$$

[Bagnaschi eal,´22] for real NMSSM our work: complex NMSSM

effective quartic coupling after subtracting the SM contributions:

 $\lambda_{\text{NMSSM}}^{\text{DR}}(Q_{\text{match}}) = \lambda_{\text{NMSSM}}^{\text{tree}} + \Delta \lambda_{\text{NMSSM}}^{1l} + \Delta \lambda_{\text{MSSM}}^{2l}$

light scalars $=$ = = = = heavy scalars

Quartic Coupling Matching (unbroken EW symmetry; vu, vd→0, tanß=vu/vd=const., vs≠0):

$$
\lambda_H^{\text{SM},\,\overline{\text{MS}}}(Q_{\text{match}})=\lambda_H^{\text{NMSSM},\,\overline{\text{MS}}}(Q_{\text{match}})
$$

[Bagnaschi eal,´22] for real NMSSM our work: complex NMSSM

effective quartic coupling after subtracting the SM contributions:

 $\lambda_{\text{NMSSM}}^{\text{DR}}(Q_{\text{match}}) = \lambda_{\text{NMSSM}}^{\text{tree}} + \Delta \lambda_{\text{NMSSM}}^{1l} + \Delta \lambda_{\text{MSSM}}^{2l}$

$$
\lambda_{\text{NMSSM}}^{\text{tree}} = \underbrace{\frac{1}{4}(g_1^2 + g_2^2) \cos^2 2\beta}_{\text{MSSM D-terms}} + \underbrace{\frac{1}{2}|\lambda| \sin^2 2\beta}_{\text{NMSSM F-terms}}\n- \underbrace{\frac{1}{24|\kappa|^2 M_S^2(3M_S^2 + M_{AS}^2)}}_{\sqrt{3}|\kappa|^2 M_{H^\pm}^2 - 3|\kappa|^2 M_{H^\pm}^2 \cos 4\beta}\n+ (3M_S^2 + M_{AS}^2) (|\kappa||\lambda| \cos \varphi_y \sin 2\beta - 2|\lambda|^2) \Bigg)^2}\n- \underbrace{\frac{3}{8M_{AS}^2}|\lambda|^2(3M_S^2 + M_{AS}^2) \sin^2 2\beta \sin^2 \varphi_y}_{\text{s/t/u-channel }A_S}
$$

M. Mühlleitner (KIT), 11 March 2024 6. CRC TRR 257

Quartic Coupling Matching (unbroken EW symmetry; v_u , $v_d \rightarrow 0$, $tan\beta = v_u/v_d = const.$, $v_s \ne 0$):

$$
\lambda_H^{\text{SM},\,\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_H^{\text{NMSSM},\,\overline{\text{MS}}}(Q_{\text{match}})
$$

[Bagnaschi eal,´22] for real NMSSM our work: complex NMSSM

effective quartic coupling after subtracting the SM contributions:

 $\lambda_{\text{NMSSM}}^{\text{DR}}(Q_{\text{match}}) = \lambda_{\text{NMSSM}}^{\text{tree}} + \Delta \lambda_{\text{NMSSM}}^{1l} + \Delta \lambda_{\text{MSSM}}^{2l}$

Remark: shift due to NMSSM calc, done in \overline{DR} and discarded SM contribution done in \overline{MS} taken into account

Loop corrected NMSSM masses and couplings from NMSSMCALC

NMSSMCALC

Calculator of One-Loop and $O(a_t \alpha_s + (a_t + a_\lambda + a_\kappa)^2)$ Two-Loop **Higgs Mass Corrections** and of Higgs Decay Widths in the CP-conserving and the CP-violating NMSSM

Computation of the Loop-Corrected Effective Higgs Self-Couplings and the Loop-Corrected Higgs-to-Higgs Decays up to O(a_t a_s + a_t^2)

Computation of the muon anomalous magnetic moment and the electric dipole moment

New: Computation of the ρ parameter up to $O(\alpha + \alpha_t \alpha_s + (\alpha_t + \alpha_\lambda + \alpha_\nu)^2)$; W-mass prediction in the SM, at 1-loop NMSSM, 2-loop QCD NMSSM, 2-loop EW NMSSM

The program package NMSSMCALC calculates the one-loop and O($\alpha_t \alpha_s + (\alpha_t + \alpha_\lambda + \alpha_\lambda)^2$) corrected Higgs boson masses and the Higgs decay widths and branching ratios within the CP-conserving and the CP-violating NMSSM.

The decay calculator is based on an extension of the program HDECAY 6.10 now.

The effective loop-corrected trilinear Higgs self-couplings and loop-corrected Higgs-to-Higgs decays are provided up to O($\alpha_1 \alpha_2 + \alpha_1^2$).

The program also provides the options to calculate the electron and muon anomalous magnetic moments and, in the CP-violating case, the electric dipole moments.
The program provides the ϱ parameter up to $O(\alpha + \alpha_1 \alpha_s + (\$

[Baglio,Borschensky,Dao,Gabelmann,Gröber,Krause,Le,MM,Rzehak,Spira, Streicher,Walz]

Pole Mass Matching/"Hybrid" (broken EW symmetry, v«Msusy):

e.g. [Athron eal, '16]

$$
M_{h,\rm SM}^2 \stackrel{!}{=} M_{h,\rm NMSSM}^2
$$

 $M_{h,X}^2 = m_{h,X}^2 - \hat{\Sigma}_{h,X}(M_{h,X}^2)$ with $X = SM$, NMSSM

 $m_{h,\text{SM}}$ and $m_{h,\text{NMSSM}}$ denote the running $\overline{\text{MS}}$ and $\overline{\text{DR}}$ masses of the SM(-like) Higgs states

$$
\text{Tree Level:} \qquad m_{h,\text{SM}}^2 = 2\lambda_{\text{SM}}^{\text{eff.}} v_{\text{SM}}^2 \stackrel{!}{=} m_{h,\text{NMSSM}}^2 \qquad \rightarrow \qquad \boxed{\lambda_{\text{SM}}^{\text{eff.}} = \frac{m_{h,\text{NMSSM}}^2}{2v_{\text{NMSSM}}^2}}
$$

$$
\text{Use} \quad v_{\text{SM}}^2 = v_{\text{NMSSM}}^2 + \delta v^2 = v_{\text{NMSSM}}^2 \left(1 + \frac{\delta v^2}{v^2} \right) \quad \text{with} \quad \frac{\delta v^2}{v^2} = \left[\hat{\Sigma}_{h,\text{NMSSM}}'(0) - \hat{\Sigma}_{h,\text{SM}}'(0) \right] + \mathcal{O}(v^4 / M_{\text{SUSY}}^4)
$$

One-loop Level:
$$
\lambda_{\rm SM}^{\rm eff.} = \frac{1}{2v_{\rm SM}^2} \left[m_{h,\rm NMSSM}^2 - \hat{\Sigma}_{h,\rm NMSSM}(m_{h,\rm NMSSM}^2) + \hat{\Sigma}_{h,\rm SM}(m_{h,\rm SM}^2) \right]
$$

with
$$
\hat{\Sigma}_{h,X}(m_{h,X}^2) = \hat{\Sigma}_{h,X}(0) + m_{h,X}^2 \hat{\Sigma}_{h,X}'(0) + \mathcal{O}(m_{h,X}^4)
$$
 and $\mathsf{v}_{\mathsf{SMM}} \rightarrow \mathsf{v}_{\mathsf{NMSSM}}$ so that
leading terms in expansion in $\mathsf{v}/\mathsf{M}_{\mathsf{SUSY}}$

$$
\lambda_{\rm SM}^{\rm eff.} = \frac{1}{2v_{\rm NMSSM}^2} \left[m_{h,\rm NMSSM}^2 - \Delta \hat{\Sigma}_h - 2m_{h,\rm NMSSM}^2 \Delta \hat{\Sigma}_h' \right] \quad \text{with} \quad \Delta \hat{\Sigma}_h^{(\prime)} \equiv \Sigma_{h,\rm NMSSM}^{(\prime)}(0) - \hat{\Sigma}_{h,\rm SM}^{(\prime)}(0)
$$

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 10

Schematic Procedure implemented in NMSSMCALC

Results

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 12

Results

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 13

Blue uncertainty band:

SM uncertainties:

- \sim scheme uncertainty using either G_F or $\alpha_{\text{QED}}(m_Z)$ as input (estimates missing 2-loop EW corrections in the relation between Lagrangian MSbar and physical OS parameters)
- \sim scheme and scale uncertainty: M_H ^{OS}- M_H ^{MSbar,pole}(μ_{ren}) (estimates missing corrections in the relation $\lambda^{5M,MSbar}$ and $M_h^{5M,OS}$)
- \sim Estimate missing corrections in the relation between m_t ^{MSbar}(M_t) and M_tOS by in/excluding corrections of $O(\alpha_S^3)$ & higher $[{\rm mr}$ by Kniehl, Pikelner, Veretin; SMDR by Martin, Robertson]

SUSY uncertainties:

- $-$ scale uncertainty by varying Q_{match} : estimates missing 2-loop corrections in the matching condition
- for the quartic coupling matching: difference between the quartic-coupling and pole-mass matching as an estimate of the v/M_{SUSY} terms that are not included in the quartic-coupling matching

All parameters with mass dimension are given in units of TeV. All soft SUSY breaking trilinear couplings are set equal to A₀, all soft SUSY breaking left-handed doublet and Right-handed singlet masses are set equal to m \tilde{q}_L and m_{iR}, respectively.

Trilinear Higgs Self-Couplings

* SM Higgs potential in physical gauge: Higgs mass $M_{\rm H} = \sqrt{2\lambda}$ v $\frac{1}{2}$ trilinear Higg self-coupling : λ_{unit}^2 3M²/M² $\lambda_{\text{HWHH}}^2 3 M_H^2 / M_Z^4$ quadritinear Higgs self-coupling:

(units $\lambda = 33.8$ GeV (λ^2))

$$
V(H) = \frac{4}{2} M_{\frac{1}{2}}^2 H^2 + \frac{M_{\frac{1}{2}}^2}{2v} H^3 + \frac{M_{\frac{1}{2}}^2}{8v^2} H^4
$$

- * Masses $M_{ij}=(\partial^2 V_H/\phi_i\phi_j)|_{\phi=0}$ and Higgs self-couplings $\lambda_{ijk}=(\partial^3 V_H/\phi_i\phi_j\phi_k)|_{\phi=0}$ related through Higgs potential V_H => catch up in precision w/m asses
- *** Importance of the trilinear Higgs self-coupling:**
	- determines shape of the Higgs potential
	- sensitive to beyond-Standard Model physics
	- important input for Higgs pair production
	- important input for Higgs-to-Higgs decays
	- important input for electroweak phase transitions
- + Previous work: full 1-loop [Dao, MM, Streicher, Walz,'13] 2-loop at $\mathcal{O}(\alpha_1 \alpha_s)$ [Dao, MM, Ziesche, '15]

Trilinear Higgs Self-Couplings at 2L $\mathcal{O}(\alpha_1^2)$

• New corrections at $O(\alpha_1^2)$: all 2-loop diagrams with top/stops and at most one Higgs/Higgsino field, e.g.

proportional to top mass m_t and soft SUSY-breaking trilinear stop mass parameter A_t

- + Approximations:
	- gaugeless limit $g_{1},g_{2}\rightarrow 0$ (keeping tan $\theta_{W}=g_{2}/g_{1}$ fixed)
	- vanishing external momenta \rightarrow effective coupling

Loop Corrected Trilinear Higgs Self-Couplings at $O(\alpha_1(\alpha_s+\alpha_1))$

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Borschensky,Dao,Gabelmann,MM,Rzehak,´22]

 $\hat{\lambda}_{abc}^{\text{eff}}$: renormalized loop-corrected Higgs self-coupling at vanishing external momentum Estimate of theor. uncertainty via renorm. scheme dependence: $\Delta_{\text{ren}} = \frac{\left|\lambda^{m_t(\overline{\text{DR}})} - \lambda^{m_t(\text{OS})}\right|}{\lambda^{m_t(\overline{\text{DR}})}}$

Results comply w/ SM value $\lambda_{HHH}^{\rm SM} = \frac{3M_H^2}{v} = 191~{\rm GeV}$ within theoretical uncertainty

Loop Corrected Trilinear Higgs Self-Couplings at $O(\alpha_1(\alpha_s+\alpha_1))$

 $\hat{\lambda}_{abc}^{\text{eff}}$: renormalized loop-corrected Higgs self-coupling at vanishing external momentum Estimate of theor. uncertainty via renorm. scheme dependence: $\Delta_{\text{ren}} = \frac{\left|\lambda^{m_t(\overline{\text{DR}})} - \lambda^{m_t(\text{OS})}\right|}{\lambda^{m_t(\overline{\text{DR}})}}$

Results comply w/ SM value $\lambda_{HHH}^{\text{SM}} = \frac{3M_H^2}{v} = 191 \text{ GeV}$ within theoretical uncertainty

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Borschensky,Dao,Gabelmann,MM,Rzehak,´22]

$$
\Delta_{\alpha_i}^{\alpha_{i+1}} = \frac{|\lambda^{\alpha_{i+1}} - \lambda^{\alpha_i}|}{\lambda^{\alpha_i}}
$$

- Correlation with size of mass corrections
- Smaller corrections in the DRbar than in the OS scheme due to partial resummation of of higher-order terms

Benchmark Point BP10:

[Borschensky,Dao,Gabelmann,MM,Rzehak,´22]

Parameter Point BP10: All complex phases are set to zero and the remaining input parameters are given by

$$
|\lambda| = 0.65, |\kappa| = 0.65, \text{ Re}(A_{\kappa}) = -432 \text{ GeV}, |\mu_{\text{eff}}| = 225 \text{ GeV}, \tan \beta = 2.6,
$$

\n
$$
M_{H^{\pm}} = 611 \text{ GeV}, m_{\tilde{Q}_3} = 1304 \text{ GeV}, m_{\tilde{t}_R} = 1576 \text{ GeV}, m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \text{ TeV},
$$

\n
$$
A_t = 46 \text{ GeV}, A_b = -1790 \text{ GeV}, A_{\tau} = -93 \text{ GeV}, A_c = 267 \text{ GeV},
$$

\n
$$
A_s = -618 \text{ GeV}, A_{\mu} = 1851 \text{ GeV}, A_{u} = -59 \text{ GeV}, A_{d} = -175 \text{ GeV},
$$

\n
$$
A_e = 1600 \text{ GeV}, |M_1| = 810 \text{ GeV}, |M_2| = 642 \text{ GeV}, M_3 = 2 \text{ TeV}.
$$

\n(38)

Benchmark Point BP10:

[Borschensky,Dao,Gabelmann,MM,Rzehak,´22]

Parameter Point BP10: All complex phases are set to zero and the remaining input parameters are given by

$$
|\lambda| = 0.65, |\kappa| = 0.65, \text{ Re}(A_{\kappa}) = -432 \text{ GeV}, |\mu_{\text{eff}}| = 225 \text{ GeV}, \tan \beta = 2.6,
$$

\n
$$
M_{H^{\pm}} = 611 \text{ GeV}, m_{\tilde{Q}_3} = 1304 \text{ GeV}, m_{\tilde{t}_R} = 1576 \text{ GeV}, m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \text{ TeV},
$$

\n
$$
A_t = 46 \text{ GeV}, A_b = -1790 \text{ GeV}, A_{\tau} = -93 \text{ GeV}, A_c = 267 \text{ GeV},
$$

\n
$$
A_s = -618 \text{ GeV}, A_{\mu} = 1851 \text{ GeV}, A_{u} = -59 \text{ GeV}, A_{d} = -175 \text{ GeV},
$$

\n
$$
A_e = 1600 \text{ GeV}, |M_1| = 810 \text{ GeV}, |M_2| = 642 \text{ GeV}, M_3 = 2 \text{ TeV}.
$$

\n(38)

- 'inp': loop-corrected masses and mixing angles (->Yukawa & trilinear couplings) in tree-level-like formula: HO corrections to input parameters
- 'proc': additionally including loop-corrected trilinear Higgs self-coupling -> HO corrections to observable included (though only partially)
- 'inp': scheme dependence of input parameters uncanceled by scheme dependence of process-dependent corrections (at the same loop order)
- $-$ 'proc': remaining large uncertainty (14.6%): remaining missing EW corrections might be important

Ultimate Test of the Higgs Mechanism

Higher-Order Corrections to Higgs Pair Production in Gluon Fusion

 \star 2-loop QCD corrections: \leq 70% [HTL, μ =M_{HH}/2] [Dawson,Dittmaier,Spira] $*$ 2-loop QCD corrections: $\sigma = \sigma_0 + \sigma_1/m_t^2 + ... + \sigma_4/m_t^8$ [refinement: full LO at differential level] [Grigo,Hoff,Melnikov,Steinhauser] ✦ Mass effects @ NLO in real corrections: ~ - 10% [Frederix,Frixione,Hirschi,Maltoni,Mattelaer,Torrielli,Vryonidou,Zaro] ✦ NLO QCD w/ full top mass dependence: ~15% mass effects on top of LO,20-30% for distributions [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke], [Baglio,Campanario, Glaus,MM,Ronca,Spira,Streicher] Combined uncertainties [Baglio,Campanario,Glaus,MM,Ronca,Spira] ✦ NNLO QCD corrections: ~ 20% [HTL] [de Florian,Mazzitelli; Grigo,Melnikov,Steinhauser] ✦ Light fermion three-loop corrections [Davies,Schönwald,Steinhauser] ✦ N3LO QCD corrections: ~ 5% [HTL] [Chen,Li,Shao,Wang] ✦ NNLO Monte Carlo: inclusion of full top-mass effects @ NLO [partly at NNLO] [Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli] ✦ NLO: matching to parton showers [Heinrich,Jones,Kerner,Luisoni,Vryonidou]

Higher-Order Corrections to Higgs Pair Production in Gluon Fusion

- ✦ New expansion/extrapolation methods: (i) 1/m_t2 expansion + conformal mapping + Padé approximants [Gröber,Maier,Rauh] (ii) p_T^2 expansion [Bonciani,Degassi,Giardino,Gröber]
	- \star NLO: small mass expansion $[Q^2 \gg m_1^2]$

2] [Davies,Mishima,Steinhauser,Wellmann]

✦ Combination of full NLO and small mass expansion

[Davies,Heinrich,Jones,Kerner,Mishima, Steinhauser,Wellmann]

Complete list, see e.g. twiki of LHC Higgs Working Subgroup HH and recent reviews

- -> recommendations for cross sections to be used given for
	- different c.m. energies
	- different coupling modifiers K_{λ}

-> uncertainties on di-Higgs cross sections

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 26

[Lee,'73], [Branco eal,'11]

✦ 2HDM Higgs potential w/ softly broken ℤ2 symmetry:

$$
V_{\text{tree}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right].
$$

✦ Higgs spectrum after EWSB: 2 CP-even h,H with mh < mH,

 1 CP-odd A, charged Higgs pair H± ✦ Contributing diagrams at leading order:

✦ 2HDM type 1 benchmark point (compatible w/ theor. & exp. constraints):

[taken from Abouabid et al.,'22]

$$
m_h = 125.09 \text{ GeV}, \quad m_H = 134.817 \text{ GeV},
$$

\n
$$
m_A = 134.711 \text{ GeV}, \quad m_{H^{\pm}} = 161.5 \text{ GeV},
$$

\n
$$
m_{12}^2 = 4305 \text{ GeV}^2, \quad \alpha = -0.102,
$$

\n
$$
\tan \beta = 3.759, \quad v = 246.22 \text{ GeV}.
$$

NLO Top Mass Effects in Invariant Mass Distributions

[Baglio,Campanario,Glaus,MM,Ronca,Spira,'23]

- Mass effects in distributions: -30% (-15%) at Q~1.5 TeV for hH (AA)
- increases w/ c.m. energy (results provided for 14, 27, 100 TeV)
- Mass effects on total cxn: -12% (-5%) at 13 TeV (increases w/ c.m. energy)

Top Quark Scale and Scheme Uncertainties

[Baglio,Campanario,Glaus,MM,Ronca,Spira,'23]

Top Quark Scale and Scheme Uncertainties in Total Cross Section

[Baglio,Campanario,Glaus,MM,Ronca,Spira,'23]

13 TeV:
$$
\sigma_{gg \to hH} = 1.592(1)^{+6\%}_{-11\%} \text{fb}
$$
,
\n14 TeV: $\sigma_{gg \to hH} = 1.876(1)^{+6\%}_{-11\%} \text{fb}$,
\n27 TeV: $\sigma_{gg \to hH} = 7.036(4)^{+5\%}_{-12\%} \text{fb}$,
\n100 TeV: $\sigma_{gg \to hH} = 60.49(4)^{+4\%}_{-14\%} \text{fb}$,

13 TeV:
$$
\sigma_{gg \to AA} = 1.643(1)^{+9\%}_{-7\%} \text{fb}
$$
,
\n14 TeV: $\sigma_{gg \to AA} = 1.927(1)^{+9\%}_{-8\%} \text{fb}$,
\n27 TeV: $\sigma_{gg \to AA} = 7.012(4)^{+8\%}_{-8\%} \text{fb}$,
\n100 TeV: $\sigma_{gg \to AA} = 58.12(3)^{+7\%}_{-9\%} \text{fb}$.

Top-Yukawa induced EW corrections to SM HH

Electroweak Corrections to SM Higgs Pair Production

See also:

- Next-to-leading order electroweak correction to gg->HH and gg->gH in the large mt-limit [Davies,Schönwald,Steinhauser,Zhang,´23]
- Higgs boson contribution to the leading two-loop Yukawa corrections to gg->HH [Davies,Mishima,Schönwald,Steinhauser,Zhang,´22]
- Complete NLO EW corrections [Bi, Huang, Huang, Ma, Yu, 23]
- NLO Yukawa and self-coupling corrections to gg->HH (DPG Spring Conference,´24) [Heinrich,Jones,Kerner,Stone,Vestner]

Top-Yukawa-Induced Corrections to Higgs Pair Production

- ✦ Part of the electroweak corrections to Higgs pair production
- ✦ Full top-mass dependence in the triple Higgs vertex and self-energy corrections HTL in radiative corrections to the effective ggH and ggHH vertices (b-loops neglected)

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 34

✦ Effective ggH and ggHH vertices (top-Yukawa induced EW corrections in HTL):

✦ Effective Higgs self-couplings: from effective Higgs potential

$$
\lambda_{HHH}^{eff} = 3\frac{M_H^2}{v} - \frac{3m_t^4}{\pi^2 v^3} \approx 0.91 \times 3\frac{M_H^2}{v} \quad \Delta\lambda_{HHH} = -\frac{3m_t^4}{\pi^2 v^3}
$$
\n
$$
\lambda_{HHHH}^{eff} = 3\frac{M_H^2}{v^2} + \Delta\lambda_{HHHH} \quad \Delta\lambda_{HHHH} = -\frac{12m_t^4}{\pi^2 v^4}
$$

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 35

Relative Top-Yukawa-Induced EW Correction Factor Δ HHH

[MM,Schlenk,Spira,'22]

Effective trilinear coupling does not capture the bulk of the EW corrections

Relative Top-Yukawa-Induced EW Correction Factor Δ HHH

Effective trilinear coupling does not capture the bulk of the EW corrections

Relative Top-Yukawa-Induced EW Correction to differential HH prod

[MM,Schlenk,Spira,'22]

- Large enhancement near threshold because of vanishing LO matrix element
- Suppression is lifted by mismatch of EW corrections to triangle and box diagrams

Effect of Top-Yukawa-Induced EW Corrections on Total Cxn

✦ Effect of top-Yukawa-induced EW correction on total integrated hadronic cross section:

$$
\sigma = K_{elw} \times \sigma_{LO}
$$
\n
$$
K_{elw} \approx 1.002 \qquad (\lambda_{HHH})
$$
\n
$$
K_{elw}^{eff} \approx 0.938 \qquad (\lambda_{HHH}^{eff})
$$

- Corrections induce an effect of about 0.2%
- Bulk of corrections cannot be absorbed in the effective trilinear Higgs coupling (leads to an artificial increase of the relative EW corrections)
- ~> Inclusion of complete EW corrections is mandatory

Top-Yukawa-Induced EW Corrections (w/ mtop&mbottom dependence, gaugeless limit)

M. Mühlleitner (KIT), 11 March 2024 CRC TRR 257 39

Top-Yukawa-Induced EW Corrections (w/ mtop&mbottom dependence, gaugeless limit)

Further Work within A3a and A3b

- A global view of the EDM landscape [Degenkolb,Elmer,Modak,MM,Plehn, 24]

- Impact of new experimental data on the C2HDM: the strong interdependence between LHC Higgs data and the electron EDM [Biekötter,Fontes,MM,Romao,Santos,Silva,'24]
- Dark colored scalars impact on single and di-Higgs production at the LHC [Gabriel,MM,Neacsu,Santos,´23]
- Intermediate charge-breaking phases and symmetry non-restoration in the 2HDM [Aoki,Biermann,Borschensky,Ivanov,MM,Shibuya,´23]
- The $O(\alpha_1+\alpha_2+\alpha_3)^2$ correction to the ρ parameter and its effect on the W boson mass [Dao,Gabelmann,MM,´23]
- Charged Higgs-boson decays into quarks [Chang,Kirk,MM,Spira, 23]

- Leptonic anomalous magnetic and electric dipole moments in the CP-violating NMSSM with and without inverse seesaw mechanism [Dao,Le,MM, 22]
- Pseudoscalar Higgs production at NLO SUSY QCD

[Bagnaschi,Fritz,Liebler,MM,Nguyen,Spira,´22]

Electroweak phase transition in a dark sector with CP violation [Biermann,MM,Müller,'22]

Th*ank you for your a*tt*en*ti*on!*

Considered Constraints in the NMSSM

- SM-like Higgs mass m_h e [122,129] GeV at $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2 + \alpha_t \alpha_s)$ in the default mixed $\overline{\text{DR}}$ -OS scheme with OS renormalisation in the top/stop and charged Higgs boson sectors
- Compatibility w/ Higgs data and BSM Higgs searches
- λ , κ required to be below 0.7 (ensure roughly perturbativity below the GUT scale)
- Neglected points with

(i)
$$
m_{\chi_i^{(\pm)}}
$$
, $m_{h_i} > 1 \text{ TeV}$, $m_{\tilde{t}_2} > 2 \text{ TeV}$
\n(ii) $m_{h_i} - m_{h_j} < 0.1 \text{ GeV}$, $m_{\chi_i^{(\pm)}} - m_{\chi_j^{(\pm)}} < 0.1 \text{ GeV}$
\n(iii) $m_{\chi_1^{\pm}} < 94 \text{ GeV}$, $m_{\tilde{t}_1} < 1 \text{ TeV}$.

LO Cross Section

Partonic cross section

$$
\hat{\sigma}_{LO} = \frac{G_F^2 \alpha_s^2(\mu_R)}{512(2\pi)^3} \int_{\hat{t}_-}^{\hat{t}_+} d\hat{t} \Big[|F_1|^2 + |F_2|^2 \Big] \qquad \hat{t}_{\pm} = -\frac{1}{2} \left[Q^2 - 2M_H^2 + Q^2 \sqrt{1 - 4\frac{M_H^2}{Q^2}} \right]
$$

Gluon luminosity

$$
\frac{d\mathcal{L}^{gg}}{d\tau} = \int_{\tau}^{1} \frac{dx}{x} g(x,\mu_F) g\left(\frac{\tau}{x},\mu_F\right)
$$

NLO Cross Section

✦ The NLO cross section:

$$
\sigma_{\text{NLO}}(pp \to HH + X) = \sigma_{\text{LO}} + \Delta \sigma_{\text{virt}} + \Delta \sigma_{gg} + \Delta \sigma_{gq} + \Delta \sigma_{q\bar{q}}
$$

$$
\sigma_{LO} = \int_{\tau_0}^{1} d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{LO}(Q^2 = \tau s)
$$
\n
$$
\Delta \sigma_{virt} = \frac{\alpha_s(\mu_R)}{\pi} \int_{\tau_0}^{1} d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{LO}(Q^2 = \tau s) \, C
$$
\n
$$
\Delta \sigma_{gg} = \frac{\alpha_s(\mu_R)}{\pi} \int_{\tau_0}^{1} d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \int_{\tau_0/\tau}^{1} \frac{dz}{z} \hat{\sigma}_{LO}(Q^2 = z\tau s) \left\{-zP_{gg}(z) \log \frac{\mu_F^2}{\tau s} + d_{gg}(z) + 6[1 + z^4 + (1 - z)^4] \left(\frac{\log(1 - z)}{1 - z}\right)_+\right\}
$$
\n
$$
\Delta \sigma_{gq} = \frac{\alpha_s(\mu_R)}{\pi} \int_{\tau_0}^{1} d\tau \sum_{q,\bar{q}} \frac{d\mathcal{L}^{gq}}{d\tau} \int_{\tau_0/\tau}^{1} \frac{dz}{z} \hat{\sigma}_{LO}(Q^2 = z\tau s) \left\{-\frac{z}{2}P_{gq}(z) \log \frac{\mu_F^2}{\tau s(1 - z)^2} + d_{gq}(z)\right\}
$$
\n
$$
\Delta \sigma_{q\bar{q}} = \frac{\alpha_s(\mu_R)}{\pi} \int_{\tau_0}^{1} d\tau \sum_{q} \frac{d\mathcal{L}^{q\bar{q}}}{d\tau} \int_{\tau_0/\tau}^{1} \frac{dz}{z} \hat{\sigma}_{LO}(Q^2 = z\tau s) d_{q\bar{q}}(z)
$$

✦ HTL:

$$
C \to \pi^2 + \frac{11}{2} + C_{\triangle \triangle}, \quad d_{gg} \to -\frac{11}{2}(1-z)^3, \quad d_{gq} \to \frac{2}{3}z^2 - (1-z)^2, \quad d_{q\bar{q}} \to \frac{32}{27}(1-z)^3
$$

Virtual Corrections

✦ Contributing diagrams: 47 generic box diagrams, 8 triangle diagrams (← single Higgs), 1 PR ($\leftarrow H \rightarrow Z \gamma$) . H g \sim

 $+$ Full diagram w/o tensor reduction \rightarrow 6-dim. Feynman integral (for 2 form factors)

 $+UV$ singularities: \rightarrow endpoint subtractions

$$
\int_0^1 dx \frac{f(x)}{(1-x)^{1-\epsilon}} = \int_0^1 dx \frac{f(1)}{(1-x)^{1-\epsilon}} + \int_0^1 dx \frac{f(x) - f(1)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \frac{f(x) - f(1)}{1-x} + \mathcal{O}(\epsilon)
$$

✦ IR singularities: IR subtraction (based on structure of integr. and rel. to HTL)

+ Thresholds: Q² \geq 0, 4m $_1$ 2 \rightarrow IBP \rightarrow reduction of power of denominator

$$
\left[m_t^2 \to m_t^2 (1 - ih) \right]
$$

$$
\int_0^1 dx \frac{f(x)}{(a + bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a + b)^2} + \int_0^1 dx \frac{f'(x)}{2b(a + bx)^2}
$$

Further Calculational Details

- \rightarrow Renormalization: α_{S} : MSbar, 5 flavors, m_t: on-shell
- \rightarrow Phase space integration \rightarrow 7-dim. integrals for do/dQ²
- ✦ Subtraction of HTL → IR-finite mass effects [adding back HTL results ← HPAIR]
- ✦ Extrapolation to NWA (h→0): Richardson extrapolation

- ✦ Full matrix element: generated with FeynArts and FormCalc
- ✦ Matrix elements in HTL involving full LO sub-matrix elements subtracted \rightarrow IR-, COLL-finite [adding back HTL results \leftarrow HPAIR]

$$
\sum |\mathcal{M}_{gg}|^2 = \sum |\mathcal{M}_{LO}|^2 \frac{24\pi^2 \alpha_s}{Q^4 \pi} \left\{ \frac{s^4 + t^4 + u^4 + Q^8}{stu} - 4\frac{\epsilon}{1 - \epsilon} Q^2 \right\}
$$

$$
\sum |\mathcal{M}_{gg}|^2 = \sum |\mathcal{M}_{LO}|^2 \frac{32\pi^2 \alpha_s}{3Q^4 \pi} \left\{ \frac{s^2 + u^2}{-t} + \frac{(s+u)^2}{t} \right\}
$$

$$
\sum |\mathcal{M}_{q\bar{q}}|^2 = \sum |\mathcal{M}_{LO}|^2 \frac{256\pi^2 \alpha_s}{9Q^4 \pi} (1 - \epsilon) \left\{ \frac{t^2 + u^2}{s} - \frac{(t+u)^2}{s} \right\}
$$

✦ PDFs: MSbar, 5 flavors

Results

Conversion from Pole to MSbar Mass

$$
F_{i} = F_{i,10} + \Delta F_{i} = F_{i,10} + \Delta F_{i,1m+1} + \Delta F_{i,1m+2}
$$
\nBut makes:

\n
$$
F_{i,10} = 4 m_{i,10}^2
$$
\n<

Scales for y_t

 \rightarrow Different scales for y_1 in triangle (Q) and box (MH) diagrams?

 \Rightarrow Same scale in all diagrams

LO Uncertainties

✦ Scale and scheme uncertainties at LO

$$
\frac{d\sigma(gg \to HH)}{dQ}|_{Q=300 \text{ GeV}} = 0.01656^{+62\%}_{-2.4\%} \text{ fb/GeV}
$$
\n
$$
\frac{d\sigma(gg \to HH)}{dQ}|_{Q=400 \text{ GeV}} = 0.09391^{+0\%}_{-20\%} \text{fb/GeV}
$$
\n
$$
\frac{d\sigma(gg \to HH)}{dQ}|_{Q=600 \text{ GeV}} = 0.02132^{+0\%}_{-48\%} \text{fb/GeV}
$$
\n
$$
\frac{d\sigma(gg \to HH)}{dQ}|_{Q=1200 \text{ GeV}} = 0.0003223^{+0\%}_{-56\%} \text{fb/GeV}
$$

Double Higgs Production Processes

[Baglio,Djouadi,Quévillon,'15]

Double Higgs Production Processes

[Baglio,Djouadi,Quévillon,'15]