Lepton-flavoured scalar dark matter

Monika Blanke

Collaborative Research Center TRR 257

Periticle Physics Phenomenology after the Higgs Discovery

2024 Annual Meeting of the CRC TRR 257 KIT – March 12, 2024

Two major puzzles of matter

Flavour puzzle

- Why does visible matter come in three generations?
- Why are their masses so hierarchical?
- Why is flavour violation so small?

Dark matter puzzle

- What is the dark matter of the universe made of?
- How was it created?
- How does it couple to ordinary matter?

potential link: flavoured dark matter

What is flavoured dark matter?

© Bing 2024

Minimal assumptions

- dark matter comes in three generations
- dark flavour triplet couples to SM flavour triplet via new mediator field
- \bullet new flavour-violating coupling matrix λ

The flavoured DM model space

Model-building choices

- the nature of DM
 - scalar or fermion
 - real or complex representation
 - > 4 options
- the SM fermion portal
 - quarks or leptons
 - left- or right-handed...
 - ≻ 5 options
- the flavour structure
 - Minimal Flavour Violation (MFV) or beyond

In this talk complex scalar flavoured DM coupled to right-handed charged leptons

In Jan's talk Majorana fermion flavoured DM coupled to right-handed up-type quarks

In both talks

Dark Minimal Flavour Violation (DMFV)

- dark flavour symmetry U(3) or O(3)
- \bullet broken only by new coupling matrix λ
- ➤ minimal step beyond MFV

Why lepton-flavoured DM?

Advantages of lepton-flavoured DM

- possible link between SM flavour structure and dark sector
- richer phenomenology than simple non-flavoured models
- possibility to reconcile WIMP hypothesis with non-observation constraints
 in this talk: thermal freeze-out
- less constrained by direct detection and LHC searches than quark-flavoured DM
- potential connection to $(g-2)_{\mu}$ puzzle

New physics in $(g-2)_{\mu}$?

- using data-driven SM prediction: 5.1σ tension with data
- using lattice QCD input: tension reduced to 1.6σ

Lepton-flavoured complex scalar DM – the model

The model

Acaroğlu, Agrawal, MB (2022)

$$\begin{split} \mathcal{L}_{\mathsf{dark}} &= (\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi) - M_{\phi}^{2}\phi^{\dagger}\phi - \bar{\psi}(i\not\!\!D - m_{\psi})\psi - (\lambda_{ij}\bar{\ell}_{Ri}\psi\phi_{j} + \mathsf{h.c.}) \\ &+ \Lambda_{H}H^{\dagger}H\phi^{\dagger}\phi + \Lambda_{\phi}\left(\phi^{\dagger}\phi\right)^{2} \end{split}$$

- complex scalar field ϕ : gauge singlet, triplet under new flavour symmetry $U(3)_{\phi}$
- Dirac fermion ψ : hypercharge Y = -1, mediates DM coupling to right-handed leptons
- flavour-violating coupling matrix λ
- flavoured Higgs-portal interaction Λ_H

Acaroğlu, MB, Tabet (2023)

Mass spectrum

- mass spectrum convention: $m_{\phi_1} > m_{\phi_2} > m_{\phi_3}$; assumption: $m_\psi > m_{\phi_3}$
- ϕ and ψ odd under new \mathbb{Z}_2 symmetry $\succ \phi_3$ stable, forms DM
- Dark Minimal Flavour Violation (DMFV)

More on Dark Minimal Flavour Violation (DMFV)

DMFV principle

AGRAWAL, MB, GEMMLER (2014)

- extend concept of Minimal Flavour Violation, where all flavour violation originates from SM Yukawas
- $\bullet\,$ DMFV: one new source of flavour violation coupling matrix λ
- \bullet other flavourful interactions can be expanded in powers of λ

$$M_{\phi}^{2} = m_{\phi}^{2} \left[\mathbb{1} + \eta \lambda^{\dagger} \lambda + \mathcal{O}(\lambda^{4}) \right] \qquad \Lambda_{H} = \lambda_{H} \left[\mathbb{1} + \eta_{H} \lambda^{\dagger} \lambda + \mathcal{O}(\lambda^{4}) \right]$$

• parametrization of λ in terms of physical parameters

$$\lambda = UD$$

U: unitary matrix with three mixing angles θ_{ij} and three complex phases δ_{ij} D: diagonal matrix with positive entries $D_{1,2,3}$

Initial study

Initial analysis Acaroğlu, Agrawal, MB (2022)

- case with $\lambda_H = 0$ and $\eta < 0$
- constraints from LFV decays, relic density and DM detection experiments
- ▶ too heavy NP to resolve $(g-2)_{\mu}$ puzzle

Possible solution Acaroğlu, Agrawal, MB (2022 II)

- introduce second fermionic mediator
- couple DM also to left-handed leptons
- lift chirality suppression of $(g-2)_{\mu}$
- > large NP contribution to $(g-2)_{\mu}$ possible, but at the cost of many new parameters

Opportunities within the minimal model

- 1.) invert hierarchy of DM couplings $(\eta > 0)$
 - ϕ_3 couples with $\min(D_1, D_2, D_3)$
 - DM relic density dominantly produced by freeze-out of heavy flavours $\phi_{1,2}$
 - small ϕ_3 couplings evade strong direct detection bounds

Opportunities within the minimal model

- 2.) open Higgs portal ($\lambda_H \neq 0$)
 - additional DM annihilation channels
 - new DM-nucleon scattering process
 - potential destructive interference in σ_{SI}^N

 \succ both options render $m_\psi \sim 100\,{
m GeV}$ viable

Additional constraints

However, small NP scales come at the cost of additional constraints:

Global analysis setup

Few technical details

• minimise χ^2 -function

$$\chi^2 = \left(\vec{\mathcal{O}}_{\mathsf{th}}(\xi_i) - \vec{\mathcal{O}}_{\mathsf{exp}}\right)^T C^{-1} \left(\vec{\mathcal{O}}_{\mathsf{th}}(\xi_i) - \vec{\mathcal{O}}_{\mathsf{exp}}\right)$$

- constraints from collider searches, observed DM relic density, detection experiments, the electron MDM, invisible Higgs decays and $Z-\ell$ vertex corrections
- flavour-conserving case with $\theta_{ij} = 0$, i.e. no relevant limits from LFV decays

Two benchmark cases for $(g-2)_{\mu}$

- it exhibits a 5.1 σ anomaly, i.e. $\Delta a_{\mu}^{\text{exp,dat}} = (2.49 \pm 0.48) \times 10^{-9}$
- 2 it is SM-like at $1.6\sigma,$ i.e $\Delta a_{\mu}^{\rm exp, lat} = (1.05\pm0.62)\times10^{-9}$

Results

Anomaly scenario

- destructive interference in σ_{SI}^N for $\lambda_H < 0$: λ_H may grow as large as 10^{-1}
- opening the Higgs portal alone not sufficient, $\eta > 0$ necessary to fit $(g-2)_{\mu}$
- overall goodness of fit indicates resolution of $(g-2)_{\mu}$ puzzle

Comparison of $(g-2)_{\mu}$ benchmarks

- both scenarios describe experimental data equally well at low scales: $\chi^2/{
 m ndf}\simeq 6/7$
- \bullet larger DM and mediator masses possible in SM-like $(g-2)_{\mu}$ scenario

Summary

Flavoured dark matter

- elegant and potent connection between dark sector and SM flavour structure
- reconciliation of WIMP hypothesis with the absence of signal
- very rich phenomenology

Lepton-flavoured scalar dark matter

- can be realised at the EW scale and is thus in the reach of LHC searches
- Higgs portal interactions severely alter the phenomenology
- NP resolution of $(g-2)_{\mu}$ puzzle possible, but SM-like $(g-2)_{\mu}$ equally consistent with low DM and mediator masses