Flavoured Majorana dark matter

from freeze-out scenarios to LHC signatures

based on 2312.09274

in collaboration with H.Acaroğlu, M. Blanke, M. Krämer, L. Rathmann

Annual Meeting of the CRC TRR 257 Particle Physics Phenomenology after the Higgs Discovery KIT, March 12, 2024

The model

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \left(i \bar{\chi} \partial \!\!\!/ \chi - M_{\chi} \bar{\chi} \chi \right) - \left(\lambda_{ij} \bar{\mu}_{Ri} \chi_{j} \phi + \text{h.c.} \right) + \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - m_{\phi}^{2} \phi^{\dagger} \phi + \lambda_{H\phi} \phi^{\dagger} \phi H^{\dagger} H + \lambda_{\phi \phi} \left(\phi^{\dagger} \phi \right)^{2}$$

- λ_{ij} : Complex 3×3 matrix
 - 18 parameters reduced to 15 by $O(3)_{\chi}$ symmetry (Dirac: $U(3)_{\chi}$)
 - Parametrization:

$$\lambda = U D O d$$

where θ_{23} , θ_{13} , θ_{12} , ϕ_{23} , ϕ_{13} , ϕ_{12} are mixing angles, δ_{23} , δ_{13} , δ_{12} , γ_1 , γ_2 , γ_3 are complex phases, and $D = \text{diag}(D_1, D_2, D_3)$ parametrizes the coupling strengths

Particle spectrum

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(i \bar{\chi} \partial \!\!\!/ \chi - M_{\chi} \bar{\chi} \chi \right) - \left(\lambda_{ij} \bar{u}_{Ri} \chi_j \phi + \text{h.c.} \right) + \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - m_{\phi}^2 \phi^{\dagger} \phi + \lambda_{H\phi} \phi^{\dagger} \phi H^{\dagger} H + \lambda_{\phi \phi} \left(\phi^{\dagger} \phi \right)^2$$

$$M_{\chi} = m_{\chi} \left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger} \lambda) + \mathcal{O}(\lambda^{4}) \right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

Particle spectrum

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(i \bar{\chi} \partial \!\!\!/ \chi - M_{\chi} \bar{\chi} \chi \right) - \left(\lambda_{ij} \bar{u}_{Ri} \chi_j \phi + \text{h.c.} \right) + \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - m_{\phi}^2 \phi^{\dagger} \phi + \lambda_{H\phi} \phi^{\dagger} \phi H^{\dagger} H + \lambda_{\phi \phi} \left(\phi^{\dagger} \phi \right)^2$$

$$M_{\chi} = m_{\chi} \left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger} \lambda) + \mathcal{O}(\lambda^{4}) \right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

Particle spectrum

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(i \bar{\chi} \partial \!\!\!/ \chi - M_{\chi} \bar{\chi} \chi \right) - \left(\lambda_{ij} \bar{u}_{Ri} \chi_j \phi + \text{h.c.} \right) + \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - m_{\phi}^2 \phi^{\dagger} \phi + \lambda_{H\phi} \phi^{\dagger} \phi H^{\dagger} H + \lambda_{\phi \phi} \left(\phi^{\dagger} \phi \right)^2$$

$$M_{\chi} = m_{\chi} \left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger} \lambda) + \mathcal{O}(\lambda^{4}) \right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

Freeze-out scenarios

Dark matter freeze-out

Dark matter freeze-out

 $\lambda_{i1}, \lambda_{i2}$ $g_{
m s}$

Dark matter freeze-out: small λ_{i3}

Dark matter freeze-out: very small λ_{i3}

Dark matter freeze-out: very small λ_{i3}

Flavored dark matter: freeze-out scenarios

- `Canonical' freeze-out (with or w/o coannihilation)
- Conversion-driven freeze-out

Flavored dark matter: freeze-out scenarios

- `Canonical' freeze-out
 - Single Flavour Freeze-Out (SFF):

Quasi-Degenerate Freeze-Out (QDF):

 m_{ϕ} —

$$m_{\chi_1} m_{\chi_2} m_{\chi_3} - \Delta m_{\chi_i} / m_{\chi_3} < 1\%$$

Generic Canonical Freeze-Out (GCF)

Canonical freeze-out

- Flavor constraints from D-meson mixing
- Direct detection constraints from LZ
- Indirect detection from cosmic-ray antiprotons

Canonical freeze-out

$$M_{\chi} = m_{\chi} \left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger} \lambda) + \mathcal{O}(\lambda^{4}) \right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

Jan Heisig

Canonical freeze-out

Production:

 $uu \rightarrow \phi \phi$ large cross section [see also e.g. M. Garny, A. Ibarra, M. Pato, S. Vogl, 1306.6342]

Decay:

 \overline{q}_i

 \overline{q}_k

Production:

 $uu \rightarrow \phi \phi$ large cross section [see also e.g. M. Garny, A. Ibarra, M. Pato, S. Vogl, 1306.6342]

Decay:

 \overline{q}_i

 \overline{q}_k

Production:

 $uu \rightarrow \phi \phi$ large cross section [see also e.g. M. Garny, A. Ibarra, M. Pato, S. Vogl, 1306.6342]

 \overline{q}_i

 \overline{q}_k

Current constraints: canonical freeze-out

Using SModelS 2

[G.Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

search	\sqrt{s}	signatures
ATLAS-SUSY-2013-02 [49]	$8\mathrm{TeV}$	$jets + E_T$
ATLAS-SUSY-2016-07 $[50]$	$13{ m TeV}$	$jets + E_T$
ATLAS-SUSY-2016-15 $[51]$	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
ATLAS-SUSY-2018-12 $[52]$	$13\mathrm{TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
ATLAS-SUSY-2018-22 $[53]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-16-033 $[54]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-16-036 $[55]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-19-006 $[45]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-19-009 $[56]$	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
CMS-SUS-20-002 $[57]$	$13{ m TeV}$	$ ext{tops} + ot\!$

Current constraints: canonical freeze-out

LHC exclusions canonic scenario

Using SModelS 2

[G. Alguero, JH, C. K. Khosa, S. Kraml et al. 21 12.00769]

Excluded points: enhanced *t*-channel mediator production

2000

Current constraints: canonical freeze-out

LHC exclusions canonic scenario

Light shaded points.

Using SModelS 2

[G.Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

Light shaded points.			
95% CL excluded	search	\sqrt{s}	signatures
	ATLAS-SUSY-2013-02 [49]	8 TeV	$jets + E_T$
	ATLAS-SUSY-2016-07 $[50]$	$13{ m TeV}$	$jets + E_T$
	ATLAS-SUSY-2016-15 [51]	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
	ATLAS-SUSY-2018-12 [52]	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
	ATLAS-SUSY-2018-22 [53]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-16-033 [54]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-16-036 55	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-19-006 [45]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-19-009 [56]	$13{ m TeV}$	$ ext{tops} + ot\!$
	CMS-SUS-20-002 [57]	$13{ m TeV}$	$ ext{tops} + ot\!$
500 1000 1500 2000			
$m_{\phi} [ext{GeV}]$			

Allowed points: complex decay patterns/non-prompt decays

2000

1500

m_{X3} [GeV]

500

Constraints: conversion-driven freeze-out

Small DM coupling: long-lived particles

Using SModelS 2

[G. Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

search	\sqrt{s}	signatures
ATLAS-SUSY-2016-32 [62]	$13\mathrm{TeV}$	stable R-hadron
CMS-PAS-EX0-16-036 [63]	$13{ m TeV}$	stable R-hadron
CMS-SUS-16-032 [64]	$13\mathrm{TeV}$	$cc + E_T$
CMS-SUS-16-036 $[55]$	$13\mathrm{TeV}$	$ ext{jets} + ot\!$
CMS-SUS-16-049 $[61]$	$13\mathrm{TeV}$	$ ext{tops} + ot\!$

Constraints: conversion-driven freeze-out

Small DM coupling: long-lived particles

Using SModelS 2

Majorana-specific signatures

→ Same-sign quark searches promising

Majorana-specific signatures

Same-sign top searches in SUSY $ttjj + E_T$ and $\overline{tt}jj + E_T$ (CMS-SUS-19-008 [2001.10086]

Single-top charge asymmetry

$$\sigma_{\text{Dirac}}(tj + \not\!\!\!E_T) = \sigma_{\text{Dirac}}(\bar{t}j + \not\!\!\!E_T)$$

For Majorana, $\phi\phi$ production present and enhanced compared to $\phi^{\dagger}\phi^{\dagger}$ (due to valence up-quark content in *p*)

$$\sigma_{\text{Majorana}}(tj + \not\!\!\!E_T) > \sigma_{\text{Majorana}}(\bar{t}j + \not\!\!\!E_T)$$

Consider charge asymmetry:

$$a_{tj} = \frac{\sigma(tj + \not\!\!\!E_T) - \sigma(\bar{t}j + \not\!\!\!E_T)}{\sigma(tj + \not\!\!\!E_T) + \sigma(\bar{t}j + \not\!\!\!E_T)} \qquad \text{Dirac DM} \Rightarrow a_{tj} \simeq 0$$

Majorana DM $\Rightarrow a_{tj} > 0$

Single-top charge asymmetry

Summary

- Flavored Majorana Dark Matter: Large regions of viable parameter space
- Canonical and conversion-driven freeze-out
- Current gaps in LHC searches:
 - Complex decay chains
 - Long-lived particles (intermediate lifetimes)
- Majorana-specific signatures
 - Same-sign tops suffer from extra jets required
 - Single-top charge asymmetry

Backup

Flavored dark matter vs simple t-channel model

