

Progress in the GoSam+Whizard interface for SMEFT at NLO

CRC TRR257 meeting March 2024

Marius Höfer | 12 March 2024

with Jens Braun, Pia Bredt, Gudrun Heinrich, Marijn van Geest

www.kit.edu

2 CRC Annual Meeting 2023


```
pp \rightarrow t\bar{t}, \, pp \rightarrow t\bar{t} + X \, , \, X = H, \gamma, Z, W^{\pm}
```

including off-shell effects and anomalous couplings within

```
Standard Model Effective Field Theory (SMEFT)
```

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{\text{dim6}} + \mathcal{O}(\frac{1}{\Lambda^{3}})$$

 Λ : New physics scale

Anomalous couplings in the top quark sector 2023 Talk by G. Heinrich

Introduction	Whizard + GoSam	Validation 000	To-Dos oo	Outlook oo
--------------	-----------------	-------------------	--------------	---------------

Introduction ••	Whizard + GoSam	Validation 000	To-Dos oo	Outlook

two independent approaches for CRC internal cross-checks and validation:

Aachen	Karlsruhe + Siegen

	Introduction ○●	Whizard + GoSam	Validation	To-Dos	Outlook oo
--	--------------------	-----------------	------------	--------	---------------

two independent approaches for CRC internal cross-checks and validation:

implementation in HELAC-NLO framework	+ Siegen
(Giuseppe Bevilacqua, Jonathan Hermann, Minos Reinartz, Malgorzata Worek) see 2023 talk by J. Hermann	

	Introduction ○●	Whizard + GoSam	Validation 000	To-Dos oo	Outlook 00
--	--------------------	-----------------	-------------------	--------------	---------------

two independent approaches for CRC internal cross-checks and validation:

Aachen

- implementation in HELAC-NLO framework (Giuseppe Bevilacqua, Jonathan Hermann, Minos Reinartz, Malgorzata Worek)
- see 2023 talk by J. Hermann

Karlsruhe + Siegen

- Whizard as Monte Carlo event generator
- GoSam as amplitude provider
- interface "Universal Feynman Output" (UFO) for EFT models

two independent approaches for CRC internal cross-checks and validation:

Aachen

- implementation in HELAC-NLO framework (Giuseppe Bevilacqua, Jonathan Hermann, Minos Reinartz, Malgorzata Worek)
- see 2023 talk by J. Hermann

Karlsruhe + Siegen

- Whizard as Monte Carlo event generator
- GoSam as amplitude provider
- interface "Universal Feynman Output" (UFO) for EFT models

Introduction Whizard + GoSam Validation 10-Dos Outlook 0 00 000 00 00

Whizard + GoSam: Setup

4/12 12.3.2024 Marius Höfer: GoSam+Whizard

Whizard + GoSam

.

Introduction

GoSam (amplitude provider)

Institute for Theoretical Physics (ITP)

Outlook

Institute for Theoretical Physics (ITP)

Outlook

Whizard + GoSam: Setup

UFO model

particlesvertices

4/12 12.3.2024 Marius Höfer: GoSam+Whizard

Institute for Theoretical Physics (ITP)

Whizard (Monte Carlo event generator)

define process, specify parameters

- construct channel list & FKS subtraction terms
- initialise GoSam

sindarin runcard:

□ extend interface to work for *pp* collisions

- minor modifications in BLHA structures on both sides
- activate necessary routines in Whizard

Introduction Whizard + GoSam Validation To-Dos Outle	Introduction oo	\$	Validation 000	Outlook oo
--	--------------------	----	-------------------	---------------

- □ extend interface to work for *pp* collisions
 - minor modifications in BLHA structures on both sides
 - activate necessary routines in Whizard
- □ improvements to GoSam in interface mode
 - stability of real radiation amplitudes in IR singular limits
 - handling of EFT expansion and truncation

Introduction 00	Whizard + GoSam ○●	Validation	To-Dos oo	Outlook

- □ extend interface to work for *pp* collisions
 - minor modifications in BLHA structures on both sides
 - activate necessary routines in Whizard
- □ improvements to GoSam in interface mode
 - stability of real radiation amplitudes in IR singular limits
 - handling of EFT expansion and truncation
- □ allow for a more flexible interaction with GoSam through Whizard's sindarin runcard

Introduction	Whizard + GoSam	Validation	To-Dos	Outlook
00	○●	000	oo	00

- v extend interface to work for pp collisions
 - minor modifications in BLHA structures on both sides
 - activate necessary routines in Whizard
- improvements to GoSam in interface mode
 - stability of real radiation amplitudes in IR singular limits
 - handling of EFT expansion and truncation
- Z allow for a more flexible interaction with GoSam through Whizard's sindarin runcard

Program up and running!

- v extend interface to work for pp collisions
 - minor modifications in BLHA structures on both sides
 - activate necessary routines in Whizard
- improvements to GoSam in interface mode
 - stability of real radiation amplitudes in IR singular limits
 - handling of EFT expansion and truncation
- Z allow for a more flexible interaction with GoSam through Whizard's sindarin runcard

Program up and running!*

*Apart from stuff that doesn't work...

Introduction	Whizard + GoSam	Validation	To-Dos	Outlook
oo	○●	000	oo	

Interface Validation

1) Internal checks

check consistency for selection of SM processes:

- Whizard with different amplitude providers: GoSam vs. OpenLoops vs. Omega (trees only)
- Whizard+GoSam with different model files: hard coded vs. UFO

Introduction	Whizard + GoSam	Validation	To-Dos	Outlook
oo		●○○	oo	oo

Interface Validation

1) Internal checks

check consistency for selection of SM processes:

- Whizard with different amplitude providers: GoSam vs. OpenLoops vs. Omega (trees only)
- Whizard+GoSam with different model files: hard coded vs. UFO

2a) Checks against independent tools (SM)

- tot. x-sec for $pp \rightarrow \gamma\gamma$, $pp \rightarrow \gamma j$ at NLO QCD with NNLOJET
- distributions for VBF-HH at LO with VBFNLO

Introduction	Whizard + GoSam	Validation	To-Dos	Outlook
00		●○○	oo	00

Interface Validation

1) Internal checks

check consistency for selection of SM processes:

- Whizard with different amplitude providers: GoSam vs. OpenLoops vs. Omega (trees only)
- Whizard+GoSam with different model files: hard coded vs. UFO

2a) Checks against independent tools (SM)

- tot. x-sec for $pp \rightarrow \gamma\gamma$, $pp \rightarrow \gamma j$ at NLO QCD with NNLOJET
- distributions for VBF-HH at LO with VBFNLO

2b) Checks against published results (SMEFT)

■ *ttH* with stable tops & Higgs: Maltoni et al. 2016 (MG5_AMC)

Introduction oo	Whizard + GoSam	Validation ●○○	To-Dos oo	Outlook
--------------------	-----------------	-------------------	--------------	---------

Karlsruhe Institute of Technology

Validation: SMEFT

validate against Maltoni et al. 2016: $t\bar{t}H$ with stable tops & Higgs

validate against Maltoni et al. 2016: $t\bar{t}H$ with stable tops & Higgs


```
Karlsruhe Institute of Technology
```

include terms up to (dim-6)²:

Introduction 00	Whizard + GoSam	Validation ○●○	To-Dos	Outlook
--------------------	-----------------	-------------------	--------	---------

validate against Maltoni et al. 2016: $t\bar{t}H$ with stable tops & Higgs

include terms up to (dim-6)²:

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \sum_{i \le j} \frac{C_i C_j}{\Lambda^4} \sigma_{ij}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \mathsf{A} \text{ double insertions}$$

$$\dim -4 \qquad \dim -6 \qquad (\dim -6)^2 \qquad \mathsf{X} \text{ double insertions}$$

$$\mathsf{X} \text{ dim} -8$$

Introduction Whizar	rd + GoSam Validation ○●○	To-Dos	Outlook oo
---------------------	------------------------------	--------	---------------

validate against Maltoni et al. 2016: $t\bar{t}H$ with stable tops & Higgs

Karlsruhe Institute of Technology

include terms up to (dim-6)²:

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \sum_{i \le j} \frac{C_i C_j}{\Lambda^4} \sigma_{ij}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \mathsf{A} \text{ double insertions}$$

$$\dim -4 \qquad \dim -6 \qquad (\dim -6)^2 \qquad \mathsf{X} \text{ double insertions}$$

$$\mathsf{X} \text{ dim} -8$$

perturbative expansion:
$$\sigma_{\rm x} = \sigma_{\rm x}^{\rm LO} + \alpha_{\rm s} \, \sigma_{\rm x}^{\rm NLO}$$

validate against Maltoni et al. 2016: $t\bar{t}H$ with stable tops & Higgs

include terms up to (dim-6)²:

Introduction oo	Whizard + GoSam	Validation ○●○	To-Dos oo	Outlook
--------------------	-----------------	-------------------	--------------	---------

Setting up the run

- UFO model generated with SmeftFR v3 [Dedes et al. 2023]
- tidy up output UFO manually:
 - remove flavour changing vertices
 - correctly implement EW-input scheme

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \sum_{i \leq j} \frac{C_i C_j}{\Lambda^4} \sigma_{ij}, \qquad C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$$

Introduction 00	Whizard + GoSam	Validation ○○●	To-Dos	Outlook
--------------------	-----------------	-------------------	--------	---------

Setting up the run

- UFO model generated with SmeftFR v3 [Dedes et al. 2023]
- tidy up output UFO manually:
 - remove flavour changing vertices
 - correctly implement EW-input scheme

with GoSam we can pick the exact coefficient in the Λ^{-2} expansion

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \sum_{i \leq j} \frac{C_i C_j}{\Lambda^4} \sigma_{ij}, \qquad C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$$

Introduction	Whizard + GoSam	Validation ○○●	To-Dos oo	Outlook
00	00	000	00	00

Setting up the run

- UFO model generated with SmeftFR v3 [Dedes et al. 2023]
- tidy up output UFO manually:
 - remove flavour changing vertices
 - correctly implement EW-input scheme

with GoSam we can pick the exact coefficient in the Λ^{-2} expansion

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \sum_{i \le j} \frac{C_i C_j}{\Lambda^4} \sigma_{ij}, \qquad C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$$

extract σ_i , σ_{ij} by setting $C_i = 0$ or 1. Get off-diagonal terms by solving simple system of equations

Introduction	Whizard + GoSam	Validation ○○●	To-Dos oo	Outlook

Setting up the run

- UFO model generated with SmeftFR v3 [Dedes et al. 2023]
- tidy up output UFO manually:
 - remove flavour changing vertices
 - correctly implement EW-input scheme

with GoSam we can pick the exact coefficient in the Λ^{-2} expansion

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \sum_{i \leq j} \frac{C_i C_j}{\Lambda^4} \sigma_{ij}, \qquad C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$$

🗸 LO

 $\pmb{\times}\ NLO \rightarrow not$ yet fully functional

extract σ_i , σ_{ij} by setting $C_i = 0$ or 1. Get off-diagonal terms by solving simple system of equations

ntroduction	Whizard + GoSam	Validation ○○●	To-Dos oo	Outlook

tTH: Road to NLO in SMEFT

Interface/Program issues

- generation of FKS-subtraction terms by Whizard in presence of non-SM like vertices
- performance: improve GoSam code to achieve reasonable compilation and evaluation times

Introduction	Whizard + GoSam	Validation	To-Dos ●○	Outlook 00

$t\bar{t}H$: Road to NLO in SMEFT

Interface/Program issues

- generation of FKS-subtraction terms by Whizard in presence of non-SM like vertices
- performance: improve GoSam code to achieve reasonable compilation and evaluation times
 - ✓ parallelization of GoSam python code
 - ✓ switch build system from autotools to meson
 - ✓ speed-up of spinor-product routines
 - ✓ make use of flavour-relations between different channels
 - ... miscellaneous code improvements

Introduction oo	Whizard + GoSam	Validation	To-Dos ●○	Outlook oo

$t\bar{t}H$: Road to NLO in SMEFT

Interface/Program issues

- generation of FKS-subtraction terms by Whizard in presence of non-SM like vertices
- performance: improve GoSam code to achieve reasonable compilation and evaluation times
 - $\checkmark\,$ parallelization of GoSam python code
 - ✓ switch build system from autotools to meson
 - ✓ speed-up of spinor-product routines
 - ✓ make use of flavour-relations between different channels
 - ... miscellaneous code improvements

 \rightarrow New GoSam release planned!

Introduction	Whizard + GoSam	Validation	To-Dos ●○	Outlook oo

$t\bar{t}H$: Road to NLO in SMEFT

Interface/Program issues

- generation of FKS-subtraction terms by Whizard in presence of non-SM like vertices
- performance: improve GoSam code to achieve reasonable compilation and evaluation times
 - ✓ parallelization of GoSam python code
 - ✓ switch build system from autotools to meson
 - ✓ speed-up of spinor-product routines
 - ✓ make use of flavour-relations between different channels
 - ... miscellaneous code improvements

 \rightarrow New GoSam release planned!

Physics issues

- renormalization
- running Wilson coefficients

Introduction Whizard + GoSam Validation To-Dos Outlook	Introduction	Whizard + GoSam	Validation 000	To-Dos ●○	Outlook oo
--	--------------	-----------------	-------------------	--------------	---------------

QCD renormalization in SM

handled automatically by GoSam

- gluons, massless quarks: MS
- massive quarks: OS

QCD renormalization of Wilson coefficients

Currently not taken care of automatically!

Introduction 00	Whizard + GoSam	Validation	To-Dos ○●	Outlook

massive quarks: OS

QCD renormalization in SM handled automatically by GoSam gluons, massless guarks: MS

QCD renormalization of Wilson coefficients

Currently not taken care of automatically!

Maltoni et al. 2016:
$$\bar{C}_i = (\delta_{ij} + \alpha_s \Delta_{ij}(\mu_{EFT}))C_j$$
 with $C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$

Institute for Theoretical Physics (ITP)

Renormalization

QCD renormalization in	SM				
handled automatically by Go	Sam				
gluons, massless quark	s: MS				,
massive quarks: OS				Separate running of	
QCD renormalization of	Wilson coefficients			C_i 's from α_s running. Note: C_i 's mix!	
Currently not taken care of a	utomatically!				
Maltoni et al. 2016.	$ar{m{\mathcal{C}}}_{i} = (\delta_{ij} + lpha_{m{s}} \Delta_{ij})$	$(\mu_{EFT}))C_j$	with	$C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$	
Introduction Whiz	ard + GoSam	Validation 000		To-Dos ○●	Outlook 00

QCD renormalization	on in SM			
handled automatically b	y GoSam			
gluons, massless of the second sec	quarks: MS			
massive quarks: C	S		Separate running of	
QCD renormalization	on of Wilson coefficients		Note: C_i 's mix!	
Currently not taken car	e of automatically!	\checkmark		
Maltoni et al. 20	116: $\bar{C}_i = (\delta_{ij} + \alpha_s \Delta_{ij})$	$(\mu_{EFT}))C_j$ with	$C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$	
How to deal with this i	n our setup?			
extend automatic r	enormalization in GoSam $ ightarrow$	complicated		
add UV-counterter	ms to UFO model $ ightarrow$ extensi	on of interface required		
Introduction oo	Whizard + GoSam	Validation 000	To-Dos ○●	Outlook

QCD renorma	lization in SM				
handled automat	tically by GoSam				
gluons, mas	ssless quarks: MS				
massive qui	arks: OS			Separate running of	
				C_i 's from α_s running.	
QCD renorma	lization of Wilso	n coefficients		Note: C_i 's mix!	
Currently not tak	ken care of automat	ically!			
Maltoni e	et al. 2016: \bar{C}	$\mathbf{C}_{i} = (\delta_{ij} + \alpha_s \Delta_{ij}(\mu_{EFT}))\mathbf{C}_{j}$	with	$C_i = (C_{t\phi}, C_{\phi G}, C_{tG})$	
How to deal wit	h this in our setup?				
extend auto	matic renormalizati	on in GoSam $ ightarrow$ complicate	d		
add UV-cou	nterterms to UFO n	nodel $ ightarrow$ extension of interfa	ce required	$\int \rightarrow 0$ open question	
Introduction	Whizard + GoS	am Validation		To-Dos ○●	Outlook

Future work

Short-term

- finish NLO validation, also look at histograms + compare to HELAC results
- interesting things to study: CP violating anomalous couplings, treatment of \mathcal{O}_{tG} (see Jannis' talk)

Introduction Whizard + GoSam Validation	To-Dos oo	Outlook ●○
---	--------------	---------------

Future work

Short-term

- finish NLO validation, also look at histograms + compare to HELAC results
- interesting things to study: CP violating anomalous couplings, treatment of \mathcal{O}_{tG} (see Jannis' talk)

Long-term

- inclusion of 4-fermion operators
- inclusion of top decays and off-shell effects (see 2023 talk by J. Hermann)
- match with parton shower

Introduction Whizard + GoSam	Validation	To-Dos	Outlook
	000	oo	●○

Future work

Short-term

- finish NLO validation, also look at histograms + compare to HELAC results
- interesting things to study: CP violating anomalous couplings, treatment of \mathcal{O}_{tG} (see Jannis' talk)

Long-term

- inclusion of 4-fermion operators
- inclusion of top decays and off-shell effects (see 2023 talk by J. Hermann)
- match with parton shower

Beyond *t*t*H*

- other processes: $t\bar{t} + \gamma/Z/W^{\pm}$, $t + Z/W^{\pm}$, VBF-H(H) (in progress ...)
- other EFT models (e.g. HEFT)

Introduction	Whizard + GoSam	Validation	To-Dos	Outlook ●○
--------------	-----------------	------------	--------	---------------

Summary

Task:

• setting up Whizard+GoSam to do SMEFT studies in $t\bar{t} + X$

Status:

- interface mostly working, optimizations outstanding
- validation of SMEFT features in progress (renormalization needed)

Introduction	Whizard + GoSam	Validation 000	To-Dos oo	Outlook ○●

Summary

Task:

setting up Whizard+GoSam to do SMEFT studies in $t\bar{t} + X$

Status:

- interface mostly working, optimizations outstanding
- validation of SMEFT features in progress (renormalization needed)

Introduction	Whizard + GoSam	Validation	To-Dos	Outlook ○●