

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Strongly interacting dark sectors and dark showers

Nicoline Hemme

Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Annual Meeting 2024 of the CRC TRR 257

Annual Meeting 2024

Introduction to strongly interacting dark sectors

Dark showers and signatures

Strongly interacting dark sectors at colliders

Strongly interacting dark sectors as dark matter

Summary + Q&A

High Energy Theory

SU(N_{c_D}) gauge group with N_{f_D} quark-like dark particles and gluon-like mediators described by the Lagrangian

$$\mathcal{L}_{UV} = -\frac{1}{4} G^a_{D\mu\nu} G^{a\mu\nu}_D + \bar{q}_d (i\gamma^u D_\mu - M_q) q_D$$

Note: Quarks often assumed to be mass-degenerate for simplicity

High Energy Theory

SU(N_{c_D}) gauge group with N_{f_D} quark-like dark particles and gluon-like mediators described by the Lagrangian

$$\mathcal{L}_{UV} = -\frac{1}{4} G^a_{D\mu\nu} G^{a\mu\nu}_D + \bar{q}_d (i\gamma^u D_\mu - M_q) q_D$$

Note: Quarks often assumed to be mass-degenerate for simplicity

Add a portal to the SM – many ways to do this Example that will be useful in this talk:

New U(1)' symmetry under which both SM quarks and DS quarks are charged and gives rise to massive mediator Z'

Annual Meeting 2024

Introduction to strongly interacting dark sectors

At low energies, defined as $E \lesssim \Lambda_D$, chiral symmetry breaks and we need a new description; chiral effective field theory

Collaborative Research Center TRR 257

High Energy Theory

SU(N) gauge group with quark-like dark particles and gluon-like mediators described by the Lagrangian

 $\mathcal{L}_{UV} = -\frac{1}{4}G^a_{D\mu\nu}G^{a\mu\nu}_D + \bar{q}_d(i\gamma^u D_\mu - M_q)q_D$

Note: Quarks often assumed to be mass-degenerate for simplicity

Add a portal to the SM – many ways to do this Example that will be useful in this talk:

New U(1)' symmetry under which both SM quarks and DS quarks are charged and gives rise to massive mediator Z'

Low Energy Theory

The chiral Lagrangian is $\mathcal{L}_{Ch} \supset \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U \right) + \left[\frac{\mu_{D}^{3}}{2} \operatorname{Tr} \left(M_{q} U^{\dagger} \right) + \text{h.c.} \right]$

with SU(N) matrix $U \equiv \exp(2\pi i/f_{\pi})$

High Energy Theory

SU(N) gauge group with quark-like dark particles and gluon-like mediators described by the Lagrangian

 $\mathcal{L}_{UV} = -\frac{1}{4} G^a_{D\mu\nu} G^{a\mu\nu}_D + \bar{q}_d (i\gamma^u D_\mu - M_q) q_D$

Note: Quarks often assumed to be mass-degenerate for simplicity

Add a portal to the SM – many ways to do this Example that will be useful in this talk:

New U(1)' symmetry under which both SM quarks and DS quarks are charged and gives rise to massive mediator Z'

Low Energy Theory

The chiral Lagrangian is $\mathcal{L}_{Ch} \supset \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U \right) + \left[\frac{\mu_{D}^{3}}{2} \operatorname{Tr} \left(M_{q} U^{\dagger} \right) + \text{h.c.} \right]$

with SU(N) matrix $U \equiv \exp(2\pi i/f_{\pi})$

Quarks confine \rightarrow bound states form \rightarrow we get dark mesons such as

- dark pions π_D (pseudo-scalar)
- dark rho mesons ho_D (vector)

They can carry the dark charge from U(1)'

Disclaimer: This is not an exhaustive talk of strongly interacting dark sectors This talk focuses on QCD-like SU(N) dark sectors but you can have:

Stable bound states from Sp(4) gauge theory

F. Zierler, S. Kulkarni, A. Maas, S. Mee, M. Nikolic, and J. and Pradler [2211.11272]

Dark sector glueballs

See e.g. K.K. Boddy, J.L. Feng, M. Kaplinghat, and T.M.P. Tait [1402.3629],
N. Yamanakaa, H. Iida, A. Nakamurad, and M. Wakayama [1910.01440],
A. Batz, T. Cohen, D. Curtin, C. Gemmell, and G. D. Kribs [2310.13731]

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Figure: E. Bernreuther, F. Kahlhoefer, M. Krämer, P. Tunney [1907.04345]

Annual Meeting 2024

CRC TRR 257: B3a

Strongly interacting dark sectors and dark showers

Dark showers and signatures

Figure: E. Bernreuther, F. Kahlhoefer, M. Krämer, P. Tunney [1907.04345]

nology Particle Physics Phenomenology after the Higgs Discovery

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Dark showers and signatures

Dark parton shower occurs in the dark sector – possibly resulting in many new dark bound states

Figure: E. Bernreuther, F. Kahlhoefer, M. Krämer, P. Tunney [1907.04345]

Collaborative Research Center TRR 257

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Figure: E. Bernreuther, F. Kahlhoefer, M. Krämer, P. Tunney [1907.04345]

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Dark shower signatures

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Dark shower signatures

• Visible prompt – SM jet originating from the DS All DS particles decayed to the SM promptly

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Distinct

SM-like

Dark shower signatures

- Visible prompt SM jet originating from the DS All DS particles decayed to the SM promptly
- Visible displaced Displaced vertices and emerging jets All DS particles decayed to the SM but with a significant lifetime

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Distinct

Dark shower signatures

- Visible prompt SM jet originating from the DS All DS particles decayed to the SM promptly
- Visible displaced Displaced vertices and emerging jets All DS particles decayed to the SM but with a significant lifetime
- Invisible MET, requires ISR to detect All DS particles were stable or very long lived

WIMP-like

SM-like

Collaborative Research Center TRR 257 Particle Physics Phenomenology after the Higgs Discov

CRC TRR 257: B3a

Annual Meeting 2024

Dark showers and signatures

Distinct

WIMP-like

SM-like

Dark shower signatures

- Visible prompt SM jet originating from the DS All DS particles decayed to the SM promptly
- Visible displaced Displaced vertices and emerging jets All DS particles decayed to the SM but with a significant lifetime
- Invisible MET, requires ISR to detect All DS particles were stable or very long lived
- Semi-visible MET aligned with jet Some DS particles were stable or very long lived and some DS particles decayed to the SM

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Dark shower signatures: Displaced vertex

Invisible track // Visible track

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Example: Displaced vertices at Belle II

 $e^+e^- \rightarrow q_D \bar{q}_D$ can result in a dark shower with low multiplicity of dark particles, followed by $\rho_D \rightarrow l^+l^-$ or $\rho_D \rightarrow$ hadrons

Figure: E. Bernreuther, T. Ferber, F. Kahlhoefer, A. Morandini et al. [2203.08824]

Nicoline Hemme, nicoline.hemme@kit.edu - Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Collaborative Research Center TRR 257

CRC TRR 257: B3a

Annual Meeting 2024

Single γ is $e^+e^- \rightarrow \gamma + \text{inv}$, i.e. it is assumed that the dark particles

remain stable within the detector

Strongly interacting dark sectors at colliders

Forecasting dark showers at Belle II

E. Bernreuther, T. Ferber, F. Kahlhoefer, A. Morandini et al. [2203.08824]

Nicoline Hemme, nicoline.hemme@kit.edu - Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Dark shower signatures: Semi-visible jets

---- Invisible track // Visible track

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Dark shower signatures: Semi-visible jets

- Invisible track // Visible track
- MET vector

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Dark shower signatures: Semi-visible jets

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Dark shower signatures: Semi-visible jets

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Dark shower signatures: Semi-visible jets

Events with small $\Delta \phi$ look like QCD background

Such events are discarded to eliminate QCD background ⇒ Unexplored signature!

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Searches and existing constraints on semi-visible jets

Search variable: Transverse mass M_T turns out to be a good variable to search for new mediator Z' in semi-visible jet events Proposed by T. Cohen, M. Lisanti, H.K. Lou [1503.00009]

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors at colliders

Searches and existing constraints on semi-visible jets

Search variable: Transverse mass M_T turns out to be a good variable to search for new mediator Z' in semi-visible jet events Proposed by T. Cohen, M. Lisanti, H.K. Lou [1503.00009]

CMS published the first collider search for semi-visible jets in 2021 [2112.11125]

No discovery, but sensitive only to GeV-scale DM and implementation of model is inconsistent with theory - does this change the phenomenology?

m_{dark} [GeV]

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

How can strongly interacting dark sectors give us a viable dark matter candidate?

How can strongly interacting dark sectors give us a viable dark matter candidate?

The dark sector can contain stable bound states

- Typical candidate is the pseudo-Goldstone boson, the dark pion π_D
- The dark pion stability can be ensured by
 - Parity symmetry
 - U(1)' symmetry (can also provide the portal)

How can strongly interacting dark sectors give us a viable dark matter candidate?

The dark sector can contain stable bound states

- Typical candidate is the pseudo-Goldstone boson, the dark pion π_D
- The dark pion stability can be ensured by
 - Parity symmetry
 - U(1)' symmetry (can also provide the portal)

Freeze-out of DM by number changing processes within the dark sector

- Original SIMP-miracle is $3\chi{\rightarrow}2\chi$ (via WZW term), but this violates self-interaction bounds from the Bullet Cluster
- Many alternatives; Co-SIMP 2 χ +SM \rightarrow χ +SM, resonant enhancement or by light vector meson process $3\pi_D \rightarrow \pi_D \rho_D$

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

A QCD-like SU(N) theory will have vector mesons, ho_D

If they are heavy, it is a fair assumption to neglect them (classical SIMP)

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

A QCD-like SU(N) theory will have vector mesons, ho_D

If they are heavy, it is a fair assumption to neglect them (classical SIMP)

But this violates the Bullet Cluster constraints (or overproduces dark matter)

https://www.esa.int/ESA_Multimedia/Images/2007/ 07/The_Bullet_Cluster2

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

A QCD-like SU(N) theory will have vector mesons, ho_D

If they are heavy, it is a fair assumption to neglect them (classical SIMP)

But this violates the Bullet Cluster constraints (or overproduces dark matter)

General SIMP cross section:

$$\langle \sigma v^2 \rangle_{3 \to 2} = \frac{\alpha_{eff}}{m_{\pi_D}^5}$$

Lower mass \rightarrow more efficient
 \rightarrow lower relic abundance
Self-interaction cross section:
 $\sigma_{st} = \xi$

 $\frac{m_{\pi}}{m_{\pi}} \propto \frac{1}{m_{\pi}^3} \leq \text{BC constraint}$ Lower mass \rightarrow higher SI!

https://www.esa.int/ESA_Multimedia/Images/2007/ 07/The_Bullet_Cluster2

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

A QCD-like SU(N) theory will have vector mesons, ho_D

If they are heavy, it is a fair assumption to neglect them (classical SIMP)

But this violates the Bullet Cluster constraints (or overproduces dark matter)

What if they are light? Specifically, $m_{\rho_D} < 2m_{\pi_D}$

This opens up the channel $3\pi_D \rightarrow \pi_D \rho_D$ and closes the $\rho_D \rightarrow \pi_D \pi_D$ decay channel

General SIMP cross section:

$$\langle \sigma v^2 \rangle_{3 \to 2} = \frac{\alpha_{eff}}{m_{\pi_D}^5}$$

Lower mass \rightarrow more efficient
 \rightarrow lower relic abundance
relf-interaction cross section:

$$\frac{\sigma_{SI}}{m_{\pi}} \propto \frac{\xi}{m_{\pi}^3} \leq \text{BC constraint}$$
Lower mass \rightarrow higher SI!

https://www.esa.int/ESA_Multimedia/Images/2007/ 07/The_Bullet_Cluster2

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Early (hot) Universe There is enough energy to produce many new particles

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Freeze-out of dark matter with heavy ρ_D

Energy falls below threshold to produce more of these particles while some decay or annihilate

Nicoline Hemme, nicoline.hemme@kit.edu - Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Strongly interacting dark sectors and dark showers

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Relic abundance reached with heavy ρ_D

After freeze-out there are many stable dark pions remaining – it's hard to avoid overproducing DM

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Early (hot) Universe There is enough energy to produce many new particles

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Freeze-out of dark matter with light ρ_D

Energy falls below threshold to produce more of these particles while some decay or annihilate

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Relic abundance reached with light ρ_D

It is easier to avoid overproducing dark matter and reach the correct relic abundance

 $\rightarrow D_{\mu}\pi_{D} = \partial_{\mu}\pi_{D} + ig_{\pi_{D}\pi_{D}\rho_{D}}[\pi_{D}, \rho_{D\mu}]$

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

If $m_{\rho_D} < 2m_{\pi_D}$, we must consider its interactions by promoting the derivative to the covariant derivative –

Collaborative Research Center TRR 257

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

If $m_{\rho_D} < 2m_{\pi_D}$, we must consider its interactions by promoting the derivative to the covariant derivative –

Then, the chiral Lagrangian up to $\mathcal{O}(\pi^4)$ gives us the $3\pi_D \rightarrow \pi_D \rho_D$ interactions

The model has 2 free parameters m_{π_D} and $\frac{m_{\rho_D}}{m_{\pi_D}}$ and we can relate to f_{π_D} via lattice calculations

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

CRC TRR 257: B3a

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

CRC TRR 257: B3a

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Dark matter relic density in strongly interacting dark sectors with light vector mesons E. Bernreuther, NH, F. Kahlhoefer, S. Kulkarni [2311.17157]

Nicoline Hemme, nicoline.hemme@kit.edu - Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Annual Meeting 2024

Strongly interacting dark sectors as dark matter

Strongly interacting dark sectors with light vector mesons

```
Cosmological arguments prefer m_{DM} \sim 100-150 \text{ MeV}
```

Existing searches and constraints on similar models often consider a much higher mass range (except BC) \rightarrow This is an unexplored model

Strongly interacting dark sectors as dark matter

Strongly interacting dark sectors with light vector mesons

Cosmological arguments prefer $m_{DM} \sim 100-150 \text{ MeV}$

Existing searches and constraints on similar models often consider a much higher mass range (except BC) \rightarrow This is an unexplored model

Open questions:

Strongly interacting dark sectors with light vector mesons

Cosmological arguments prefer $m_{DM} \sim 100-150 \text{ MeV}$

Existing searches and constraints on similar models often consider a much higher mass range (except BC) \rightarrow This is an unexplored model

Open questions:

• What is the lifetime of the light vector meson, and can we detect displaced vertices at Belle II?

Strongly interacting dark sectors with light vector mesons

Cosmological arguments prefer $m_{DM} \sim 100-150 \text{ MeV}$

Existing searches and constraints on similar models often consider a much higher mass range (except BC) \rightarrow This is an unexplored model

Open questions:

- What is the lifetime of the light vector meson, and can we detect displaced vertices at Belle II?
- What are the sensitivities at semi-visible jet searches?

Strongly interacting dark sectors with light vector mesons

Cosmological arguments prefer $m_{DM} \sim 100-150 \text{ MeV}$

Existing searches and constraints on similar models often consider a much higher mass range (except BC) \rightarrow This is an unexplored model

Open questions:

- What is the lifetime of the light vector meson, and can we detect displaced vertices at Belle II?
- What are the sensitivities at semi-visible jet searches?
- PYTHIA 8.3 HV module is used to simulate dark showers is it valid for sub-GeV dark pions?

Strongly interacting dark sectors with light vector mesons

Cosmological arguments prefer $m_{DM} \sim 100-150 \text{ MeV}$

Existing searches and constraints on similar models often consider a much higher mass range (except BC) \rightarrow This is an unexplored model

Open questions:

- What is the lifetime of the light vector meson, and can we detect displaced vertices at Belle II?
- What are the sensitivities at semi-visible jet searches?
- PYTHIA 8.3 HV module is used to simulate dark showers is it valid for sub-GeV dark pions?
- What could be the astrophysical signatures and/or bounds?

A QCD-like strongly interacting dark sector can have dark mesons (like π_D and ho_D)

- π_D are often the DM candidates of these theories
- But they cannot be the only DS particles as they will violate the relic abundance or BC constraints

Recent work established that π_D freeze out dominantly via $3\pi_D \rightarrow \pi_D \rho_D$ if $m_{\rho_D} < 2m_{\pi_D}$

- The vector meson will always appear in a confining SU(N) theory we just considered the case where it is light and there exists mixing with the SM (often assumed to ensure testable predictions)
- This enables the model to satisfy both the relic abundance and the BC constraints
- This ensures DS decays to SM which makes us optimistic for distinct signatures

 ho_D decays can give rise to displaced vertices and semi-visible jets

- These signatures are largely unexplored, especially at sub-GeV DM mass ranges

Backup slides

Lattice calculations

QCD modeling of hadron physics

P. Maris^{ab}and P.C. Tandy^b

^aDept. of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260

^bCenter for Nuclear Research, Dept. of Physics, Kent State University, Kent OH 44242

We review recent developments in the understanding of meson properties as solutions of the Bethe–Salpeter equation in rainbow-ladder truncation. Included are recent results for the pseudoscalar and vector meson masses and leptonic decay constants, ranging from pions up to $c\bar{c}$ bound states; extrapolation to $b\bar{b}$ states is explored. We also present a new and improved calculation of $F_{\pi}(Q^2)$ and an analysis of the $\pi\gamma\gamma$ transition form factor for both $\pi(140)$ and $\pi(1330)$. Lattice-QCD results for propagators and the quark-gluon vertex are analyzed, and the effects of quark-gluon vertex dressing and the three-gluon coupling upon meson masses are considered.

P. Maris and P. C. Tandy, Nucl. Phys. B Proc. Suppl. 161 (2006), 136–152, [nucl-th/0511017]

$$\xi \equiv \frac{m_{\pi_D}}{f_{\pi_D}} = 7.79 \, \frac{m_{\pi_D}}{m_{\rho_D}} + 0.57 \left(\frac{m_{\pi_D}}{m_{\rho_D}}\right)^2$$

Collaborative Research Center TRR 257

Backup slides

Bullet Cluster constraints

THE MISMEASURE OF MERGERS: REVISED LIMITS ON SELF-INTERACTING DARK MATTER IN MERGING GALAXY CLUSTERS

DAVID WITTMAN^{1,2}, NATHAN GOLOVICH¹, WILLIAM A. DAWSON³ Draft version December 13, 2018

ABSTRACT

In an influential recent paper, Harvey et al. (2015) derive an upper limit to the self-interaction cross section of dark matter ($\sigma_{\rm DM}/m < 0.47 \text{ cm}^2/\text{g}$ at 95% confidence) by averaging the dark matter-galaxy offsets in a sample of merging galaxy clusters. Using much more comprehensive data on the same clusters, we identify several substantial errors in their offset measurements. Correcting these errors relaxes the upper limit on $\sigma_{\rm DM}/m$ to $\leq 2 \text{ cm}^2/\text{g}$, following the Harvey et al. (2015) prescription for relating offsets to cross sections in a simple solid body scattering model. Furthermore, many clusters in the sample violate the assumptions behind this prescription, so even this revised upper limit should be used with caution. Although this particular sample does not tightly constrain self-interacting dark matter models when analyzed this way, we discuss how merger ensembles may be used more effectively in the future. We conclude that errors inherent in using single-band imaging to identify mass and light peaks do not necessarily average out in a sample of this size, particularly when a handful of substructures constitute a majority of the weight in the ensemble.

FIG. 1.— Schematic merger scenario: two subclusters have passed through each other, and the gas associated with each has slowed due to momentum exchange. This is observable as an offset between the star (i.e., galaxy) and gas positions, δ_{SG} . In analogy, any star-DM offset δ_{SI} may be attributed to momentum exchange between the DM halos and thus related to a cross section $\sigma_{\rm DM}/m$. Subcluster masses and gas densities may vary considerably.

Figure and description from D. Wittman, N. Golovich and W. A. Dawson (2017)

Nicoline Hemme, nicoline.hemme@kit.edu - Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Collaborative Research Center TRR 257 Particle Physics Phenomenology after the Higgs Discovery

See also: A. Robertson, R. Massey and V. Eke (2016) for similar discussions

Backup slides

Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to $138 \, {\rm fb}^{-1}$, collected with the CMS detector at the CERN LHC, at \sqrt{s} = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z' mediator produced as a resonance in proton-proton collisions. The mediator decay results in two "semivisible" jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z' boson has a universal coupling of 0.25 to the SM guarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5-4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.

https://link.springer.com/article/10.1007/JHEP06(2022)156

CMS Search

Nicoline Hemme, nicoline.hemme@kit.edu - Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

Collaborative Research Center TRR 257