From Factorisation to Cross Section Predictions

The 2024 Annual Meeting of the CRC TRR 257 "Particle Physics Phenomenology after the Higgs Discovery", 12th March 2024

Projects Bla, Blb and Ble

M. Czakon **RWTH Aachen University**

2

• B1a: Bell, Czakon, Melnikov

N3LO QCD predictions for production cross sections of colourless systems in association

with a resolved jet

- B1b: Czakon, Heinrich, Worek Precision top-quark physics at the LHC
- B1e: Bell, Czakon, Melnikov Power corrections in collider processes

• In this talk:

results from Aachen since last Annual Meeting including some results "in-between projects"

Power-Suppressed Effects

Subleading Soft-Gluon Effects at 1-Loop in QCD

-
- Necessity to include virtual collinear enhancements at higher orders noticed by [del Duca](https://doi.org/10.1016/0550-3213(90)90392-Q) (1990)
- Extension to tree-level QCD described in [1404.5551,](https://arxiv.org/abs/1404.5551) [1406.6987,](https://arxiv.org/abs/1406.6987) [1406.6574](https://arxiv.org/abs/1406.6574)
- Why bother (if you don't like pure theory)?
	-
	- can be used to improve numerical stability in cross section calculations
- Classic problem: At leading power: eikonal approximation you need to calculate a soft current,
	- $\sum_{i=1}^{n}$ but at least the structure is understood ! $q \rightarrow 0$

• Structure at next-to-leading power understood at tree-level QED by [Low](https://doi.org/10.1103/PhysRev.110.974) (1958), [Burnett and Kroll](https://doi.org/10.1103/PhysRevLett.20.86) (1968)

• needed to obtain cross sections approximations at subleading power in different kinematic variables

4

Subleading Soft-Gluon Effects at 1-Loop in QCD

- Several attempts to understand one-loop QCD amplitudes (more results for photon emission):
	- based on SCET: [1412.3108](https://arxiv.org/abs/1412.3108), [1912.01585,](https://arxiv.org/abs/1912.01585) [2112.00018](https://arxiv.org/abs/2112.00018)
	- based on Feynman-diagram analysis: [1503.05156,](https://arxiv.org/abs/1503.05156) [1610.06842](https://arxiv.org/abs/1610.06842)
- Complete characterisation in Czakon, Eschment, Schellenberger, [JHEP 12 \(2023\) 126](https://doi.org/10.1007/JHEP12(2023)126)

$$
\begin{split} M_g^{(1)}(\{p_i+\delta_i\},q) \Big\rangle & = \mathbf{S}^{(0)}(\{p_i\},\{\delta_i\},q) \,\,\Big|M^{(1)}(\{p_i\}) \Big\rangle \\ & + \mathbf{S}^{(1)}(\{p_i\},\{\delta_i\},q) \,\,\Big|M^{(0)}(\{p_i\}) \Big\rangle + \int_0^1 \mathrm{d} x \sum_i \mathbf{J}_i^{(1)}(x,p_i,q) \,\Big| H_{g,i}^{(0)}(x,\{p_i\},q) \Big\rangle \\ & + \sum_{i\neq j} \sum_{\substack{\tilde{a}_i\neq a_i \\ \tilde{a}_j\neq a_j}} \tilde{\mathbf{S}}^{(1)}_{a_ia_j\leftarrow \tilde{a}_i \tilde{a}_j,\,ij}(p_i,p_j,q) \,\,\Big|M^{(0)}(\{p_i\}) \, \Big| \, a_i\rightarrow \tilde{a}_i \Big\rangle + \int_0^1 \mathrm{d} x \sum_{\substack{i \\ a_i=g}} \tilde{\mathbf{J}}_i^{(1)}(x,p_i,q) \,\Big| H_{\bar{q},i}^{(0)}(x,\{p_i\},q) \Big\rangle + \mathcal{O}(\lambda) \end{split}
$$

$$
\mathbf{P}_g(\sigma, c) \mathbf{S}^{(0)}(\{p_i\}, \{\delta_i\}, q) = -\sum_i \mathbf{T}_i^c \otimes \mathbf{S}_i^{(0)}(p_i, \delta_i, q, \sigma) \bigg| M^{(0)}(\{
$$

$$
\mathbf{S}_{i}^{(0)} = \frac{p_{i} \cdot \epsilon^{*}}{p_{i} \cdot q} + \frac{1}{p_{i} \cdot q} \bigg[\left(\epsilon^{*} - \frac{p_{i} \cdot \epsilon^{*}}{p_{i} \cdot q} q \right) \cdot \delta_{i} + p_{i} \cdot \epsilon^{*} \sum_{j} \delta_{j} \cdot \partial_{j} + \frac{1}{2} F_{\mu\nu} \left(J_{i}^{\mu\nu} - \mathbf{K}_{i}^{\mu\nu} \right) \bigg]
$$

 $\{p_i\})$

5

• Exact evaluation of convolutions in the general case through products of tree-level amplitudes

- Tree-level subleading collinear asymptotics
- General proof of correctness via expansion-by-regions

Subleading Soft-Gluon Effects at 1-Loop in QCD

6

Czakon, Eschment, Schellenberger, [JHEP 12 \(2023\) 126](https://doi.org/10.1007/JHEP12(2023)126)

• Unexpected simplicity of contributions due to virtual collinear singularities

$$
\begin{aligned} \mathbf{P}_g(\sigma, c) \, \mathbf{J}^{(1)}_i(x, p_i, q) \; &= \frac{\Gamma(1+\epsilon)}{1-\epsilon} \bigg(-\frac{\mu^2}{s_{iq}} \bigg)^{\epsilon} \big(x(1-x) \big)^{-\epsilon} \epsilon^*(q, p_i, \sigma) \cdot \epsilon(p_i, -\sigma) \sum_{c'} \mathbf{P}_g(-\sigma, c') \\ & \times \left[\bigg(\mathbf{T}^c_i \mathbf{T}^{c'}_i + \frac{1}{x} i f^{cdc'} \mathbf{T}^d_i \bigg) \otimes \big(-2 + x \big(1 + \boldsymbol{\Sigma}_{g,i} \big) \big) \right] \end{aligned}
$$

• Numerical checks demonstrating potential gains in numerical stability in applications

7

Czakon, Eschment, Schellenberger, [JHEP 12 \(2023\) 126](https://doi.org/10.1007/JHEP12(2023)126)

Jet Cross Sections at NNLO

[Transverse Energy-Energy Correlations at ATLAS](https://arxiv.org/pdf/2301.09351.pdf)

 $\sigma_j = \frac{1}{N} \sum_{A=1}^N \sum_{ij} \frac{E^A_{\text{Ti}} E^A_{\text{T}j}}{\left(\sum_k E^A_{\text{Tk}}\right)^2} \delta(\cos\phi - \cos\varphi_{ij})$

• TEEC : transverse-energy-weighted distribution of the azimuthal differences between jet pairs in the final state:

$$
\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} \equiv \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma}{dx_{Ti} dx_{Tj} d\cos\phi} x_{Ti} x_{Tj} dx_{Ti} dx_{Tj}
$$

• ATEEC : difference between the forward (cos $\phi > 0$) and the backward (cos ϕ < 0) part of the TEEC function

$$
\frac{1}{\sigma} \frac{d\Sigma^{\text{asym}}}{d\cos\phi} = \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi}\bigg|_{\phi} - \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi}\bigg|_{\pi-\phi}
$$

9

[ATLAS, JHEP 07 \(2023\) 85](https://arxiv.org/pdf/2301.09351.pdf) Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet, [JHEP 03 \(2023\) 129](https://doi.org/10.1007/JHEP03(2023)129)

Transverse Energy-Energy Correlations at ATLAS

ATLAS JHEP 07 (2023) 85

Particle-level TEEC

 \sqrt{s} = 13 TeV; 139 fb⁻¹

anti- $k_$, R = 0.4

 $p_{T} > 60$ GeV

 $|\eta|$ < 2.4

 $\mu_{R,F}^{}=\mathsf{P}_{T}^{}$

 $\alpha_{\rm s}(m_{7}) = 0.1180$

MMHT 2014 (NNLO)

 \rightarrow Data

 $---LO$

$$
\left\| \cdot \right\|
$$
 NLO

NNLO

[Transverse Energy-Energy Correlations at ATLAS](https://arxiv.org/pdf/2301.09351.pdf)

11

[ATLAS-CONF-2020-025](https://cds.cern.ch/record/2725553/files/ATLAS-CONF-2020-025.pdf) NLO QCD

[ATLAS, JHEP 07 \(2023\) 85](https://arxiv.org/pdf/2301.09351.pdf) NNLO QCD

Isolated *γ* **+ di-jet at NNLO in QCD**

Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia, [JHEP 10 \(2023\) 071](https://arxiv.org/abs/2304.06682)

- Highlight: first complete $2 \rightarrow 3$ process with full-color virtual amplitudes
- Analysis matching ATLAS measurements from JHEP 03 (2020) 179

• Unwanted dominant source of photons: hadron decays ⇒ remove by judicious cuts

- Very interesting comparison: ATLAS used SHERPA predictions for reference
	- NLO-matched QCD parton-shower merged with LO photon+four-jet samples
	- In principle this corresponds to the double-real radiation contributions in the NNLO QCD predictions
	- $E_{\perp}(\gamma)$ used for renormalisation and factorisation scale *E*⊥(*γ*)
- Why is this process interesting otherwise?
	- Non-back-to-back Born configurations

 \rightarrow access to angular correlations between the photon and jets

- Access to different kinematic regimes through distinguishable photon \rightarrow enhance direct, high- or low-z fragmentation
- Background process for BSM: $pp \rightarrow \gamma + Y(\rightarrow jj)$

 $\gamma)+p_T(j_1)+p_T(j_2)$ and

Isolated *γ* **+ di-jet at NNLO in QCD**

Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia, [JHEP 10 \(2023\) 071](https://arxiv.org/abs/2304.06682)

• Scale choice:

$$
\mu_R = \mu_F = H_T = E_{\perp}(\gamma)
$$

$$
\mu_R = \mu_F = E_{\perp}(\gamma)
$$
,

- Transverse photon energy
	- 1. NNLO corrections from 1% to 10%
	- 2. Improved description of data up to 1 TeV
	- 3. Larger scale uncertainties with the $E_{\perp}(\gamma)$ scale in the inclusive phase space
	- 4. Large experimental uncertainties beyond 1 TeV
	- 5. Default SHERPA predictions with merging are a poor description with large uncertainties

Isolated *γ* **+ di-jet at NNLO in QCD**

Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia, [JHEP 10 \(2023\) 071](https://arxiv.org/abs/2304.06682)

15

Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia, [JHEP 10 \(2023\) 071](https://arxiv.org/abs/2304.06682)

• Negligible size of the subleading color corrections

 $t\bar{t}$ + X Cross Sections at NLO

Full Off-Shell Predictions

- Modelling of unstable particles \Rightarrow *ttWj* production @ $\mathcal{O}(\alpha_s^4 \alpha^6)$
	- ✴ *Full off-shell = DR + SR + NR + interferences + BW propagators*
	- ✴ NWA = DR restricts unstable *t & W* to on-shell states

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b \bar{b} j + X$

Bi, Kraus, Reinartz & Worek [JHEP09 \(2023\) 026](https://doi.org/10.1007/JHEP09(2023)026)

Additional Jet Activity in ttW Production

Bi, Kraus, Reinartz & Worek [JHEP09 \(2023\) 026](https://doi.org/10.1007/JHEP09(2023)026)

- NLO cross section for both processes as function of number of resolved jets $N_j \Leftrightarrow$ Resolved jets that pass all cuts
	-
	- ✴ Observed large scale dependence for exclusive NLO samples
	- ✴ Gives rise to concern as jet vetoes are widely used in experimental analyses @ LHC

(μ_R,μ_F)	$\sigma_{H_T/2}^{t\bar{t}W^+j}(N_j=1)$ [ab]	$\sigma_{H_T/2}^{t\bar t W^+j} (N_j=2)$ [ab]	$\sigma_{H_T/2}^{t\bar{t}W^+j}(N_j \geq 1)$ [ab]	(μ_R,μ_F)	$\sigma_{H_T/2}^{t\bar{t}W^+}(N_j=0)$ [ab]	$\sigma_{H_T/2}^{t\bar{t}W^+}(N_j=1)$ [ab]	$\sigma_{H_T/2}^{t\bar{t}W^+}(N_j\geq 0)$ [
(μ_0,μ_0)	$78.6_{\,-48\%}^{\,+13\%}$	$63.7 {+56\%}\atop{-34\%}$	$142.3^{\,+1.4\%}_{\,-8.1\%}$	(μ_0,μ_0)	$104.6_{\,-44\%}^{\,+20\%}$	$141.9_{-27\%}^{+41\%}$	$246.4^{\,+5.0\%}_{\,-7.0\%}$
(μ_R,μ_F)	$\delta \sigma_{H_T/2}^{t\bar t W^+j} (N_j=1)$ [ab]	$\delta\sigma_{H_T/2}^{t\bar t W^+j} (N_j=2)~\mathrm{[ab]}$	$\delta \sigma_{H_T/2}^{t\bar{t}W^+j}(N_j \geq 1)$ [ab]	(μ_R, μ_F)	$\delta \sigma_{H_T/2}^{t\bar{t}W^+}(N_j=0)$ [ab]	$\delta \sigma_{H_T/2}^{t\bar{t}W^+}(N_j=1)$ [ab]	$\delta\sigma_{H_T/2}^{t\bar{t}W^+}(N_j\geq 0)$
$(2\mu_0,2\mu_0)$	$+9.9\,(+13\%)$	$-21.4(-34\%)$	$-11.5(-8.1\%)$	$(2\mu_0, 2\mu_0)$	$+21.1(+20\%)$	$-38.4(-27%)$	$-17.2(-7.0\%$
$(\mu_0/2,\mu_0/2)$	$-37.4(-48%)$	$+35.7\,(+56\%)$	$-1.6(-1.1\%)$	$(\mu_0/2,\mu_0/2)$	$-45.7(-44\%)$	$+58.1(+41\%)$	$+12.4(+5.0\%$
$(2\mu_0,\mu_0)$	$+9.0\,(+11\%)$	$-18.0(-28%)$	$-9.0(-6.3\%)$	$(2\mu_0,\mu_0)$	$+19.1(+18\%)$	$-32.3(-23%)$	$-13.2(-5.3\%$
$(\mu_0/2,\mu_0)$	$-28.7(-37%)$	$+27.8(+44%)$	$-0.9(-0.6\%)$	$(\mu_0/2, \mu_0)$	$-40.0(-38\%)$	$+46.6(+33%)$	$+6.6 (+2.7%)$
$(\mu_0, 2\mu_0)$	$+3.5\,(+4.5\%)$	$-4.8(-7.5%)$	$-1.2(-0.8\%)$	$(\mu_0, 2\mu_0)$	$+4.1(+3.9\%)$	$-7.8(-5.5\%)$	$-3.8(-1.5\%)$
$(\mu_0,\mu_0/2)$	$-3.5\,(-4.5\%)$	$+5.5(+8.6\%)$	$+2.0(+1.4\%)$	$(\mu_0,\mu_0/2)$	$-3.1\,(-2.9\%)$	$+8.7(+6.1\%)$	$+5.6 (+2.3\%)$

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_u \tau^+ \nu_\tau b \bar{b} j + X$

NLO *ttW & ttWj*

 $*$ Inclusive NLO results for $pp \to e^+\nu_e\mu^-\bar{\nu}_\mu\tau^+\nu_\tau b\bar{b}j+X$ & $pp \to e^+\nu_e\mu^-\bar{\nu}_\mu\tau^+\nu_\tau b\bar{b}+X$ have expected reduced theoretical uncertainties

$$
pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b \bar{b} + X
$$

Additional Jet Activity in ttW Production

Bi, Kraus, Reinartz & Worek [JHEP09 \(2023\) 026](https://doi.org/10.1007/JHEP09(2023)026)

Photons in Production & Decays

 $pp \rightarrow \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell b \bar{b} \gamma \gamma$

$$
d\sigma_{\text{Full}} = d\sigma_{t\bar{t}\gamma\gamma} \times \frac{d\Gamma_t}{\Gamma_t} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_t} + d\sigma_{t\bar{t}\gamma} \times \left(\frac{d\Gamma_{t\gamma}}{\Gamma_t} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_t} + \frac{d\Gamma_t}{\Gamma_t} \times \frac{d\Gamma_{\bar{t}\gamma}}{\Gamma_t}\right) + d\sigma_{t\bar{t}} \times \left(\frac{d\Gamma_{t\gamma\gamma}}{\Gamma_t} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_t} + \frac{d\Gamma_t}{\Gamma_t} \times \frac{d\Gamma_{\bar{t}\gamma\gamma}}{\Gamma_t} + \frac{d\Gamma_{t\gamma}}{\Gamma_t} \times \frac{d\Gamma_{\bar{t}\gamma}}{\Gamma_t}\right).
$$

• Integrated fiducial cross-section level @ NLO in QCD

 $p_{T, b}$ > 25 GeV, $p_{T, \gamma}$ > 25 GeV:

Stremmer, Worek [JHEP08 \(2023\) 179](https://doi.org/10.1007/JHEP08(2023)179)

NLO *tt*

- ✴ *Mixed contribution* at the level of *44%*
- ✴ *Prod. contribution* at the level of *40%*
- ✴ *Decay contribution* is about half the size *16%*
- Differential fiducial cross-section level
- ✴ Various phase-space regions with various effects

NLO *tt*

• For *lepton + jet* channel additional cut needed

Stremmer, Worek [JHEP08 \(2023\) 179](https://doi.org/10.1007/JHEP08(2023)179)

- Suppress kinematical configurations from real radiation
- ✴ Jets originating from *W* recombined into single jet
- ✴ Extra jet from real radiation gives rise to second jet

$$
|m_W - M_{jj}| < Q_{\text{cut}} = 15 \,\text{GeV}
$$

Photons in Production & Decays

 pp → ℓ^- ^{*ν*} ℓ *jj bb* γγ

$$
d\sigma_{\text{Full}} = d\sigma_{t\bar{t}\gamma\gamma} \times \frac{d\Gamma_{t}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_{t}} + d\sigma_{t\bar{t}\gamma} \times \left(\frac{d\Gamma_{t\gamma}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_{t}} + \frac{d\Gamma_{t}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}\gamma}}{\Gamma_{t}}\right) + d\sigma_{t\bar{t}} \times \left(\frac{d\Gamma_{t\gamma\gamma}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_{t}} + \frac{d\Gamma_{t}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}\gamma\gamma}}{\Gamma_{t}} + \frac{d\Gamma_{t\gamma}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}\gamma}}{\Gamma_{t}}\right).
$$

NLO *tt*

22

Stremmer, Worek [JHEP08 \(2023\) 179](https://doi.org/10.1007/JHEP08(2023)179)

Photons in Production & Decays

 pp → ℓ^- *ν*_{ℓ} *jj* $b\bar{b}$ γγ

$$
d\sigma_{\text{Full}} = d\sigma_{t\bar{t}\gamma\gamma} \times \frac{d\Gamma_{t}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_{t}} + d\sigma_{t\bar{t}\gamma} \times \left(\frac{d\Gamma_{t\gamma}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_{t}} + \frac{d\Gamma_{t}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}\gamma}}{\Gamma_{t}}\right) + d\sigma_{t\bar{t}} \times \left(\frac{d\Gamma_{t\gamma\gamma}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}}}{\Gamma_{t}} + \frac{d\Gamma_{t}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}\gamma\gamma}}{\Gamma_{t}} + \frac{d\Gamma_{t\gamma}}{\Gamma_{t}} \times \frac{d\Gamma_{\bar{t}\gamma}}{\Gamma_{t}}\right).
$$

Integrated fiducial cross-section level @ NLO in QCD with $\mathcal C$ without $\lfloor m_W - M_{jj} \rfloor < Q_{\text{cut}} = 15 \,\text{GeV}$

 $p_{T,b}$ > 25 GeV, $p_{T,j}$ > 25 GeV, $p_{T,\gamma}$ > 25 GeV:

- $*$ *Prod. contribution* at the level of 48% \leftrightarrow 40%
- $*$ *Mixed contribution* at the level of $40\% \approx 43\%$
- \star *Decay contribution* is about half the size 12% \Rightarrow 17%

The N3LO Project

24

- Phenomenology of di-boson final states: *γγ*, *W*+*W*−, *ZZ*, *W*±*γ*, *Zγ*
- Predicitions for: X + jet, $X \in \{\gamma, W^{\pm}, Z, H\}$
- 8 Clean • Methodology following the project: N-jettiness slicing $\rm q'(\bar q')$ $\overline{q}'(q')$ Beam functions for N-jettiness at N3LO in perturbative QCD Baranowski, Behring, Melnikov, Tancredi, Wever, [JHEP 02 \(2023\) 073](https://doi.org/10.1007/JHEP02(2023)073) One-loop corrections to the double-real emission contribution to the zero-jettiness soft function at N3LO in QCD Baranowski, Delto, Melnikov, Pikelner, Wang, [2401.05245](https://arxiv.org/abs/2401.05245) N-jettiness soft function at next-to-next-to-leading order in perturbative QCD Agarwal, Melnikov, Pedron, [2403.03078](https://arxiv.org/abs/2403.03078)
- How about a proper subtraction scheme? Need limits of amplitudes Revisiting the double-soft asymptotics of one-loop amplitudes in massless QCD Czakon, Eschment, Schellenberger, [JHEP 04 \(2023\) 065](https://doi.org/10.1007/JHEP04(2023)065)

Ambitious Plans

Conclusions

Achievements since last Annual Meeting

bosons, top quarks and jets in the final state at NLO and NNLO

• Theoretical progress on factorisation in QCD

• Substantial progress towards N3LO-precise predictions that will soon

be reflected in publications

• Many results for phenomenologically relevant processes with gauge

