

The physics landscape

at a future e^+e^- collider

Stefan Dittmaier universität-freiburg

Table of contents

The big questions – what can future e^+e^- colliders provide? Mysteries within the SM – portals to new physics? SM precision pushed to the extreme – feasibility? Future collider – to be or not to be?

Table of contents

The big questions – what can future e^+e^- colliders provide?

- Mysteries within the SM portals to new physics?
- SM precision pushed to the extreme feasibility?
- Future collider to be or not to be?

The big questions of particle physics in brief:

- Spectrum & properties of fundamental particles?
- Unification of forces?
- Origin of mass / mechanism of electroweak symmetry breaking?
- Limitations of the Standard Model (SM)?
- Nature & properties of neutrinos?
- Nature of Dark Matter?
- Sources of CP violation? (to explain matter-antimatter symmetry in the Universe)
- Nature of Dark Energy?

The big questions of particle physics in brief:

- Spectrum & properties of fundamental particles?
- Unification of forces?
- Origin of mass / mechanism of electroweak symmetry breaking?
- Limitations of the Standard Model (SM)?
- Nature & properties of neutrinos?
- Nature of Dark Matter?
- Sources of CP violation?

(to explain matter-antimatter symmetry in the Universe)

Nature of Dark Energy?

 \dots require solutions outside the SM!

The big questions of particle physics in brief:

- Spectrum & properties of fundamental particles?
- Unification of forces?
- Origin of mass / mechanism of electroweak symmetry breaking?
- Limitations of the Standard Model (SM)?
- Nature & properties of neutrinos?
- Nature of Dark Matter?
- Sources of CP violation?

(to explain matter-antimatter symmetry in the Universe)

Nature of Dark Energy?

 \dots require solutions outside the SM!

Which windows may be opened by future $\mathrm{e^+e^-}$ colliders?

The Standard Model

The Standard Model and ideas for extensions

S.Dittmaier The physics landscape at a future e⁺e⁻ collider CRC Annual Meeting, KIT, 2024 8

Searches for heavy particles and their implications

Heavy-particle searches at ATLAS ...

"Only a selection of the available mass limits on new states or phenomena is shown | Small-radius (large-radius) jets are denoted by the letter j (J).

Searches for heavy particles and their implications SUSY-particle searches at ATLAS ...

	Model	s	ignatur	e j	(4 (B)	'n		N	lass lim	it							Referenc	e
	$\bar{q}\bar{q},\bar{q}\rightarrow q\bar{t}_{1}^{0}$	0 v. µ mano-jet	2-6 jets 1-3 jets	En a	140 140	4 (1K.8 4 (5K.0	Ex Deget.]				0.9		1.85		nd)-4 nic-mil	vecer Vecer	2010.14280 2102.10870	
	13.2-4497	0 e. µ	2-6 jets	$E_{T}^{\rm min}$	140	2							1.15-1.95	2.3	e0.1	-cdav veces	2010.1428	
ε.	12.2-10/25 ²	14.0	2-6 jets		140									2.2	ei.)	moder/	2101.01628	
È.	12.1-40000	ee.pp	2 jets	E_T^{min}	140	£								2.2	n(1)-1	100 day	2204 13373	
ŝ.	13.2-499W2X1	9.4.4 55.4.4	7-11 jets 6 jets	k_7^{mm}	140	£						1.15	1.90		ഷ്ട്രി പ ല്ലെബ്റ്റിപ്പ്	Ve0 30	2008.06033 2307.010H	
5	10.1-17 ⁰	0-1 x.µ 55 x.µ	3.5 6 jets	k_7^{\min}	140 140	1						1.25		2.45	n(2)-0(2)-3	as dav as dav	2211.08008 1908-0845	
	<i>b</i> ₁ <i>b</i> ₁	0 e. µ	2.5	E_{7}^{\min}	140	5. 51					1.68	1.255			ndija 120eranis Ju	as davi zs davi	2101.12527 2101.12527	
5	$\hat{b}\hat{c}\hat{b}\hat{c},\hat{b}\hat{c}\!\rightarrow\!k\hat{k}_{2}^{0}\rightarrow kk\hat{k}_{1}^{0}$	0.r.µ 21	65 25	E.	140 140	á, á,	Farbia	dden			0.13-0.85	0.22-1.25		AND	2.43-130 Dec editi-1	as day	1908-03123 2123-08189	
3	K.C. Kand	0.1 m.m	21.00	Enter	140	5						1.05		-		-1.044	2006.14060.2212	02799
8	$5.6, 5 \rightarrow \#36^{\circ}$	14.4	3 jets/1 ii	Er	140	4				dde t	1.	15			#1.1d	as day	2212.63798, ATLAS-CO	NF-2023-043
ð.	$\bar{n}\bar{n}, \bar{n} \rightarrow h l \nu, n \rightarrow r \bar{G}$	1-2 /	2 jets/1 i/	E_T^{min}	140	P4				1	arbidden .	1./	6		m(r,)=8	W600	2108.07868	
ŝ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \epsilon \tilde{K}_1^{\alpha} / 2\tilde{\tau}, \tilde{\tau} \rightarrow \epsilon \tilde{K}_1^{\alpha}$	0×,µ 0×,µ	mono-jet	5- 1-7-	26.1 140	×				0.55	0.85				86,2963	-6GeV -6GeV	1825.0168	
	$\hat{n}\hat{n}, \hat{n} \rightarrow c\hat{k}_{2}^{0}, \hat{k}_{2}^{0} \rightarrow Z/k\hat{k}_{1}^{0}$ $\hat{n}\hat{n}, \hat{n} \rightarrow \hat{n} + Z$	1-2 x.µ 3 x.µ	14.8	F7 F7	140	ñ à				lánn	0.06	-1.18		=0	ndîjan Hîteri tan Nebera	as dev as dev	2006.05880	
	$\hat{x}_1^*\hat{x}_2^0$ via WZ	Multiple (/jet	5 L M	Film.	140	8.11					0.96				- Andrew	nesins	2106.01676, 2108	1.07586
	itit va ww	2		(min	140	11.00			0.47						and the second s	no-hito	1000.00110	
	FTFT of a Will	Multiple (/jet		67min	140	8.16.	Forbidden				1.	66			million 20 GeV w	nesina	2004.10894, 2108	07586
	$\hat{X}_{1}^{\dagger}\hat{X}_{1}^{\dagger}$ via \hat{I}_{L}/\hat{v}	20.0		sig-	140	84					1.1	5			m(1)=0.5(m(1))	-10(1)	1908.08218	
8	$17, T \rightarrow t \overline{K}_1^0$	27		E_T^{min}	140	A . (Pg. 4	hul -		0.34 0	48						15.4	ATLAS-CONF-202	23-029
3	$l_{1,k}l_{1,k}$, $l \rightarrow \ell l_1^{\prime\prime}$	24,4	0 jets	E.	140	2		0.04			0.7				-	45.4	1908.08218	
	88.8-10/20	0.4.4	1.14	(min	140			0.20			0.94				serve -	10000	The second	
		44,0	6 jets	R.	140	8				0.55	0.04				890	201-1	2123.11684	
		0,, 4	2 large jet	8 £3/m	140	<i>i</i> r					0.45-0.93				and, -	20)+1	2108.07586	
		20.0	22,008	k7	140	łł.					0.77	_			$BR(C_i \rightarrow ZC) - BR(C_i \rightarrow C)$	id)+6.5	2004.130.0	
ł	Direct \$1\$1 prod., long-lived \$1	Disapp. trk	1 jat	E_7^{min}	140	1	0.2			6	.66				Putel	re Mina loggena	2201.02472 2201.02472	
ξ.	Stable ¿ R-hadron	pixel d£/dx		E_T^{min}	140	£							2.0	15			2225-06213	
8	Metastable ž R-hadron, ž—spįli	pixel d£idx		AT'	140	2 (*12)	=70 #42							2.2	##\$2+5	VeD 20	2225-06213	
ā.	<i>ll</i> , <i>l</i> → <i>tG</i>	Displ. lep		Eq:1	140	X, P					0.7				*(2)	0.1 66	2011.07812	
		pixel dE/dx		E_{T}^{\min}	140	:			0.36						-(1)	- 10/16	2206.06013	
	RRR^{0}_{1} , $R \rightarrow 2t \rightarrow ttt$	3 r. µ			140	s, s	SPOT 10-1.8	R(Ze)+1]		0.60	5 1.	85				re Mina	2011.10943	
	X [*] ₁ X [*] ₁ /X [*] ₂ → WW/2tittive	44,0	o jets	1.7°	140	87.04	1	10			0.95		1.55		ni Ga	VeD 20	2123.11484	
	$gg, g \rightarrow qqT_1, T_1 \rightarrow qqq$		Co JEL		140	2 947	plat day to	290 0910				ii.	1.8	2.30		-	To appear #Theo.com/E-th	18.071
	R Latt C and		2.40		140	1			Fath	ddin1	0.85				m(r)=200 GaV, 1	OS GeV	2010/01/01	
	$t_1t_1, t_1 \rightarrow 0 =$		2 jets + 2 /		26.7	Pa Lee. P	he]	_	0.42	0.6							1710-07171	
	$\tilde{s}_1 \tilde{s}_1, \tilde{s}_1 \rightarrow qd$	20.0	2.5 DV		26.1	Å Det	DC 2 514	18. 24. 200	-			0.4-1.4	16		BRGstarts	0.22%	1710-05544	
	Carl State and Carl	1.2	16.000			0	-		-						Bush	incoming.	2003-1199	
	A1142/A1.812-404.81-404		C = Jean		+40	- n - 1		0.24	**							-9910	2136.39408	

Searches for heavy particles and their implications

New particle(s) in the TeV mass range ...

- \blacktriangleright could not be directly investigated with a future e^+e^- collider, but it would be very difficult to directly argue for FCC-hh
- excluded at the LHC only if coupling to SM not suppressed (no small mixings, heavy mediators, or other suppression mechanisms)

 $\,\hookrightarrow\,$ weakly / feebly interacting particles of lower mass not ruled out

What to make out of this?

- The naysayer's nightmare: no new particle at the LHC, HL-LHC fully confirms SM completely, "everydone done", end of HEP.
 - $\,\hookrightarrow\,$ This line of thought is wrong and damaging!
- ► New Physics ⇒ new particles ⇒ good physics but the converse is not true!
 - $\,\hookrightarrow\,$ Good physics does not necessarily require new particles!
- HL-LHC will leave (some essential) questions open

The Standard Model

The Standard Model – establishing its dynamics (with precision)

multiple Higgs production

SM challenged via precision \rightarrow pushed to the extreme by future e^+e^- collider, sometimes e^+e^- can make a qualitative difference

SM only established after detailed precision studies of all couplings !

Table of contents

The big questions – what can future e^+e^- colliders provide?

Mysteries within the SM - portals to new physics?

SM precision pushed to the extreme - feasibility?

Future collider - to be or not to be?

Mystery Higgs sector

Snowmass 2021 US Community Study on the Future of Particle Physics

The SM Higgs Lagrangian (schematically) $\mathcal{L}_{\text{Higgs}} = |D\phi|^2 + (y_{jk}\overline{\psi}_j\psi_k\phi + \text{h.c.}) - V(\phi^{\dagger}\phi)$

(schematically)

$$\begin{array}{lll} \mathcal{L}_{\mathrm{Higgs}} &= & |D\phi|^2 & + & (y_{jk}\overline{\psi}_j\psi_k\phi + \mathrm{h.c.}) & - & V(\phi^{\dagger}\phi) \\ & & & \\ & &$$

The SM Higgs Lagrangian (schematically)

+

 $\mathcal{L}_{\mathrm{Higgs}} =$ $|D\phi|^2$

gauge interactions, HWW/HZZ couplings \hookrightarrow well tested after LHC

$$(y_{jk}\overline{\psi}_{j}\psi_{k}\phi + h.c.)$$

$$V(\phi^{\dagger}\phi)$$

Yukawa interactions, Hff, CKM matrix, LP \hookrightarrow studied since \sim 2018

"5th force"

(schematically)

+

$$\mathcal{L}_{\mathrm{Higgs}} = (D\phi)^2$$

gauge interactions, HWW/HZZ couplings \hookrightarrow well tested after LHC

$$(y_{jk}\overline{\psi}_{j}\psi_{k}\phi + h.c.)$$

Yukawa interactions, $H\bar{f}f$, CKM matrix, \mathcal{LP} \hookrightarrow studied since ~ 2018

"5th force"

"6th force"

(schematically)

+

 $\mathcal{L}_{\mathrm{Higgs}}$ $|D\phi|^2$ gauge interactions, HWW/HZZ couplings \hookrightarrow well tested after LHC

$$(y_{jk}\overline{\psi}_{j}\psi_{k}\phi + h.c.)$$

Yukawa interactions, $H\bar{f}f$, CKM matrix, $\mathcal{L}P$ \hookrightarrow studied since \sim 2018

"5th force"

"6th force"

Puzzles of the SM Higgs sector:

(schematically)

 $\mathcal{L}_{\mathrm{Higgs}} = \underbrace{|D\phi|^2}_{\text{gauge interactions,}} + \underbrace{|D\phi|^2}_{HWW/HZZ \text{ couplings}} + \\ \leftrightarrow \text{ well tested after LHC}$

$$(y_{jk}\overline{\psi}_{j}\psi_{k}\phi + h.c.)$$

Yukawa interactions, $H\bar{f}f$, CKM matrix, \mathcal{LP}' \hookrightarrow studied since ~ 2018

"5th force"

"6th force"

Puzzles of the SM Higgs sector:

• Yukawa part $y_{jk}\overline{\psi}_{j}\psi_{k}H$:

flavour puzzle, no obvious symmetry, only source of CP $\,$

(schematically)

$$(y_{jk}\overline{\psi}_{j}\psi_{k}\phi + h.c.)$$

Yukawa interactions, $H\bar{f}f$, CKM matrix, \mathcal{LP}' \hookrightarrow studied since ~ 2018

"5th force"

Puzzles of the SM Higgs sector:

• Yukawa part $y_{jk}\overline{\psi}_{i}\psi_{k}H$:

flavour puzzle, no obvious symmetry, only source of CP

• Higgs potential $V = V_0 - \mu^2 (v + H)^2 + \lambda (v + H)^4$:

$$\begin{array}{l} \blacktriangleright \ \mu^2 \propto M_{\rm H}^2 \sim 10^4 \, {\rm GeV^2} \ll \ M_{\rm Pl}^2 \sim 10^{36} \, {\rm GeV^2}, & {\rm hierarchy \ problem} \\ \\ \blacktriangleright \ \lambda(\mu_0) \ = \ 0 \ {\rm for} \ \mu_0 \sim 10^{10} \, {\rm GeV}, & {\rm metastability \ of \ the \ Universe} \\ \lambda(M_{\rm Pl}) \ \sim \ -0.01 & {\rm metastability \ of \ the \ Universe} \end{array}$$

$$\blacktriangleright V_{\min} = V_0 \underbrace{-\mu^2 v^2 + \lambda v^4}_{\sim -10^{45} \, \mathrm{J/m^3}} \sim \underbrace{\frac{\Lambda}{8\pi G} \sim 10^{-9} \mathrm{J/m^3}}_{\text{Dark Energy density}},$$

fine-tuning problem of cosmological constant Λ

Higgs couplings to the "real world" yet unkown!

 $\Rightarrow~{\rm e^+e^-}$ colliders offer great opportunity to complete the Higgs profile!

Prospects for measuring the Hee coupling

• dedicated run at $\sqrt{s} = M_{\rm H}$ after $\sqrt{s} = M_{\rm Z}$ and $\lesssim M_{\rm Z} + M_{\rm H}$

most promising final states:

- $$\begin{split} \mathrm{H} \rightarrow \mathrm{gg:} & \text{gluon tagging!} \\ (\varepsilon_\mathrm{g}, \varepsilon_{q \rightarrow \mathrm{g}}^{\mathrm{mistag}}) = (70\%, 1\%) \text{ assumed} \end{split}$$
- $$\label{eq:H} \begin{split} H \to WW^* \to \ell \nu_\ell + 2 jets: \\ \text{spin correlations exploited} \end{split}$$
- essential: energy monochromatisation $(\delta_{\sqrt{5}} = 4.1 \,\mathrm{MeV} \text{ assumed at } 10 \,\mathrm{ab^{-1}})$

 \hookrightarrow improvements?! (include polarization?)

- ▶ HH production not accessible for $\sqrt{s} < 400 \,\mathrm{GeV}$ (FCC-ee, CEPC) \leftrightarrow ILC / CLIC only e^+e^- colliders with HH production
- ▶ λ_{HHH} via single-H production requires higher-order EFT studies

Side comments on Effective Theories (EFTs) and coupling modifiers

- κ framework (rescaling Higgs couplings)
 - phenomenologically motivated reparametrization of data
 - not a measurement of Higgs couplings
 - \blacktriangleright resembles Higgs coupling strength only to $\sim 5\%$ level (EW corrs.)
 - \blacktriangleright projected precisions < 5% just reflect sensitivity of SM test
- ▶ SM Effective Theory (SMEFT) (SM \oplus dim-6 operators $\mathcal{O}_i^{(6)}$)
 - consistent theoretical framework
 - ▶ restricted to energies $E \ll \Lambda =$ scale of (decoupling) new physics
 - does not cover SM extensions with feebly interacing particles
 - good diagnostic tool to test SM (even if new physics is beyond SMEFT)
 - \blacktriangleright constraints on Wilson coefficients \rightarrow windows to new physics scale Λ

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \mathcal{O}(\Lambda^{-8}) \\ \left| \frac{c_{i}}{\Lambda^{2}} \right| < C_{\text{exp}} \Rightarrow \Lambda > \frac{|c_{i}|}{\sqrt{C_{\text{exp}}}} \qquad \begin{array}{c} \text{Higher precision (smaller } C_{\text{exp}}) \\ \Rightarrow \text{ larger } \Lambda ! \end{array}$$

(|c_i| depends on expectation for new physics $\rightarrow \mathcal{O}(4\pi), \mathcal{O}(1), \mathcal{O}(\alpha_{_{\mathrm{S}}}/\pi),$...?)

Gain in Λ from HL-LHC \rightarrow FCC-ee/hh:

Bernardi et al., 2203.06520

Examples beyond SMEFT: feeble interactions from mixing with SM fields Higgs mixing:

 \Rightarrow Precision measurements of SM-like Higgs couplings constrain α

Examples beyond SMEFT: feeble interactions from mixing with SM fields

Neutral-gauge-boson mixing:

$$\begin{array}{c} \text{SM-like Z boson,} \\ \text{coupling to SM particles reduced} \\ \propto \cos \gamma \sim 1 - \frac{1}{2}\gamma^2 + \dots \\ \hline \begin{pmatrix} A \\ Z \\ Z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & \cos \gamma & \sin \gamma \\ 0 & -\sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} c_{\mathrm{W}} & -s_{\mathrm{W}} & 0 \\ s_{\mathrm{W}} & c_{\mathrm{W}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B \\ W^0 \\ C \end{pmatrix}, \quad |\gamma| \ll 1 \\ \hline \\ \text{new Z' boson (heavy or light),} \\ \text{feebly coupled to SM particles} \\ \end{array}$$

 $\Rightarrow~$ EW precision observables constrain γ

Examples beyond SMEFT: feeble interactions from mixing with SM fields

Neutral-lepton mixing: (only schematically)

 \Rightarrow EW precision observables help to constrain θ_k

Typically in type-1 seesaw:

$$heta_k \propto rac{y_{
u,k} v_{
m EW}}{M}$$
 related to mass scale M of sterile neutrinos

New ATLAS/CMS analyses helping to constrain neutral-lepton mixing: W-boson branching ratios (mostly from $t\bar{t}$ events)

 $\hookrightarrow\,$ tension in LEP results not confirmed

Table of contents

The big questions – what can future e⁺e⁻ colliders provide? Mysteries within the SM – portals to new physics? SM precision pushed to the extreme – feasibility? Future collider – to be or not to be?

Status of (not only) EW precision physics in the (pre HL-)LHC era

Erler, Schott '19

Current precision: Future projections: typically \lesssim 1%, even $\sim 0.01-0.1\%$ in some cases promise improvements by 1–2 orders of magnitude \hookrightarrow ultimate challenge of the SM at future $\rm e^+e^-$ colliders

But: Can theory provide adequate predictions?

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

	experim	ental	accuracy	intrinsic theory uncertainty					
	current	ILC	FCC-ee	current	${\it current\ source}$	prospect			
$\Delta M_{\rm Z}[{ m MeV}]$	2.1	_	0.1						
$\Delta \Gamma_{\rm Z} [{\rm MeV}]$	2.3	1	0.1	0.4	$\alpha^3, \alpha^2 \alpha_{\rm s}, \alpha \alpha_{\rm s}^2$	0.15			
$\Delta \sin^2 \theta_{ m eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	$lpha^3, lpha^2 lpha_{ m s}$	1.5			
$\Delta R_{ m b} [10^{-5}]$	66	14	6	11	$lpha^3, lpha^2 lpha_{ m s}$	5			
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	$lpha^3, lpha^2 lpha_{ m s}$	1.5			

Theory requirements for Z-pole pseudo-observables:

needed:

- ◊ EW and QCD–EW 3-loop calculations
- $\diamond~1 \rightarrow 2$ decays, fully inclusive

problems:

- $\diamond~$ technical: massive multi-loop integrals, γ_5
- $\diamond~$ conceptual: pseudo-obs. on the complex Z-pole

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

	experim	nental	accuracy	intrinsic	th. unc.	parametr	ic unc.
	current	ILC	FCC-ee	current	prospect	prospect	source
$\Delta M_{\rm Z} [{ m MeV}]$	2.1	_	0.1				
$\Delta\Gamma_{\rm Z}[{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$\alpha_{ m s}$
$\Delta \sin^2 \theta_{ m eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\Delta \alpha_{\rm had}$
$\Delta R_{ m b}[10^{-5}]$	66	14	6	11	5	1	$lpha_{ extsf{s}}$
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	1.5	1.3	$lpha_{ extsf{s}}$

Parametric uncertainties of EW pseudo-observables:

► QCD:

 $\diamond~$ most important: $\delta \alpha_{\rm s} \sim$ 0.00015 @ FCC-ee?

 $\hookrightarrow \alpha_{\rm s} \text{ from EW POs competitive } \Rightarrow \text{cross-check with other results!} \\ \diamond \text{ quark masses } m_{\rm t}, \ m_{\rm b}, \ m_{\rm c}$

• $\Delta \alpha_{had}$: $\delta(\Delta \alpha_{had}) \sim 5(3) \times 10^{-5}$ for/from FCC-ee?

- $\diamond~$ new exp. results from BES III / Belle II on ${\rm e^+e^-} \rightarrow {\rm hadrons}$
- $\diamond \Delta \alpha_{\rm had}$ from fit to radiative return $e^+e^- \rightarrow \gamma + {\rm hadrons}$

• other EW parameters: $M_{\rm Z}$, $M_{\rm W}$, $M_{\rm H}$ less critical (improved at ILC/FCC-ee)

Homework for theory @ ${\rm Z}$ pole:

Full line-shape prediction to NNLO EW + leading effects beyond

- technical progress in 2- and multi-loop amplitudes/integrals
- conceptual progress in NNLO EW corrections (unstable particles!)
- improvements on leading ISR corrections beyond NNLO
- leading EW corrections beyond NNLO

Validity of pseudo-observable approach

- better field-theoretical foundation of Z-pole pseudo-observables (complex pole definition, absorptive parts, continuum subtraction)
- Improved Born Approximation (IBA) to parametrize line-shape via pseudo-obs.

(+ precise concept to treat non-resonant parts)

▶ careful validation of IBA against full $e^+e^- \rightarrow Z/\gamma \rightarrow f\bar{f}$ prediction

$\hookrightarrow \mathsf{Impact} \text{ on experimental analysis possible}$

(continuum subtraction, self-consistency conditions, etc.)

State-of-the-art prediction of σ_{WW} in LEP2 energy range Denner, S.D., 1912.06823

- ► IBA = based on leading-log ISR and universal EW corrections ($\Delta \sim 2\%$) \hookrightarrow shows large ISR impact near threshold (also by GENTLE)
- ▶ DPA = "Double-Pole Approximation" (leading term of resonance expansion) $\leftrightarrow \Delta \sim 0.5\%$ above threshold, not applicable at threshold RacoonWW, YFSWW
- "full" = full NLO prediction for $e^+e^- \rightarrow 4f$ via charged current _{Denner et al.} '05 + leading-log improvements for ISR beyond NLO
 - $\hookrightarrow \ \Delta \sim 0.5\% \ \text{everywhere}$

Triple-gauge couplings (TGC) analyses in $e^+e^- \rightarrow WW$

▶ e⁺e⁻ is ideal framework: no formfactors for damping required!

SMEFT framework:

sensitivity to dim-6 operators complementary to Higgs analyses Ellis, You '15

Theory homework for high-precision W-boson physics

- Exclusive analyses & predictions for $e^+e^- \rightarrow 4f$:
 - $\blacktriangleright~{\rm e}^{\pm}$ final states: proper treatment / separation of single-W channels
 - ▶ Hadronic final states: separation of multi-jet events (2j,3j,4j,...)
 - Full NLO e⁺e[−] → 4f prediction for each 4f type (interferences with ZZ and forward-e[±] channels)
 - more leading corrections beyond NLO
- σ_{WW} in threshold region:
 - full NNLO EFT calculation (only leading terms available)
 - leading 3-loop Coulomb-enhanced EFT corrections
 - $\blacktriangleright\,$ matching of all fixed-order $\mathrm{e^+e^-} \rightarrow 4f$ and threshold-EFT ingredients
 - \hookrightarrow Estimate of theory uncertainty:
 - $\Delta \sim 0.01 0.04\%$ for $\sigma_{\rm WW}$ @ threshold Freitas et al., 1906.05379
- For M_W analysis: Improved M_W prediction from μ decay
 - massive 3-loop computations (vacuum graphs, self-energies)

Higgs couplings analyses at present and future colliders

Higgs decay widths and Higgs couplings at ILC and FCC-ee

LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134; ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

	experim	ental acc	uracy	the	eory uncerta	param.	unc.	
	HL-LHC	ILC250	FCC-ee	current	source	prospect	prospect	source
${\rm H} \to {\rm b}\bar{\rm b}$	4.4%	2%	0.8%	0.4%	$\alpha_{\rm s}^{5}$	0.2%	0.6%	$m_{ m b}$
${\rm H} \to \tau \tau$	2.9%	2.4%	1.1%	0.3%	α^2	0.1%	neglig	ible
${\rm H} \to \mu \mu$	8.2%	8%	12%	0.3%	α^2	0.1%	neglig	ible
$\mathrm{H} \to \mathrm{gg}$	1.6% (prod.)	3.2%	1.6%	3.2%	$\alpha_{\rm s}^4$	1%	0.5%	$\alpha_{\rm s}$
${\rm H} \to \gamma \gamma$	2.6%	2.2%	3.0%	1%	α^2	1%	neglig	ible
${\rm H} \to \gamma {\rm Z}$	19%			5%	α	1%	0.1%	$M_{ m H}$
$\mathrm{H} \to \mathrm{WW}$	2.8%	1.1%	0.4%	0.5%	$\alpha_{\rm s}^2, \alpha_{\rm s}\alpha, \alpha^2$	0.3%	0.1%	$M_{ m H}$
$\mathrm{H} \to \mathrm{ZZ}$	2.9%	1.1%	0.3%	0.5%	$\alpha_{\rm s}^2, \alpha_{\rm s}\alpha, \alpha^2$	0.3%	0.1%	$M_{ m H}$

Note: e^+e^- colliders from $\sigma_{e^+e^- \rightarrow ZH}$ with *inclusive* Higgs decays!

 \Rightarrow Absolute normalization of Higgs BRs

Theory homework for high-precision Higgs physics

- ▶ Higgs off-shell effects: $\Gamma_{\rm H}/M_{\rm H} \sim 0.00003$ (compare: $\Gamma_{\rm Z}/M_{\rm Z} \sim 0.03$)
 - ► if Higgs fully reconstructable → isolation of Higgs pole via cuts → factorization of XS into production and decay parts
 - (straightforward check at LO and NLO) if Higgs not fully reconstructable (e.g. $H \rightarrow WW \rightarrow 2\ell 2\nu$)
 - \leftrightarrow inclusion of off-shell effects required (full off-shell NLO calculations)
- Multi-loop vertex corrections:
 - massive 2-loop vertex corrections (NNLO EW)
 - ▶ massless multi-loop corrections (4-/5-loop QCD for $m H
 ightarrow
 m b\bar{b}/
 m gg$)
- ▶ 2-loop corrections for $e^+e^- \rightarrow ZH, \nu\bar{\nu}H$:
 - full NNLO calculation for $\sigma_{\rm ZH}$
 - leading NNLO effects for σ_{νν̄H}
- Physics beyond the SM:
 - model independent: EFT approaches with higher-order corrections
 - specific models: full NLO studies (+beyond if relevant)
- \Rightarrow Major effort, but feasible!

Enormous challenges for theory!

Can theory provide adequate predictions?

My expectation: Yes.

 \ldots anticipating progress + support for young theorists

Table of contents

The big questions – what can future e^+e^- colliders provide Mysteries within the SM – portals to new physics? SM precision pushed to the extreme – feasibility? Future collider – to be or not to be?

Scenarios for new colliders:

- deeper exploration of a newly discovered phenomenon/particle
 - $\,\hookrightarrow\,\, {\rm Z}/{\rm W}$ physics at LEP after ${\rm W}/{\rm Z}$ discoveries at SPS
- no-lose theorem by theory arguments (new particle/phenomenon ahead)
 - $\,\hookrightarrow\,$ Higgs boson or new phenomenon at the LHC
- measurements in uncharted territory
 - $\hookrightarrow \ \text{deeper reach into microscopic distances}$
 - $\,\hookrightarrow\,$ access to rare and yet unobserved phenomena

Scenarios for new colliders:

deeper exploration of a newly discovered phenomenon/particle

 $\,\hookrightarrow\,\, {\rm Z/W}$ physics at LEP after ${\rm W/Z}$ discoveries at SPS

no-lose theorem by theory arguments (new particle/phenomenon ahead)

 $\,\hookrightarrow\,$ Higgs boson or new phenomenon at the LHC

Scenarios for new colliders:

deeper exploration of a newly discovered phenomenon/particle

 $\,\hookrightarrow\,\, {\rm Z/W}$ physics at LEP after ${\rm W/Z}$ discoveries at SPS

no-lose theorem by theory arguments (new particle/phenomenon ahead)

 $\,\hookrightarrow\,$ Higgs boson or new phenomenon at the LHC

 $\Rightarrow~$ There is a physics case for ILC/FCC-ee!

Scenarios for new colliders:

deeper exploration of a newly discovered phenomenon/particle

 $\,\hookrightarrow\,\, {\rm Z/W}$ physics at LEP after ${\rm W/Z}$ discoveries at SPS

no-lose theorem by theory arguments (new particle/phenomenon ahead)

 $\,\hookrightarrow\,$ Higgs boson or new phenomenon at the LHC

 $\Rightarrow~$ There is a physics case for ILC/FCC-ee!

+ long-term plan for FCC-hh at the high-energy frontier

Scenarios for new colliders:

deeper exploration of a newly discovered phenomenon/particle

 $\,\hookrightarrow\,\, {\rm Z/W}$ physics at LEP after ${\rm W/Z}$ discoveries at SPS

no-lose theorem by theory arguments (new particle/phenomenon ahead)

 $\,\hookrightarrow\,$ Higgs boson or new phenomenon at the LHC

 $\Rightarrow~$ There is a physics case for ILC/FCC-ee!

+ long-term plan for FCC-hh at the high-energy frontier

The problem are the scales in costs + resources + time + serious problems of humanity (environmental, political, existential) ...

Physics vision meets reality

- ethical questions: enormous costs, mankind has big essential problems Use big brains to solve more essential problems?
- technical realizability: unforeseen cost explosions, showstoppers?
- economic problems: energy consumption
- ecological/environmental aspects
 - $\,\hookrightarrow\,$ cost-effective construction + operation, minimize carbon footprint
- \Rightarrow Problems/concerns have to be taken seriously!
 - enter open discussions
 - work on solutions
 - ... and don't sell the physics case under price!

Unique selling points of high-energy physics

▶ fundamental research \rightarrow cultural asset

What are we made of? What rules the microcosm and the universe? ...

- $\,\hookrightarrow\,$ new collider = only known path to unambiguously identify new particles
- role model for collaborative effort
 - one big effort over many small (redundant) experiments/laboratories
 - masterstroke in management (riddle for managers in economy)
 - ► sociological success of non-profit driven international collaborations → turns down ethnical barriers
- pioneering roles in technology
 - "open-source attitude" (including the www development)
 - technical data analysis, ML/AI (lost against google et al.?)
 - technical spin-offs for industry
- educational aspects
 - ▶ fundamental physics research \rightarrow magnet in academic education
 - ideal educational platform for many academic + non-academic (!) areas
 - eduction = key to a better worldwide society!
- $\Rightarrow\,$ High-energy physics can be more than a "bubble" in the worldwide society?!

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? – No." (Hans Kühn, a multi-loop pioneer)

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? – No." (Hans Kühn, a multi-loop pioneer)

Car manufacturers have abandoned this name more than 100 years ago!

Standard Model 'S' (1913 - 1918

Standard's first entry into the Light Car Market and introduction to Mass Production

(http://www.standardregister.co.uk/id16.html)

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? – No." (Hans Kühn, a multi-loop pioneer)

Car manufacturers have abandoned this name more than 100 years ago!

Standard Model 'S' (1913 - 1918

Standard's first entry into the Light Car Market and introduction to Mass Production

(http://www.standardregister.co.uk/id16.html)

Conclusions?

- Standard Model = beautiful?
- Better namings?!

After all, the Higgs boson WAS "new physics".

Sell new aspects as NEW!

Extra slides

Typical prospects for future high-precision $\mathrm{e^+e^-}$ EW physics

EW PO @ ILC 1504.01726 (updated)

Higgs precision @ ILC/TLEP

Experimental errors and theory uncertainties

Experimental errors: systematic errors $\}$ \rightarrow LHC status + projections to HL/HE-LHC, ILC, FCC-ee statistical errors $\}$ \rightarrow LHC status + projections to HL/HE-LHC, ILC, FCC-ee

Theory uncertainties in predictions:

Intrinsic uncertainties due to missing higher-order corrections, estimated from

- generic scaling of higher order via coupling factors
- renormalization and factorization scale variations
- ▶ tower of known corrections, e.g. $\Delta_{\rm NNLO} \sim \delta_{\rm NLO}^2$ if $\delta_{\rm NLO}$ known
- different variants to include/resum leading higher-order effects

Parametric uncertainties due to errors in input parameters, induced by

- experimental errors in measurements
- theory uncertainties in analyses

Note:

Estimates of theory uncertainties often (too) optimistic in projections of exp. results...

$\Gamma_{\rm W}$ determination from energy scan @ WW threshold:

Simultaneous fit of M_W and Γ_W by scan of σ_{WW} :

- FCC-ee study: $_{1703.01626}$ 2-point fit (15 ab⁻¹): $M_{\rm W} = 0.41 \,{\rm MeV}, \ \Gamma_{\rm W} = 1.1 \,{\rm MeV}$
- CEPC study: 1812.09855
 3-point fit (2.6 ab^{-1}): $M_W = 1 MeV$, $\Gamma_W = 2.8 MeV$

WW production beyond LEP2 energy range

Fixed-order NLO + leading-log ISR prediction:

Note: large non-universal weak corrections + sizeable off-shell effects Achievable precision:

- $\blacktriangleright\,$ by full NLO for ${\rm e^+e^-} \rightarrow 4f$ + leading NNLO corrections + ISR resummation
- $\blacktriangleright\,$ estimate: $\Delta\sim 0.5\%$ in distributions ($\sim 1\%$ in tails) up to $\sqrt{s}\sim 1\,{\rm TeV}$