

The physics landscape

at a future e⁺e⁻ collider

Stefan Dittmaier universität freiburg

Table of contents

The big questions – what can future e^+e^- colliders provide? [Mysteries within the SM – portals to new physics?](#page-13-0) [SM precision pushed to the extreme – feasibility?](#page-38-0) [Future collider – to be or not to be?](#page-51-0)

Table of contents

The big questions – what can future e^+e^- colliders provide?

- [Mysteries within the SM portals to new physics?](#page-13-0)
- [SM precision pushed to the extreme feasibility?](#page-38-0)
- [Future collider to be or not to be?](#page-51-0)

The big questions of particle physics in brief:

- ▶ Spectrum & properties of fundamental particles?
- ▶ Unification of forces?
- ▶ Origin of mass / mechanism of electroweak symmetry breaking?
- ▶ Limitations of the Standard Model (SM)?
- ▶ Nature & properties of neutrinos?
- ▶ Nature of Dark Matter?
- ▶ Sources of CP violation?

(to explain matter–antimatter symmetry in the Universe)

▶ Nature of Dark Energy?

The big questions of particle physics in brief:

- ▶ Spectrum & properties of fundamental particles?
- ▶ Unification of forces?
- ▶ Origin of mass / mechanism of electroweak symmetry breaking?
- ▶ Limitations of the Standard Model (SM)?
- ▶ Nature & properties of neutrinos?
- ▶ Nature of Dark Matter?
- ▶ Sources of CP violation?

(to explain matter–antimatter symmetry in the Universe)

▶ Nature of Dark Energy?

... require solutions outside the SM!

The big questions of particle physics in brief:

- ▶ Spectrum & properties of fundamental particles?
- ▶ Unification of forces?
- ▶ Origin of mass / mechanism of electroweak symmetry breaking?
- ▶ Limitations of the Standard Model (SM)?
- ▶ Nature & properties of neutrinos?
- ▶ Nature of Dark Matter?
- ▶ Sources of CP violation?

(to explain matter–antimatter symmetry in the Universe)

▶ Nature of Dark Energy?

... require solutions outside the SM!

Which windows may be opened by future $\mathrm{e^{+}e^{-}}$ colliders?

The Standard Model

Physikalisches Institut

The Standard Model and ideas for extensions

S.Dittmaier The physics landscape at a future e^+e^- CRC Annual Meeting, KIT, 2024 8

Searches for heavy particles and their implications

Heavy-particle searches at ATLAS ...

*Only ^a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Searches for heavy particles and their implications

SUSY-particle searches at ATLAS ...

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Searches for heavy particles and their implications

New particle(s) in the TeV mass range ...

- ▶ could not be directly investigated with a future e^+e^- collider, but it would be very difficult to directly argue for FCC-hh
- ▶ excluded at the LHC only if coupling to SM not suppressed (no small mixings, heavy mediators, or other suppression mechanisms)

 \leftrightarrow weakly / feebly interacting particles of lower mass not ruled out

What to make out of this?

Physikalisches Institu

- ▶ The naysayer's nightmare: no new particle at the LHC, HL-LHC fully confirms SM completely, "everydone done", end of HEP.
	- \leftrightarrow This line of thought is wrong and damaging!
- ▶ New Physics \Rightarrow new particles \Rightarrow good physics but the converse is not true!
	- \leftrightarrow Good physics does not necessarily require new particles!
- \blacktriangleright HL-LHC will leave (some essential) questions open

The Standard Model

Physikalisches Institut

The Standard Model – establishing its dynamics (with precision)

multiple Higgs production

SM challenged via precision \rightarrow pushed to the extreme by future e^+e^- collider, sometimes $\mathrm{e}^+\mathrm{e}^-$ can make a qualitative difference

Physikalisches Institu

SM only established after detailed precision studies of all couplings !

Table of contents

The big questions – what can future e^+e^- colliders provide?

[Mysteries within the SM – portals to new physics?](#page-13-0)

[SM precision pushed to the extreme – feasibility?](#page-38-0)

[Future collider – to be or not to be?](#page-51-0)

Mystery Higgs sector Snowmass 2021 US Community Study on the Future of Particle Physics

The SM Higgs Lagrangian (schematically) $\mathcal{L}_{\text{Higgs}}$ = 2 + $(y_{jk}\overline{\psi}_j\psi_k\phi + \text{h.c.})$ - $V(\phi^{\dagger}\phi)$

$$
\mathcal{L}_{\text{Higgs}} = \underbrace{|D\phi|^2}_{\text{gauge interactions,}} + \underbrace{(y_{jk}\overline{\psi}_j\psi_k\phi + \text{h.c.})}_{\text{HWW}/HZZ couplings} - \underbrace{V(\phi^{\dagger}\phi)}_{\text{well tested after LHC}}
$$

 $\mathcal{L}_{\text{Higgs}}$ = $|D\phi|^2$

 g auge interactions, HWW/HZZ couplings \leftrightarrow well tested after LHC

+ $(y_{jk}\overline{\psi}_i\psi_k\phi + \text{h.c.})$

 $V(\phi^{\dagger}\phi)$

| {z } Yukawa interactions, $H\bar{f}f$, CKM matrix, $\mathcal{L}P$,→ studied since ∼ 2018

"5th force"

 $\mathcal{L}_{\text{Higgs}}$ = $|D\phi|^2$

 g auge interactions, HWW/HZZ couplings \leftrightarrow well tested after LHC

+ $(y_{jk}\overline{\psi}_i\psi_k\phi + \text{h.c.})$

| {z } Yukawa interactions, $H\bar{f}f$, CKM matrix, $\mathcal{L}P$,→ studied since ∼ 2018

"5th force"

"6th force"

 $\mathcal{L}_{\text{Higgs}}$ = $D\phi$ ² g auge interactions, HWW/HZZ couplings \leftrightarrow well tested after LHC

$$
+ \qquad (y_{jk}\overline{\psi}_j\psi_k\phi + \text{h.c.})
$$

| {z } Yukawa interactions, $H\bar{f}f$, CKM matrix, $\mathcal{L}P$,→ studied since ∼ 2018

"5th force"

"6th force"

Puzzles of the SM Higgs sector:

 $\mathcal{L}_{\text{Higgs}}$ = $|D\phi|^2$ g auge interactions, HWW/HZZ couplings \leftrightarrow well tested after LHC

$$
+ \qquad (y_{jk}\overline{\psi}_j\psi_k\phi + \text{h.c.})
$$

| {z } Yukawa interactions, $H\bar{f}f$, CKM matrix, $\mathcal{L}P$,→ studied since ∼ 2018

"5th force"

"6th force"

Puzzles of the SM Higgs sector:

 \blacktriangleright Yukawa part $y_{jk}\overline{\psi}_j\psi_kH$:

flavour puzzle, no obvious symmetry, only source of CP

 $\mathcal{L}_{\text{Higgs}}$ = $|D\phi|^2$ g auge interactions, HWW/HZZ couplings ,→ well tested after LHC + $(y_{jk}\overline{\psi}_j\psi_k\phi + \text{h.c.})$ | {z } Yukawa interactions, $H\bar{f}f$, CKM matrix, $\mathcal{L}P$,→ studied since ∼ 2018

Puzzles of the SM Higgs sector:

 \blacktriangleright Yukawa part $y_{jk}\overline{\psi}_j\psi_kH$:

Physikalisches In

flavour puzzle, no obvious symmetry, only source of CP

▶ Higgs potential $V = V_0 - \mu^2 (v + H)^2 + \lambda (v + H)^4$:

\n- $$
\mu^2 \propto M_H^2 \sim 10^4 \, \text{GeV}^2 \ll M_{\text{Pl}}^2 \sim 10^{36} \, \text{GeV}^2
$$
, hierarchy problem
\n- $\lambda(\mu_0) = 0$ for $\mu_0 \sim 10^{10} \, \text{GeV}$, metastability of the Universe
\n- $\lambda(M_{\text{Pl}}) \sim -0.01$
\n

"5th force"

$$
V_{\min} = V_0 \underbrace{-\mu^2 v^2 + \lambda v^4}_{\sim -10^{45} \text{ J/m}^3} \sim \underbrace{\frac{\Lambda}{8 \pi G} \sim 10^{-9} \text{ J/m}^3}_{\text{Dark Energy density}},
$$

fine-tuning problem of cosmological constant Λ

Higgs couplings to the "real world" yet unkown!

Physikalisches Instit

 \Rightarrow e^+e^- colliders offer great opportunity to complete the Higgs profile!

Physikalisches Institu

Prospects for measuring the Hee coupling

- after $\sqrt{s} = M_Z$ and $\leq M_Z + M_H$
- most promising final states:
	- $H \rightarrow gg$: gluon tagging! $(\varepsilon_{\text{g}}, \varepsilon_{q \to \text{g}}^{\text{mistag}}) = (70\%, 1\%)$ assumed
	- $H \to WW^* \to \ell \nu_{\ell} + 2$ jets: spin correlations exploited
- essential: energy monochromatisation $(\delta_{\sqrt s}=4.1\,\rm{MeV}$ assumed at $10\,\rm{ab^{-1}})$ \rightarrow improvements?! (include polarization?)

- ▶ HH production not accessible for \sqrt{s} < 400 GeV (FCC-ee, CEPC) \leftrightarrow ILC / CLIC only e^+e^- colliders with HH production
- \triangleright λ _{HHH} via single-H production requires higher-order EFT studies

Physikalisches Institu

Side comments on Effective Theories (EFTs) and coupling modifiers

- \triangleright κ framework (rescaling Higgs couplings)
	- ▶ phenomenologically motivated reparametrization of data
	- ▶ not a measurement of Higgs couplings
	- ▶ resembles Higgs coupling strength only to \sim 5% level (EW corrs.)
	- \triangleright projected precisions $<$ 5% just reflect sensitivity of SM test
- ▶ SM Effective Theory (SMEFT) (SM \oplus dim-6 operators $\mathcal{O}_i^{(6)}$)
	- ▶ consistent theoretical framework
	- **►** restricted to energies $E \ll \Lambda =$ scale of (decoupling) new physics
	- ▶ does not cover SM extensions with feebly interacing particles
	- ▶ good diagnostic tool to test SM (even if new physics is beyond SMEFT)
	- $▶$ constraints on Wilson coefficients $→$ windows to new physics scale $∧$

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \mathcal{O}(\Lambda^{-8})
$$
\n
$$
\left| \frac{c_i}{\Lambda^2} \right| < C_{\exp} \Rightarrow \Lambda > \frac{|c_i|}{\sqrt{C_{\exp}}} \Rightarrow \text{higher precision (smaller } C_{\exp})
$$

 $(|c_i|)$ depends on expectation for new physics $\rightarrow \mathcal{O}(4\pi), \mathcal{O}(1), \mathcal{O}(\alpha_s/\pi), \dots$?)

Gain in Λ from HL-LHC \rightarrow FCC-ee/hh:
Bernardi et al., 2203.06520

Physikalisches Institu

Examples beyond SMEFT: feeble interactions from mixing with SM fields Higgs mixing:

 \Rightarrow Precision measurements of SM-like Higgs couplings constrain α

Examples beyond SMEFT: feeble interactions from mixing with SM fields

Neutral-gauge-boson mixing:

SM-like Z boson,	$SU(2)_I \times U(1)_Y$ gauge bosons	
$\propto \cos \gamma \sim 1 - \frac{1}{2}\gamma^2 + \dots$	$SU(2)_I \times U(1)_Y$ gauge bosons	
χ	χ	χ
χ	χ	
χ	<math display="inline</td>	

 \Rightarrow EW precision observables constrain γ

Examples beyond SMEFT: feeble interactions from mixing with SM fields

Neutral-lepton mixing: (only schematically)

 \Rightarrow EW precision observables help to constrain θ_k

Typically in type-1 seesaw:

$$
\theta_k \propto \frac{y_{\nu,k}v_{\text{EW}}}{M}
$$
 related to mass scale *M* of sterile neutrinos

New ATLAS/CMS analyses helping to constrain neutral-lepton mixing: W-boson branching ratios (mostly from $t\bar{t}$ events)

 \leftrightarrow tension in LEP results not confirmed

Table of contents

The big questions – what can future e^+e^- colliders provide? [Mysteries within the SM – portals to new physics?](#page-13-0) [SM precision pushed to the extreme – feasibility?](#page-38-0) [Future collider – to be or not to be?](#page-51-0)

Status of (not only) EW precision physics in the (pre HL-)LHC era

Erler, Schott '19

Current precision: typically $\leq 1\%$, even ~ 0.01–0.1% in some cases Future projections: promise improvements by 1–2 orders of magnitude \hookrightarrow ultimate challenge of the SM at future $\mathrm{e}^+\mathrm{e}^-$ colliders

But: Can theory provide adequate predictions?

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

Theory requirements for Z-pole pseudo-observables:

 \blacktriangleright needed:

- ⋄ EW and QCD–EW 3-loop calculations
- \Diamond 1 \rightarrow 2 decays, fully inclusive

• problems:

- \diamond technical: massive multi-loop integrals, γ_5
- \diamond conceptual: pseudo-obs. on the complex Z -pole

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

Parametric uncertainties of EW pseudo-observables:

▶ QCD:

- \diamond most important: $δα_s$ ~ 0.00015 **@** FCC-ee?
- $\hookrightarrow \alpha_s$ from EW POs competitive \Rightarrow cross-check with other results! \diamond quark masses m_t , m_b , m_c

▶ Δ $\alpha_{\rm had}$: δ(Δ $\alpha_{\rm had}$) ~ 5(3) × 10⁻⁵ for/from FCC-ee?

- \diamond new exp. results from BES III / Belle II on $e^+e^-\to hadrons$
- $\diamond\Delta\alpha_{\rm had}$ from fit to radiative return $\mathrm{e^+e^-} \rightarrow \gamma + \mathrm{hadrons}$
- \triangleright other EW parameters: $M_{\rm Z}$, $M_{\rm W}$, $M_{\rm H}$ less critical (improved at ILC/FCC-ee)

Homework for theory @ Z pole:

 \blacktriangleright Full line-shape prediction to NNLO EW + leading effects beyond

- \triangleright technical progress in 2- and multi-loop amplitudes/integrals
- ▶ conceptual progress in NNLO EW corrections (unstable particles!)
- ▶ improvements on leading ISR corrections beyond NNLO
- ▶ leading EW corrections beyond NNLO

▶ Validity of pseudo-observable approach

- \triangleright better field-theoretical foundation of Z-pole pseudo-observables (complex pole definition, absorptive parts, continuum subtraction)
- ▶ Improved Born Approximation (IBA) to parametrize line-shape via pseudo-obs.

 $(+)$ precise concept to treat non-resonant parts)

▶ careful validation of IBA against full $e^+e^- \rightarrow Z/\gamma \rightarrow f\bar{f}$ prediction

\hookrightarrow Impact on experimental analysis possible

(continuum subtraction, self-consistency conditions, etc.)

State-of-the-art prediction of $\sigma_{\rm WW}$ in LEP2 energy range $D_{\rm einer, S.D., 1912.06823}$

- **► IBA = based on leading-log ISR and universal EW corrections (** $\Delta \sim 2\%$ **)** \hookrightarrow shows large ISR impact near threshold
- \triangleright DPA = "Double-Pole Approximation" (leading term of resonance expansion) \leftrightarrow Δ ~ 0.5% above threshold, not applicable at threshold RacoonWW, YFSWW
- ▶ "full" = full NLO prediction for $e^+e^- \rightarrow 4f$ via charged current Denner et al. '05 + leading-log improvements for ISR beyond NLO
	- \leftrightarrow $\Delta \sim 0.5\%$ everywhere

Physikalisches Insti

Triple-gauge couplings (TGC) analyses in $\mathrm{e^+e^-} \rightarrow \mathrm{WW}$

- ▶ e^+e^- is ideal framework: no formfactors for damping required!
- ▶ SMEFT framework:

Physikalisches In

sensitivity to dim-6 operators complementary to Higgs analyses Ellis, You '15

Theory homework for high-precision W-boson physics

- ▶ Exclusive analyses & predictions for $e^+e^- \rightarrow 4f$:
	- \blacktriangleright e^{\pm} final states: proper treatment / separation of single-W channels
	- \blacktriangleright Hadronic final states: separation of multi-jet events $(2i,3j,4j,...)$
	- ► Full NLO $e^+e^- \rightarrow 4f$ prediction for each 4f type (interferences with $\rm ZZ$ and forward- $\rm e^{\pm}$ channels)
	- ▶ more leading corrections beyond NLO
- \triangleright σ_{WW} in threshold region:
	- ▶ full NNLO EFT calculation (only leading terms available)
	- ▶ leading 3-loop Coulomb-enhanced EFT corrections
	- ▶ matching of all fixed-order $e^+e^- \rightarrow 4f$ and threshold-EFT ingredients
	- \leftrightarrow Estimate of theory uncertainty:
		- $\Delta \sim 0.01 0.04\%$ for σ_{WW} @ threshold Freitas et al., 1906.05379
- \triangleright For M_W analysis: Improved M_W prediction from μ decay
	- ▶ massive 3-loop computations (vacuum graphs, self-energies)

Higgs couplings analyses at present and future colliders

Higgs decay widths and Higgs couplings at ILC and FCC-ee

LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134; ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

Note: $^+ \mathrm{e}^-$ colliders from $\sigma_{\mathrm{e}^+ \mathrm{e}^- \to \mathrm{ZH}}$ with *inclusive* Higgs decays!

 \Rightarrow Absolute normalization of Higgs BRs

Physikalisches Insti

Theory homework for high-precision Higgs physics

- ► Higgs off-shell effects: $\Gamma_H/M_H \sim 0.00003$ (compare: $\Gamma_Z/M_Z \sim 0.03$)
	- $▶$ if Higgs fully reconstructable \rightarrow isolation of Higgs pole via cuts \rightarrow factorization of XS into production and decay parts (straightforward check at LO and NLO)
	- ▶ if Higgs not fully reconstructable (e.g. $H \rightarrow WW \rightarrow 2\ell 2\nu$)
		- \rightarrow inclusion of off-shell effects required (full off-shell NLO calculations)
- ▶ Multi-loop vertex corrections:
	- ▶ massive 2-loop vertex corrections (NNLO EW)
	- ▶ massless multi-loop corrections (4-/5-loop QCD for $H \rightarrow b\bar{b}/gg$)
- ▶ 2-loop corrections for $e^+e^- \rightarrow ZH, \nu \bar{\nu}H$:
	- \blacktriangleright full NNLO calculation for σ zH
	- \blacktriangleright leading NNLO effects for $\sigma_{\nu\bar{\nu}H}$
- ▶ Physics beyond the SM:
	- ▶ model independent: EFT approaches with higher-order corrections
	- \triangleright specific models: full NLO studies (+beyond if relevant)
- \Rightarrow Major effort, but feasible!

Enormous challenges for theory!

Can theory provide adequate predictions?

My expectation: Yes.

 \ldots anticipating progress $+$ support for young theorists

Table of contents

The big questions – what can future e^+e^- colliders provide? [Mysteries within the SM – portals to new physics?](#page-13-0) [SM precision pushed to the extreme – feasibility?](#page-38-0)

[Future collider – to be or not to be?](#page-51-0)

Scenarios for new colliders:

- \triangleright deeper exploration of a newly discovered phenomenon/particle
	- \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS
- \triangleright no-lose theorem by theory arguments (new particle/phenomenon ahead)
	- \leftrightarrow Higgs boson or new phenomenon at the LHC
- ▶ measurements in uncharted territory
	- \leftrightarrow deeper reach into microscopic distances
	- \leftrightarrow access to rare and yet unobserved phenomena

Scenarios for new colliders:

 \triangleright deeper exploration of a newly discovered phenomenon/particle

 \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS

 \triangleright no-lose theorem by theory arguments (new particle/phenomenon ahead)

 \leftrightarrow Higgs boson or new phenomenon at the LHC

Scenarios for new colliders:

 \triangleright deeper exploration of a newly discovered phenomenon/particle

 \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS

 \triangleright no-lose theorem by theory arguments (new particle/phenomenon ahead)

 \leftrightarrow Higgs boson or new phenomenon at the LHC

 \Rightarrow There is a physics case for ILC/FCC-ee!

Scenarios for new colliders:

 \triangleright deeper exploration of a newly discovered phenomenon/particle

 \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS

 \triangleright no-lose theorem by theory arguments (new particle/phenomenon ahead)

 \leftrightarrow Higgs boson or new phenomenon at the LHC

 \Rightarrow There is a physics case for ILC/FCC-ee!

 $+$ long-term plan for FCC-hh at the high-energy frontier

Scenarios for new colliders:

 \triangleright deeper exploration of a newly discovered phenomenon/particle

 \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS

 \triangleright no-lose theorem by theory arguments (new particle/phenomenon ahead)

 \leftrightarrow Higgs boson or new phenomenon at the LHC

 \Rightarrow There is a physics case for ILC/FCC-ee!

 $+$ long-term plan for FCC-hh at the high-energy frontier

The problem are the scales in costs $+$ resources $+$ time $+$ serious problems of humanity (environmental, political, existential) ...

Physics vision meets reality

- ▶ ethical questions: enormous costs, mankind has big essential problems \hookrightarrow Use big brains to solve more essential problems?
- ▶ technical realizability: unforeseen cost explosions, showstoppers?
- ▶ economic problems: energy consumption
- \blacktriangleright ecological/environmental aspects \leftrightarrow cost-effective construction + operation, minimize carbon footprint
- ⇒ Problems/concerns have to be taken seriously!
	- \blacktriangleright enter open discussions
	- ▶ work on solutions
	- \blacktriangleright ... and don't sell the physics case under price!

Unique selling points of high-energy physics

▶ fundamental research \rightarrow cultural asset

What are we made of? What rules the microcosm and the universe? ...

- \leftrightarrow new collider = only known path to unambiguously identify new particles
- ▶ role model for collaborative effort
	- ▶ one big effort over many small (redundant) experiments/laboratories
	- \triangleright masterstroke in management (riddle for managers in economy)
	- ▶ sociological success of non-profit driven international collaborations \leftrightarrow turns down ethnical barriers
- ▶ pioneering roles in technology
	- \triangleright "open-source attitude" (including the www development)
	- \triangleright technical data analysis, ML/AI (lost against google et al.?)
	- \blacktriangleright technical spin-offs for industry
- ▶ educational aspects

Physikalisches Institut

- $▶$ fundamental physics research \rightarrow magnet in academic education
- \triangleright ideal educational platform for many academic $+$ non-academic (!) areas
- \blacktriangleright eduction = key to a better worldwide society!
- \Rightarrow High-energy physics can be more than a "bubble" in the worldwide society?!

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? – No."

(Hans Kühn, a multi-loop pioneer)

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? – No." (Hans Kühn, a multi-loop pioneer)

Car manufacturers have abandoned this name more than 100 years ago!

Standard Model 'S' (1913 - 1918)

Standard's first entry into the Light Car Market and introduction to Mass **Production**

(http://www.standardregister.co.uk/id16.html)

Physikalisches In

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? – No." (Hans Kühn, a multi-loop pioneer)

Car manufacturers have abandoned this name more than 100 years ago!

Standard Model 'S' (1913 - 1918)

Standard's first entry into the Light Car Market and introduction to Mass **Production**

(http://www.standardregister.co.uk/id16.html)

Conclusions?

- \blacktriangleright Standard Model $=$ beautiful?
- ▶ Better namings?!

After all, the Higgs boson WAS "new physics".

Sell new aspects as NEW!

Physikalisches In

Extra slides

Typical prospects for future high-precision $\mathrm{e}^+\mathrm{e}^-$ EW physics EW PO @ ILC $_{1504.01726 \text{ (updated)}}$ Higgs precision @ ILC/TLEP $_{1308.6176}$ Best Fit Predictions ❂❃❄❅❆❇ /SLD/Te vatron/LHC: today $h \rightarrow \gamma$ $0.2325 +$ ILC/GinaZ ✻✼✾✿❀❁ äåæçèéêëì ^í îï ðñòóô 0.2320 $h \rightarrow ZZ$ ✴✶✷✸✹✺ $\frac{1}{2}$ (exemption b) = 170... 175 GeV
 $\frac{1}{2}$ (exemption b) = 5M:M_W = 125.1 ± 0.7 GeV Mine ❯❱❳❨❩ ❬ ❭❪❫❴❵ ❛ ❜❝❞ ❢❣❤ $h \rightarrow WW$ 0.2310 ★✩✪✫✬✭ $h \rightarrow gg$ A_{co} (SLD) 0.2305 **MENER MSSM** ✜✢✣✤✦✧ **JRRN MS** \int CMSSM high mass a matata ✇①②③④⑤⑥⑦⑧⑨⑩ ❶❷❸❹❺❻❼ ❽❾❿➀➁➂➃➄➅ ➆➇➈➉➊ ➋➌ ➍➎➏ ➐➑➒ CMSSM low mass $0.2300 - 80.2$ 80.3 80.4 80.5 80.6 NUHM1 M_{W} [GeV] LHC HL-LHC ILC Fantastic indirect sensitivity TLEP to physics beyond the SM! SM unc. Higgs WG $-15 - 10 - 5 = 0$ 5 10 15 Baselines: LHC/HL-LHC: 300fb ⁻¹/3000fb⁻¹ @ 14 TeV $(BR-BR_{SM})/BR_{SM}(%)$ ILC: $250\mathrm{fb}$ ⁻¹ (pol.) @ $250\mathrm{GeV}$ TLEP: $4 \times 2.5ab^{-1}$ @ 240 \rm{GeV}

Physikalisches Instit

Experimental errors and theory uncertainties

Experimental errors: systematic errors $\c)$ statistical errors \rightarrow LHC status + projections to HL/HE-LHC, ILC, FCC-ee $=$ input in the following

Theory uncertainties in predictions:

▶ Intrinsic uncertainties due to missing higher-order corrections, estimated from

- \triangleright generic scaling of higher order via coupling factors
- \blacktriangleright renormalization and factorization scale variations
- **► tower of known corrections, e.g.** $\Delta_{\text{NNLO}} \sim \delta_{\text{NLO}}^2$ if δ_{NLO} known
- ▶ different variants to include/resum leading higher-order effects

▶ Parametric uncertainties due to errors in input parameters, induced by

- \blacktriangleright experimental errors in measurements
- \blacktriangleright theory uncertainties in analyses

Note:

Estimates of theory uncertainties often (too) optimistic in projections of exp. results...

$Γ_W$ determination from energy scan Q WW threshold:

Simultaneous fit of M_W and Γ_W by scan of σ_{WW} :

Physikalisches In

- \blacktriangleright FCC-ee study: $\frac{1703.01626}{1703.01626}$ 2-point fit $(15\,{\rm ab}^{-1})$: $M_{\rm W} = 0.41\,{\rm MeV},\;$ $\Gamma_{\rm W} = 1.1\,{\rm MeV}$
- \blacktriangleright CEPC study: 1812.09855 3-point fit $(2.6\,{\rm ab}^{-1})$: $M_{\rm W} = 1\,{\rm MeV},\;$ $\Gamma_{\rm W} = 2.8\,{\rm MeV}$

WW production beyond LEP2 energy range

Physikalisches In

Fixed-order NLO + leading-log ISR prediction:

Note: large non-universal weak corrections $+$ sizeable off-shell effects Achievable precision:

- ▶ by full NLO for $e^+e^- \rightarrow 4f +$ leading NNLO corrections + ISR resummation
- ▶ estimate: $\Delta \sim 0.5\%$ in distributions ($\sim 1\%$ in tails) up to $\sqrt{s} \sim 1\,\mathrm{TeV}$