

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Experiences with SIRIUS Booster

Fernando Henrique de Sá

On behalf of the LNLS Accelerator Physics Group

SIRIUS – 4GSR in Operation

Brazilian Center for Research in Energy and Materials (CNPEM)

- Green-field facility
- Construction: 2012 2020
- Cost: US\$ 500M (~85% spent in Brazil)
- 1st regular users call: Nov. 2022
- 10 beamlines in operation
- 100 mA in top-mode mode, uniform fill
- Phase-1 (end of 2024): 14 beamlines

SIRIUS design parameters

Energy	3.0	GeV
Circumference	518.4	m
Emittance	250	pm.rac
Current (top-up)	350	mA

Campinas Brazil

SIRIUS Beamlines – Phase 1

https://www.lnls.cnpem.br/beamlines/

-0.6

-10

-9

-8

-7

-6

-5

x [mm]

-4

-3

-2

-1 0

Low emittance booster required!

-0.06

Booster Design

Linear Optics

Circumference	496.8 m
Harm. Number	828
Tunes	(19.20, 7.31)
Chromaticities	(0.5, 0.5)
Nat. Chrom.	(-33.7, -13.9)
Mom. Compaction	7.2x10 ⁻⁴
Nat. Emitt.@3GeV	3.5 nm.rad
Nat. En. Spread@3GeV	0.09 %
Nat. Bun. Len.@3GeV	11.2 mm

- Optimized for low emittance \rightarrow low momentum compaction;
- Nominal linear optics with 50 dipoles and 50 QFs;
- Nominal chromaticity adjusted to 0.5 with 25 SF sexts and dipoles;
- Tune and chromaticity correction with 25 QD quads and 10 SD sexts;
- Orbit Correction with 50 BPMs, 25 CH and 25 CV magnets;
- BPMs are not placed close to peaks of optical funcions;

Orbit Correction and Dynamic Aperture

Error	Dipole	Quad.	Sext.
Alignment x, y	160 um		
Rotation Roll	0.8 mrad		
Excitation	0.15 % (grad. 2.4 %)	0.3 %	0.3 %
Mult. Normal	~4x10 ⁻⁴		
Mult. Skew	~1x10 ⁻⁴		

- Simulations with realistic errors;
- Low residual orbit;
- Good dynamic aperture and momentum aperture;

Injection System

- Linac beam @ 150 MeV: $\varepsilon_{x,y} = 170 \text{ nm.rad}, \sigma_{\delta} = 0.5\%;$
- Geometry requires strong septum (21.5°) and kicker (19.3 mrad);
- Optics (β , α , η , η') at end of TL matched to booster optics;
- Booster horizontal acceptance:
 - \circ 4- σ of beam size;
 - 1 mm of orbit distortion;
 - o 4.5 mm of transverse oscillations
 - \circ 1.5% of energy oscillation;
- Three screens were considered to help checking optics matching;
- 100% of ramp efficiency in commissioning simulations.

Ejection System

- Optics at beggining of TL matched to optical functions of booster (including dispersion and its derivative);
- Weaker ejection kicker (~2.1 mrad) and septa (~3.6°);

Commissioning

Booster and SR sharing same tunnel

- Commissioning concurrently with the installation of the SR:
 - Intermitent commissioning schedules;
 - Facilities not well conditioned yet -> poor temperature stability;
 - Installation activities delaying commissioning:
 - Magnets and BPM cables inversion;
 - Mal-functioning power supplies;
 - SR permanent magnet temporarilly stored close to booster;
- Interference of SR power supplies on booster and TLs orbit:
 - SR magnets cable positions optimized to minimize magnetic field on booster under nominal operation currents for all PSs;
 - Only few SR PSs on -> no beam on booster;
 - Even with all SR PSs on, the booster orbit changes in comparison to when they are off;
- Interference of booster ramping on storage ring orbit:
 - Mainly on the horizontal plane;
 - Created by the dipoles;
 - Effectively attenuated by SR fast orbit feedback.

Septa Issues

- Strong effect of eddy current:
 - Peak of magnetic field displaced in relation to peak of current;
 - Strong quadrupole at injection septum \rightarrow re-matching of TL;
 - Injection at 1/3 Hz due to temperature rise when pulsing at 2 Hz;
- Initially there was a large effect on orbit due to leak fields;

Orbit Issues

- Energy deviation variation along ramp:
 - o low momentum compaction + variation of velocity \rightarrow energy deviation variation;
 - Easy to miss in design stage:
 - slippage factor ≈ momentum compaction even at low energies;
 - For the SIRIUS booster $1/\gamma^2 \simeq 1.3 \times 10^{-5}$ @150MeV, while $\alpha = 7.2 \times 10^{-4}$
 - \circ $\;$ The orbit correction system ineffective:
 - booster and the SR have the same master RF oscillator;
 - Booster realigned to correct energy deviation at low energy: improve ramp eff.;
- Large residual horizontal orbit due to small number of HCMs:
 - Not predicted by simulations from design stage;
 - Similar orbit signature along ramp;
 - Possibly related to sorting of magnets installation order (correlated errors);
 - Ongoing studies to add corrector magnets and/or realign some magnets.

 $T_0 = hT_{\rm RF}$

 $L(t) = v(t)T_0$

$$L_0 \left(1 + \alpha \delta \right) = \left(\beta + \frac{1}{\beta \gamma^2} \delta \right) cT_0$$

$$\delta(t) = \frac{\beta(t) - \beta^*}{\alpha}$$

Optics Characterization

- Orbit response matrix measured along all ramp;
- LOCO fitting at some points (without using dispersion data);
- Tunes and beta-beating predicted by model:
 - Large beta-beating, but results are ok for a booster;
- Dispersion measured at low energies:
 - Difference to LOCO fitted model is not alarming;

15

Transverse Emittance Exchange (TEE)

P. Kuske and F. Kramer, "Transverse Emittance Exchange for Improved Injection Efficiency", in Proc. IPAC'16, Busan, Korea, May 2016, pp. 2028–2031. doi:10.18429/JACoW-IPAC2016-WEOAA01

Current and Future Operation

Current Operation in Top-up Mode

- Current operation performance:
 - Top-up mode: single-shot every 3 min;
 - Average injected current per pulse: 0.220 mA;
 - Control of injected current with Egun bias voltage.

- Ocasionally BO vert. orbit changes between 2 states (flip-flop):
 - Correction signature imply field distributed along the ring;
 - Generally happens after machine maintenances;

Future Requirements for Operation

- In August 2024 SC RF cavities will be installed in the SR:
 - Stored current will probably increase to 200mA;
 - Lifetime is expected to be about half of present value;
 - Same injection scheme -> ~0.9mA per pulse;
- Multi-bunch needs optimization at high currents:
 - Linac was specified so that BO would ramp 1.7mA;
 - Today, maximum current delivered is ~1.1mA;

- Single-bunch injection:
 - Important to provide top-up operation with arbitrary fillings;
 - Not ready for operation. Very low efficiency (<10%);
 - Optimization also required for LINAC;

Summary

- A low-cost small emittance booster was designed:
 - Symmetric lattice and small number of magnet families and PSs;
 - Simple scheme for tune and chromaticity correction;
 - The number of corrector magnets was too small;
 - Small momentum compaction is an issue.
- In 2019 the booster commissioning was intervealed with the SR installation:
 - Intermitent scheduling. Main objective was to start SR commissioning ASAP;
 - Difficulty to perform detailed characterizations;
- From 2020 to last year a large effort was applied to the SR:
 - Increase of operation current, top-up;
 - Orbit stability, "transparent SR Injection", IDs installation and commissioning;
 - Little time dedicated to booster optimization;
- Booster performance meets current requirements;
- Work required to reach future operation demands:
 - Improvement of orbit correction;
 - Optimization of single-bunch mode;
 - Improvement of multi-bunch ramp efficiency at high currents;
 - Investigation of solutions to septa heating issues;

Thank you for your attention!

Thanks to Murilo Alves and all my colleagues that helped putting this presentation together.