The Diamond-II Booster Design

lan Martin,

On behalf of the Diamond-II Injector Design Team

I.FAST Workshop on Injectors for Storage Ring Based Light Sources KIT, 7th/8th March 2024

Talk Outline

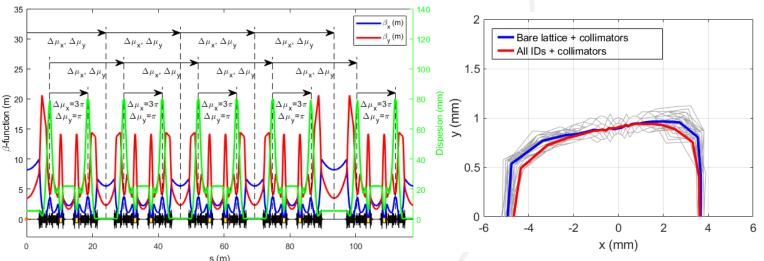
Diamond-II Lattice and New Booster Requirements

Booster Design Details

Booster optics and main parameters Engineering details (RF / Diagnostics / Vacuum chamber) Injection and extraction schemes Orbit / Optics control

Booster Performance

Dipole magnet modelling Impedance database Beam parameters during the ramp Single / coupled bunch thresholds


nond 💱

Diamond-II Lattice

Modified Hybrid 6-Bend Achromat (M-H6BA) for low emittance Number of insertion straights increased from 24 to 48

- Long straights: 7.54 m
- Standard straights: 5.06 m
- Mid straights: 2.92 m
- Off-axis injection for beam accumulation
- '-I' transformer plus const. cell phase for nonlinear dynamics

Passive SC harmonic cavity for lifetime / beam stability / IBS

Parameter	Units	Diamond	Diamond-II
Energy	GeV	3.0	3.5
Circumference	m	560.6	560.560944
Harmonic Number	-	936	934
RF Frequency	MHz	499.654	499.511
Positive Bending Angle	deg	360.0	374.4
Reverse Bending Angle	deg	0.0	14.4
Total Bending Angle	deg	360.0	388.8
Betatron Tunes	-	[27.21, 12.36]	[54.14, 20.24]
Natural Chromaticity	-	[-79.0, -35.6]	[-68.2, -89.1]
Corrected Chromaticity	-	[1.7, 2.2]	[2.6, 2.6]
Mom. Compaction Factor	×10 ⁻⁴	1.70	1.03
Natural Emittance	pm.rad	2729	162
Energy Spread	%	0.096	0.094
Energy Loss per Turn	MeV	1.01	0.724
Natural Bunch Length	ps	11.4@2.4 MV	12.4@1.4 MV
Horizontal Damping Partition	-	1.00	1.88
Horizontal Damping Time	ms	11.1	9.4
Vertical Damping Time	ms	11.2	18.1
Longitudinal Damping Time	ms	5.6	16.1

3

Booster-II Requirements

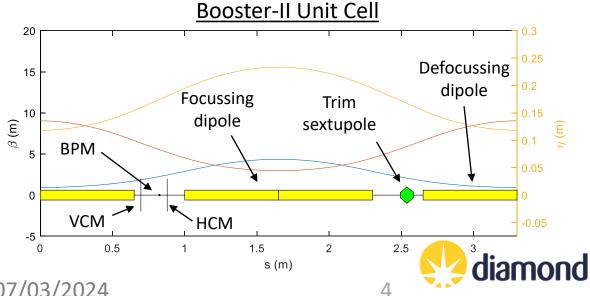
D-II storage ring injection requirements:

- Extraction energy increased to 3.5 GeV
- Lower emittance
- Shorter bunch length
- Increased charge per shot (SB and MB)

Other considerations:

- Must fit in existing tunnel (racetrack)
- High transfer efficiency
- Low impedance for high-current bunches
- Robust performance / low error sensitivity
- Long-term reliability

=> Unit cells built from combined-function dipoles


I.P.S. Martin, Diamond-II Booster, I.FAST Injector Workshop, KIT, 07/03/2024

	Existing booster	Target
Energy	0.1 - <mark>3.0</mark> GeV	0.1 - 3.5 GeV
Emittance	134 nm.rad	<30 nm.rad [#]
Bunch length	100 ps	<40 ps*
Max. SB charge	~0.2-0.4 nC	~5 nC⁺
Max. MB charge	<mark>∼1-2</mark> nC	~15 nC⁺

#defined by storage ring dynamic aperture

*defined by storage ring momentum aperture

⁺for future-proofing, robustness and fast fill times

Unit Cell Optimisation

80

60

40

20

0

0

0.1

 $\epsilon_{\rm x}$ (nm.rad)

BF=15%

BF=21%

BF=27%

BF=30%

0.3

0.2

0.4

0.5

80

60

40

20

0

0

0.1

0.2

0.3

(sd)

 $\sigma_{\rm L}$

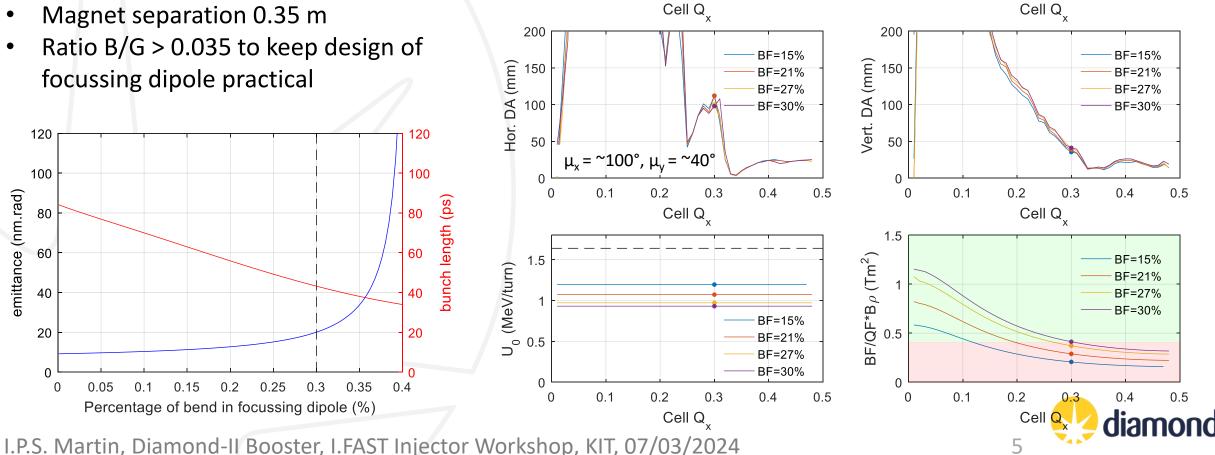
BF=15%

BF=21%

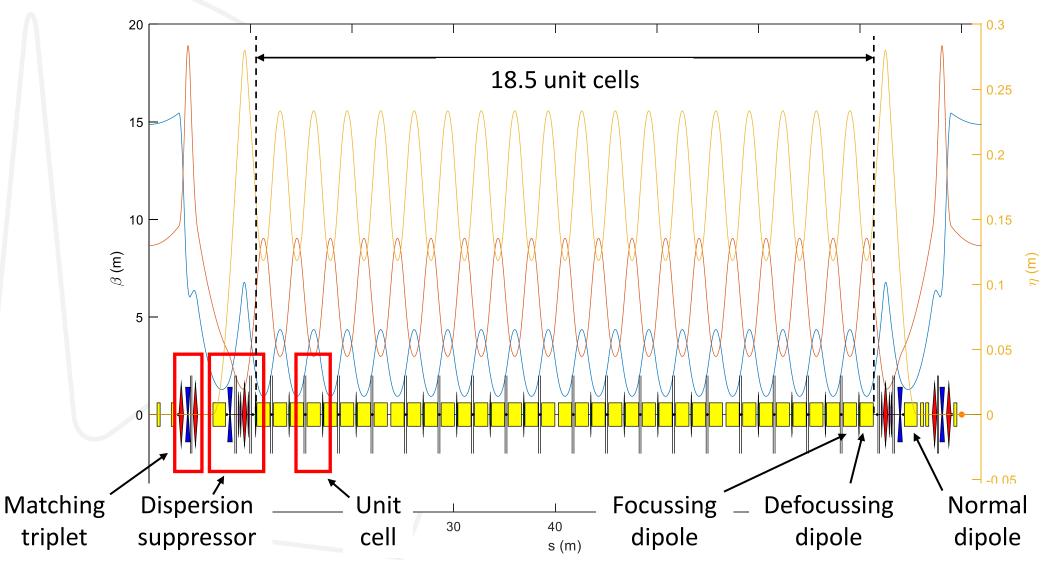
BF=27%

BF=30%

0.4


0.5

Systematic scan:


- Number of unit cells
- Dipole lengths / field components

Constraints:

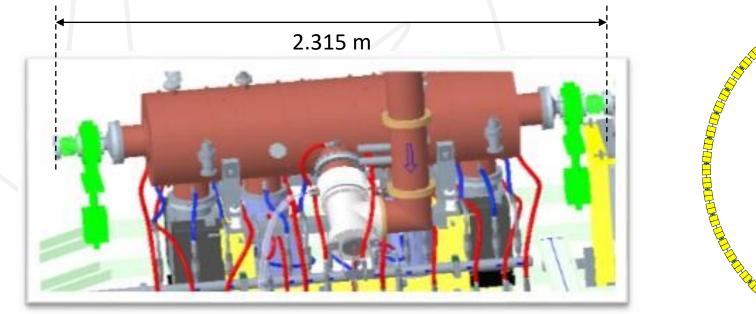
Magnet separation 0.35 m

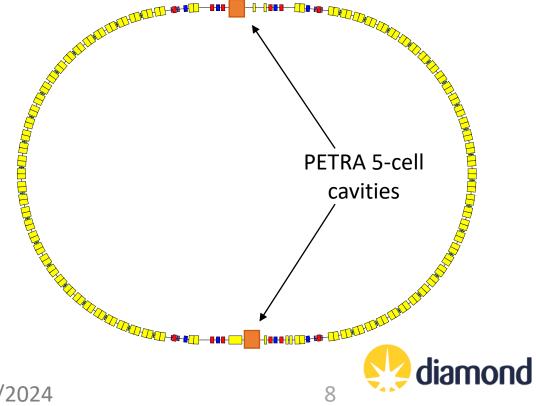
Booster-II Super-Period

I.P.S. Martin, Diamond-II Booster, I.FAST Injector Workshop, KIT, 07/03/2024

6

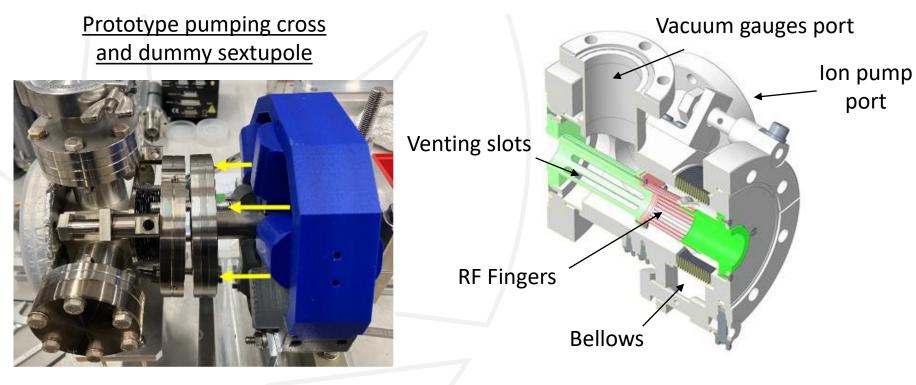
Booster-II Parameters


Parameter	Units	Target	Existing booster	Booster-II
Energy range	GeV	0.1 - 3.5	0.1 - <mark>3</mark>	0.1 - 3.5
Number of cells	-	-	22	37+4
Circumference	m	-	158.4	163.847
Betatron tunes	-	-	[7.18, 4.27]	[12.41, 5.38]
Natural chromaticity	-	-	[-9.7, -6.3]	[-13.5, -11.9]
Mom. comp. factor	-	-	25.2×10 ⁻³	5.65×10 ⁻³
Emittance	nm.rad	<30	134.4	17.3
Energy spread	%	-	0.073	0.086
Loss per turn	MeV	-	0.58	0.95
Nat. bun. len.	ps	<40	99.3	38.0
RF voltage	MV	-	1.0	2.0
RF acceptance	%	-	0.61	0.93
[J _x , J _y , J _E]	-	-	[1.00, 1.00, 2.00]	[1.10, 1.00, 1.90]
Damping times	ms	-	[5.46, 5.47, 2.74]	[3.66, 4.04, 2.13]


diamond

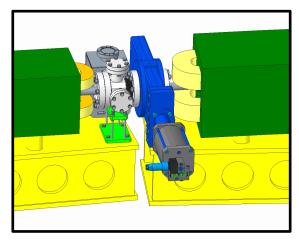
Booster-II RF

- Re-use existing two PETRA 5-cell normal conducting cavities
- Install one in each of the two long straights
- Can provide >1 MV per cavity (nominal operating voltage = 2 MV total)
- Need to modify tuner assembly to match to the D-II storage ring RF frequency (499.5 MHz)
- Existing IOTs to be replaced with solid-state amplifiers
- Digital LLRF system

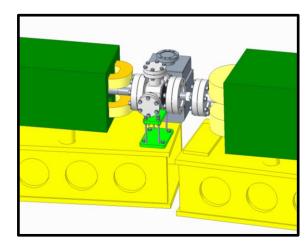


Booster-II Diagnostics

Diagnostic	Beam Parameter	Quantity	Location	
BPMs	Position	48	Distributed	
Beam loss detectors (BLDs)	Losses	32	Distributed	
DCCT	Beam current	1	Injection straight	
		1	Downstream of injection septum	
OTR / YAG screens	Transverse profile	1	Upstream of extraction septum	
Stripline kickers	Nultipuppe foodbools*	2	luio eticu, stusialut	
Extra BPMs buttons	Multibunch feedback*	1	Injection straight	
TR screen AG screen lectron am path		OTR screen (slides in when required)	*open-loop only for day 2 Striplines BPM block for striplines	
I.P.S. Martin, Diamond-II Booster, I.FA	AST Injector Workshop, KIT,	07/03/2024	₉ 🔥 diamo	

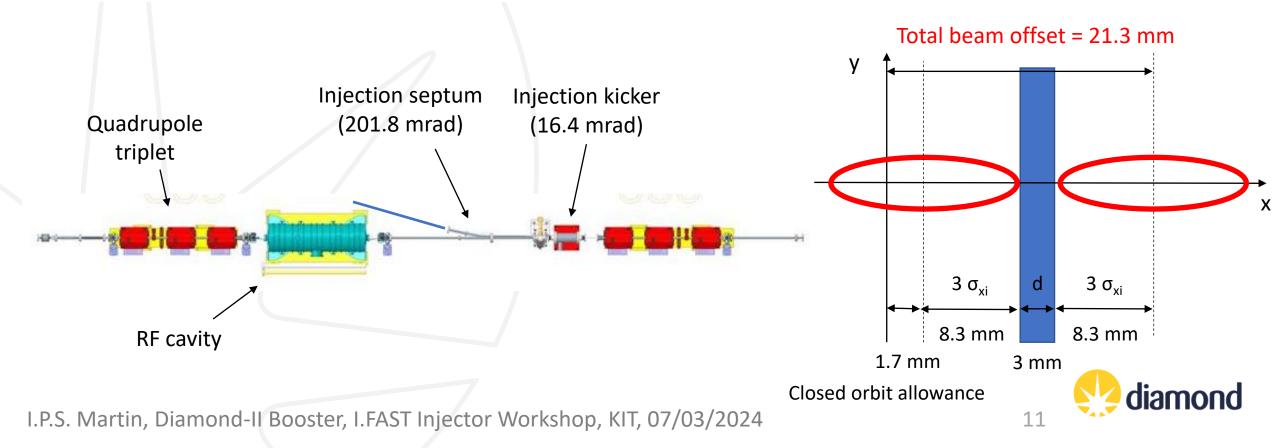

Booster-II Vacuum Chamber Components

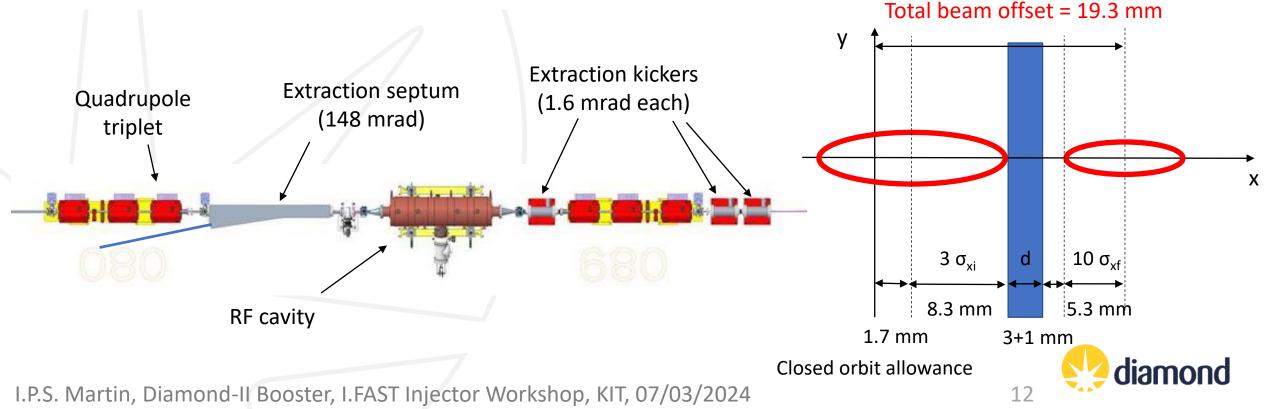
- 1 mm thick stainless steel vacuum chamber; circular cross section
- 1 mm clearance between chamber and magnet poles
- Minimise impedance where practical / cost effective
- 11.5 mm radius in arcs, 18.3 mm in straights and matching sections (internal)
- One ceramic break and two gate valves per arc
- Combined pumping cross / bellows section designed for low impedance



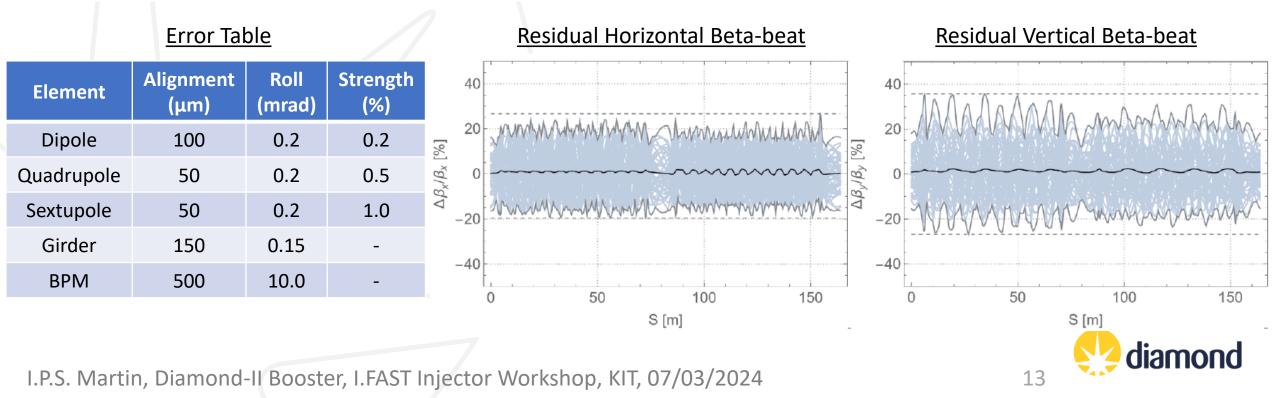
I.P.S. Martin, Diamond-II Booster, I.FAST Injector Workshop, KIT, 07/03/2024

Arc girder with gate valve

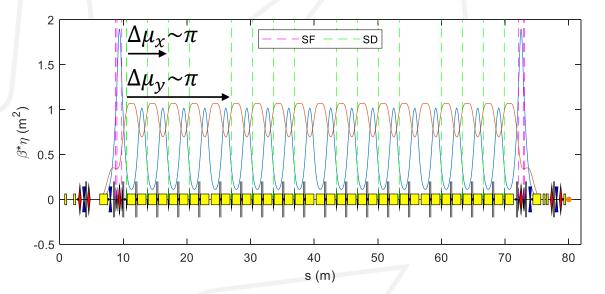

Arc girder with ceramic break

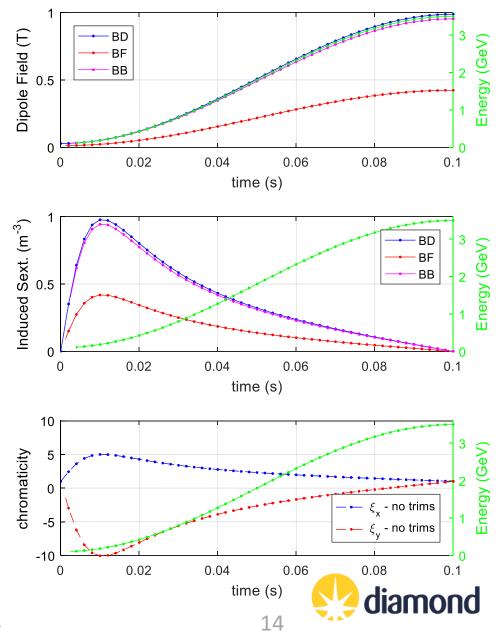

Injection

- On-axis injection using single septum and kicker (100 MeV nominal, potential for 150 MeV)
- All components in main straight
- Septum offset positioned to give space for $3\sigma_{xi}$ for injected beam, plus contingency for closed orbit distortions
- Booster injection point moved downstream to give LTB space to clear RF cavity
- Beam exits LTB at $3\sigma_{xi}$ on the outside edge
- Conservative assumption for linac emittance ($\epsilon_N = 100 \text{ mm.mrad}$)

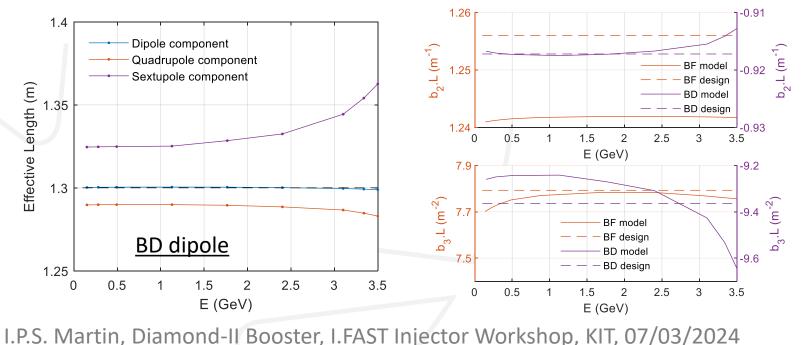

Extraction

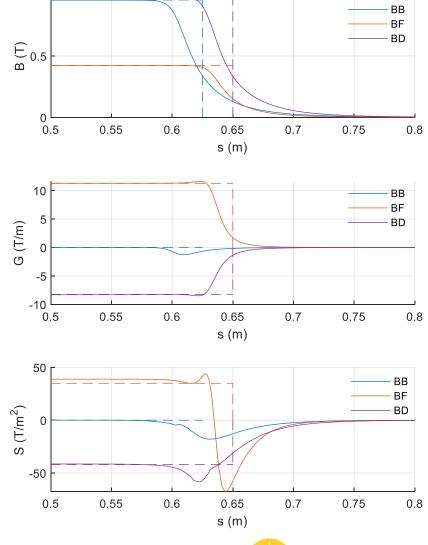
- **Single-turn extraction** using single septum and three kicker magnets (two before triplet and one after)
- Extracted beam passes off-axis through the quadrupole triplet and the RF cavity
 - Beam offset in RF cavity: 13.3 mm at entrance, 19.0 mm at exit.
 - Cavity minimum bore 120 mm. Negligible perturbation from off-axis field in CST model.
- Extraction septum bend angle increased so that BTS clears downstream quadrupoles
- Beam enters extraction septum at 10 σ_{xf} from septum plate (+1 mm tolerance)
- Extraction septum horizontal offset matched to injection septum


Orbit and Optics Control


- Orbit correction using 48 BPMs + 48 dedicated HCMs and VCMs (separated function)
 - Correctors can be ramped with beam energy, if required
 - Residual orbit distortion <0.5 mm in both planes (excluding BBA offsets)</p>
- Tune correction by adjusting matching-section quadrupole ramp waveforms (no beta-beat correction)
 - Trade-off between beta-beat and tune control: quadrupole correctors far from source of errors
- Chromaticity control using dedicated trim sextupoles

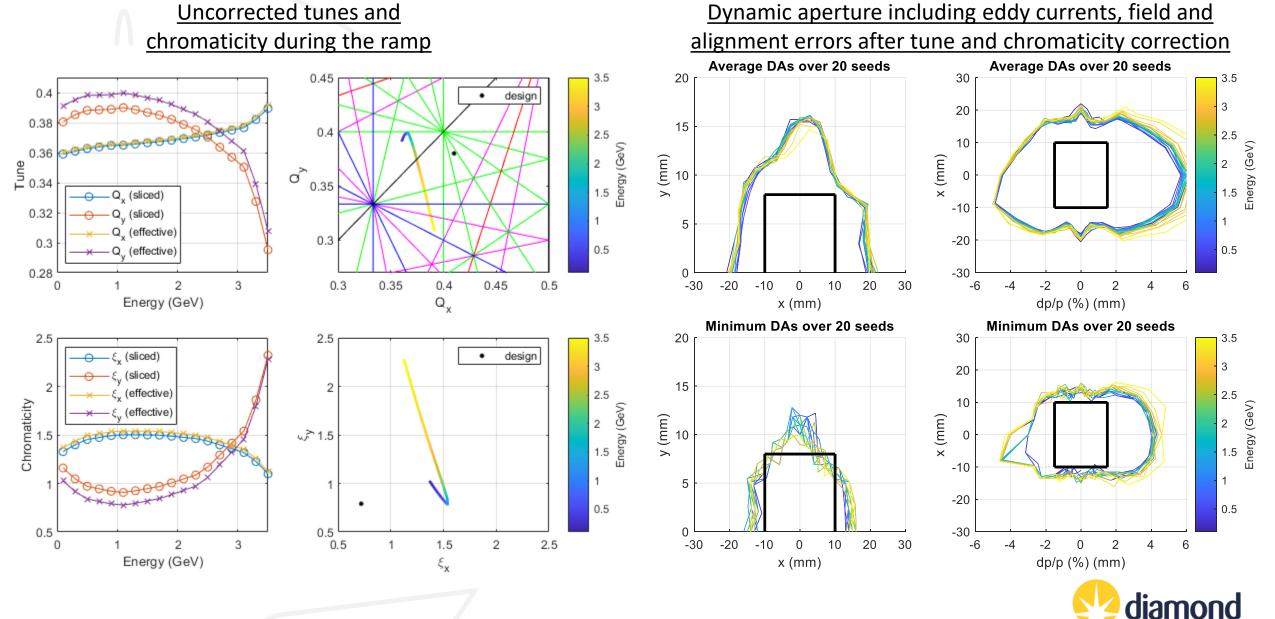
Impact of Eddy Currents


- Trim sextupoles used to compensate induced eddy-current sextupole fields driven by ramping main dipoles
 - Positive induced sextupole component
 - Requires defocussing sextupoles to compensate
- Trim sextupole locations chosen for maximum $\beta_{x,y} \times \eta_x$
 - Defocussing trim sextupoles grouped in sets of 4 to give natural cancellation of driving terms
 - Focussing trim sextupoles in dispersion suppressor



Combined-Function Dipole Modelling

- Edge effects for combined-function dipoles found to be significant
- Dipoles modelled as hard-edge magnets
 - Bulk parameters set to match integrated values
 - Thin lenses at entrance/exit to account for edge-effects
- OPERA magnet models as a function of beam energy used to extract s-dependent multipole expansion field data
- Magnet parameters vary during the ramp



15

Booster Optics During the Ramp

I.P.S. Martin, Diamond-II Booster, I.FAST Injector Workshop, KIT, 07/03/2024

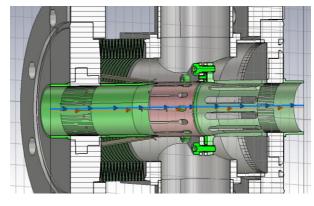
16

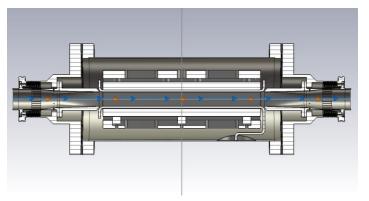
Impedance Database

Impedance database has been created using a 0.5 mm drive-bunch in CST simulations (Note: s-band bunchlet from linac $\sigma_L = 1.5$ mm)

Resistive wall contributions calculated using ImpedanceWake2D:

- ➢ 140 m SS pipe
- Booster kickers (assumes 1 µm-thick TiN coating actual coating on ferrite TBC)
- Ceramic breaks


RF cavity HOMs modelled as narrow-band resonators


Largest contributions to short-range wakefield:

- Resistive wall
- Injection / extraction kickers
- RF cavity tapers

I.P.S. Martin, Diamond-II Booster, I.FAST Injector Workshop, KIT, 07/03/2024

Pumping cross

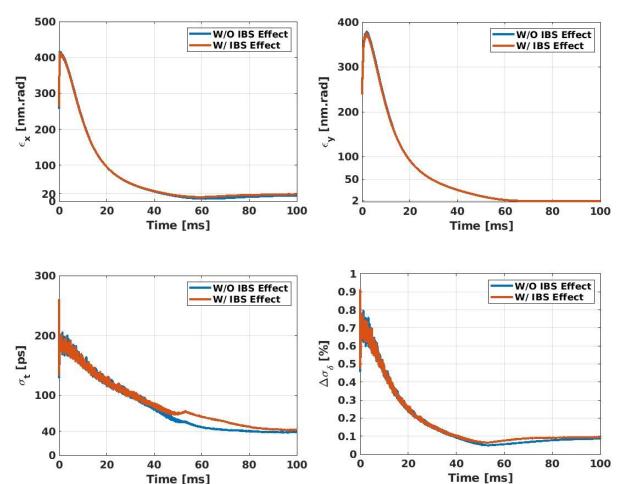
Injection/extraction kicker

Wakefield Contributions (12 mm bunch)

	Element	Number	H-kick factor (V/pC/mm)	V-kick factor (V/pC/mm)	Loss factor (V/pC)	
	Screens	2	0.008	0.005	0.039	
	Valves	8	0.006	0.007	0.003	
	BPMs	48	0.016	0.019	0.000	
	Pumps	55	0.087	0.085	0.037	
	Kickers	4	0.075	0.192	0.682	
	Cavity tapers	2	0.019	0.191	0.381	
	Resistive wall	140 m	0.683	0.697	1.329	
	Total		0.894	1.024	2.471	
۱C	op, KIT, 07/03/2024 17					

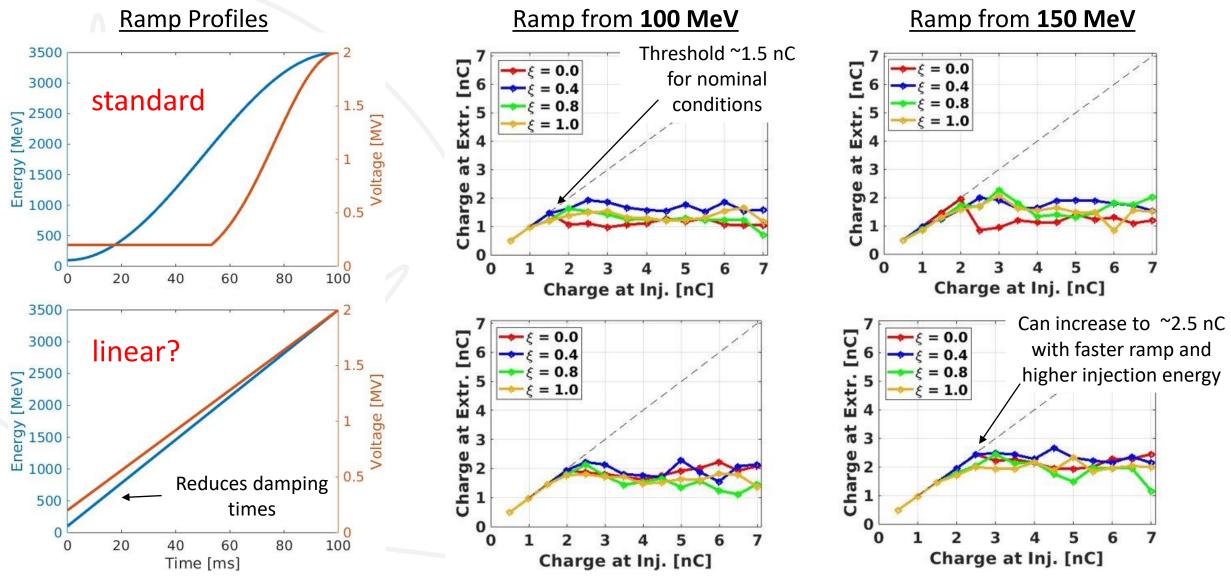
Beam Parameters During the Ramp

ELEGANT used to study collective effects in the booster


<u>Impact of IBS</u> (0.72 nC / chromaticity = 0.5)

Various aspects have been investigated:

- Injected bunch charge
- Chromaticity
- Injection energy
- Intra-beam scattering


Bunch Parameters at Extraction with IBS							
Charge (nC)	$arepsilon_{\chi}$ (nm.rad)	$arepsilon_y$ (nm.rad)	σ_L (ps)	σ _E (%)			
0.0	17.3	1.6	38.0	0.086			
0.7	19.0	1.6	42.5	0.094			
1.4	20.8	1.6	44.4	0.100			

Downwood at a way at in a with IDC

Single Bunch Thresholds

Note: Aperture-sharing injection for Diamond-II requires 0.1 nC/shot to maintain fill-flatness with 3HC

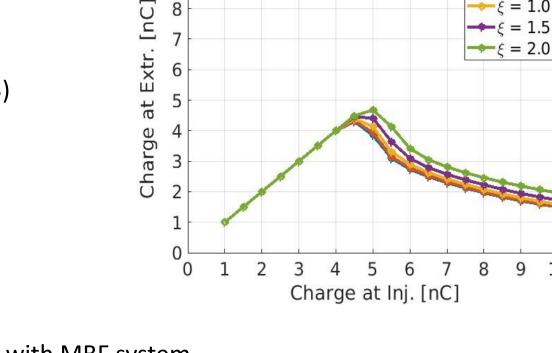
I.P.S. Martin, Diamond-II Booster, I.FAST Injector Workshop, KIT, 07/03/2024

19

Coupled Bunch Thresholds

Coupled bunch thresholds also studied with ELEGANT using one-turn-map (ILMATRIX incl. nonlinear terms)

<u>Impedance model:</u>


- Long range resistive wall
- 2×PETRA 5-Cell RF cavity higher-order modes (HOMs) \geq

Assumptions:

- Single train of 180 bunches (harmonic number = 263)
- 10K macro-particles per bunch \geq
- Sinusoidal energy ramp (100 MeV => 3.5 GeV)
- Physical apertures \geq

Conclusions:

- Extracted multi-bunch charge limited to ~4-5 nC \succ
- Preliminary studies indicate >10 nC can be extracted with MBF system \geq

10

9

8

= 0.0

= 0.5= 1.0

= 1.5

10

Conclusions

Booster-II design status:

- Engineering and magnet designs almost complete (few outstanding items)
 - Pulsed magnet design ongoing
- Booster girder call for tender expected to be issued in April/May 2024
- Girders to be purchased as complete assemblies (Diamond staff to install / commission)
- Pulsed magnets, RF, diagnostic components issued as separate contracts
- Booster installation / commissioning anticipated during Dec'27 => Oct'28 ready for storage ring commissioning (from Dec'28)

AP studies ongoing:

- Simulated commissioning has started
- Analysis of collective effects continues
 - Impedance database continually updated
 - Need to study long-range geometric wakes

Extra Slides

Booster-II Magnets

Magnet	Parameter	Units	Existing booster	Booster-II
	Number	-	-	38
Defocussing Dipole	Length	m	-	1.30
	[B, Q, S]	[T, T/m, T/m ²]	-	[0.99, -8.24, -42.0]
	Number	-	-	36
Focussing Dipole	Length	m	-	1.30
	[B, Q, S]	[T, T/m, T/m ²]	-	[0.42, +11.30, +35.0]
	Number	-	36	4
Normal dipole	Length	m	2.16	1.25
	В	Т	0.81	0.95
	Number	-	44	20
Quadrupoles	Length	m	0.34	0.45
	Peak gradient	T/m	14.1	30
	Number	-	28	44
Sextupoles	Length	m	0.16	0.05
	Peak strength	T/m ²	40.8	300

Pulsed Magnet Parameters

- Design of injection and extraction pulsed magnets is ongoing
- Aiming to use the same design of septum magnets for booster extraction as used for storage ring injection
 - Combination of thin eddy-current septum + PM main septum
 - Stabilises extracted beam trajectory; static leakage field; reduced number of spares
- Investigating coating ferrites for injection / extraction kickers to reduce impedance

	Injection kicker	Injection septum	Extraction kicker	Extraction thin septum	Extraction PM septum
Magnetic length	0.3 m	0.3 m	3×0.3 m	0.4 m	~1.6 m
Bend angle	16.4 mrad	11.56 degree	1.62 mrad	1.1 degree	7.4 degree
Peak field	27.4 mT*	0.34 T*	>0.078 T	0.6 T	0.6 T, 1.0 T, 1.6 T
Pulse profile	Flat-top	Full sine	Flat-top	Full sine	-
Pulse duration	400 ns	160 μs (?)	400 ns	10 µs (?)	-
Rise time	<0.1s	-	<150 ns	-	-
Fall time	<150 ns	-	<0.1 s	-	-

*rated for 150 MeV injected beam energy

