PETRAIV. **NEW DIMENSIONS**

Sven Sievers I.FAST Workshop 2024 on Injectors for Storage Ring Based Light Sources Karlsruhe, March 7th, 2024

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

PETRA IV DESY's bright future

PETRA IV

Facility Layout and injection concepts

DESY IV

A new booster synchrotron for PETRA IV

Plasma Injector for PETRA IV What about a new concept?

Summary To make a long story short...

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

PETRA IV

DESY's bright future

Quick Facts

• 2024 PETRA III still up and running...

Parameter

Energy / GeV	
Circumference / m	
Total current / mA	
Number of bunches	
Emittance	
Horiz. ϵ_x / pm rad	
Vert. ϵ_y / pm rad	

Number of undulator beamlines

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

... looking into a bright future

Quick Facts

- 2024 PETRA III still up and running...
- ... but PETRA IV is on the horizon

Parameter	PETRAIV	
	Brightness mode	Timing mo
Energy / GeV	6	6
Circumference / m	2304	2304
Total current / mA	200	80
Number of bunches	1600	80
Emittance		
Horiz. ϵ_x / pm rad	< 20	< 40
Vert. ϵ_y / pm rad	2 - 10	5 - 20
Number of undulator beamlines	30	

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

PETRA IV

... looking into a bright future

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

PETRA IV

... looking into a bright future

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

Phase-I Beamlines Start Operation in 2030

Phase-II (PXW) Beamlines Start Operation in late 2031

- **Diagnostics Beamline I & II BL49**
- Appl. and Analy. XAFS and Q-EXAFS BL
- Free Slot BL47
- SAXSMAT II Beamline BL46
- **Powder Diffraction and Total Scattering** BL45
- **Free Slot** BL44 •
- BL43 Free Slot
- **Resonant X-ray Scattering Beamline** BL42
- ExTReM BL41 •

Coherent Applications Beamline BL39

- CryoBio Nanoprobe Beamline BL38
- Full-Field Imaging for Materials Science (Hereon)/ BL37
- In-Situ/High-Resolution 3D Nanoprobe BL36
- Materials Scanning Nanoscope BL35
- Multiscale Materials Microscope (Hereon/DESY) BL34 +
- BL33 Free Slot
- BL32 Free Slot
- **HRHS Soft X-ray Beamline** BL31

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

Phase-I Beamlines Start Operation in 2030

(New PXW Hall)

PETRA IV – Schedule

Project fixed by (external) boundary conditions

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

PETRA IV

Facility Layout and injection concepts

PETRA IV facility layout

How will the new facility look like?

ation

Pre-accelerators for PETRA IV

Two different options

Conventional Pre-accelerator

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

Pre-accelerators for PETRA IV

Two different options

Conventional Pre-accelerator

or

LPA based full energy injector

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

A new booster synchrotron for PETRA IV

Take advantage of the existing facility

Conventional Pre-accelerator

Take advantage of the existing facility

Conventional Pre-accelerator

Thermionic electron source (in operation since 2013)

Take advantage of the existing facility

Conventional Pre-accelerator

Thermionic electron source (in operation since 2013)

LINAC II 450 MeV S-Band Linac (to be refurbished)

PIA 450 MeV damping ring (to be refurbished)

Take advantage of the existing facility

Conventional Pre-accelerator

Thermionic electron source (in operation since 2013)

LINAC II 450 MeV S-Band Linac (to be refurbished)

PIA 450 MeV damping ring (to be refurbished)

DESY IV new 6 GeV Booster Synchrotron

Take advantage of the existing facility

Conventional Pre-accelerator

Thermionic electron source (in operation since 2013)

LINAC II 450 MeV S-Band Linac (to be refurbished)

450 MeV damping ring (to be refurbished) PIA

DESY IV new 6 GeV Booster Synchrotron

not trivial to put it in a legacy building

DESY legacy – where to put the booster

Where it all comes from...

LINAC II 450 MeV

How to treat DESY I Legacy

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

existing DESY II

possible DESY IV layout

How to treat DESY I Legacy

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

existing DESY II

How to treat DESY I Legacy

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

existing DESY II

possible DESY IV layout

But where to put it in the tunnel?

How to treat DESY I Legacy

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

Maybe on the ceiling?

लिनिनिन

12 25 3

Redesign of DESY IV Lattice

Installation of booster synchrotron on floor made lattice redesign necessary

Placement of DESY IV

- Plan was to **install DESY IV on the ceiling** lacksquare
 - It turned out that the load is near the allowed limit of the ceiling and installation is more complicated and expensive than expected
 - Existing DESY IV lattice had six-fold symmetry; not suitable to be installed on the floor \rightarrow redesign necessary
- Several lattice options were investigated for the lacksquareinstallation of DESY IV on the floor:
 - Near outer wall
 - On ring girder (DESY III) 2.
 - Between ring girder and DESY II 3.
 - Near inner wall (replacing DESY II) 4.
- An 8-fold symmetric lattice adapted to the octagon ${\color{black}\bullet}$ shape of inner wall of building was selected (position 3)

Layout of redesigned DESY IV

Schematic view

Beam Optics of redesigned DESY IV Lattice

Optics of one super period (8-fold symmetry)

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination – Slide by Joachim Keil

	•	•		Installation on ceiling	Installation on floor, (position #3
ersion ressor	Straight Section	-0.3	Parameter	DESY IV (3h3l v8)	DESY IV (P8 v6.1)
		-0.2	Energy <i>E</i>	0.45 – 6 GeV	0.45 – 6 GeV
$\Delta \mu$, = 90°	0.1	Circumference <i>C</i>	316.8 m	304.8 m
	· · · · · · · · · · · · · · · · · · ·	•	Super periodicity P	3	8
	Λ	-0.0	Tune Q	17.37 / 12.15	15.19 / 5.34
	Δ	0.1 g	Emittance ε_x	19.0 nm∙rad	21.1 nm∙rad
	1	0.2 H	Damp. part. number J _x	2.56	2.35
	\mathbb{M}	Dispe	Nat. chromaticity ξ	-41.7 / -13.8	-19.2 / -10.5
		0.3	MCF α	3.17·10 ⁻³	3.5·10 ⁻³
		0.4	Energy loss/turn ΔE	6.55 MeV	6.67 MeV
		0.5	Rel. energy spread $\sigma_{\! m e}$	2.6·10 ⁻³	2.17·10 ⁻³
			Damping times $ au$	0.75, 1.9, 4.4 ms	0.78, 1.8, 2.8 ms
		-0.6	Lattice changes:	ing high / low hot	a straights and
• Instead of alternating high / low beta straights only					

- high beta straights; higher periodicity
- 4 unit cells instead of 5 unit cells
- Reduced damping partition number (smaller energy spread but also slightly larger emittance)

What about a new concept?

a compact, cost-effective and competitive alternative

- **Compact:** laser-plasma acc. + beamline: < 50 m
- Cost-effective: power consumption: < 500 kW</p>
- Competitive: full PETRA IV operation (fill + top-up)

Key challenges:

- Energy gain: 6 GeV
- Energy spread and jitter: < 0.3 % (to maximize charge throughput and stability)
- Charge injection rate: > 2.6 nC/s (to fill the ring in < 10 minutes)
- Availability: > 98% (for the user's satisfaction)

Laser-plasma acceleration technology (LPA) enables a more compact and energy efficient solution

The Plasma Injector: LPA optimization at 6 GeV

Working point 1: optimal case for 50 µm guiding channel

Start-to-end simulation of the optimal case

$$\zeta - \zeta_{\rm ref} = R_{56} \frac{E - E_{\rm ref}}{E_{\rm ref}}$$

Start-to-end simulation of the optimal case

Start-to-end simulation of the optimal case

Start-to-end simulations with realistic jitter

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination – Slide by Alberto de la Ossa

Collective beam parameters

Parameter	After LPA	After ECB
Charge	87 pC	84 pC
Charge spread	9.8 %	10.0 %
Energy	5.999 GeV	6.000 GeV
Energy spread	1.0 %	0.04%
Emittance (x, y)	0.4, 0.2 nm	0.4, 0.6 nm

Emittance is preserved in the horizontal plane

PETRA IV Pre-Project LPA

Demonstrate full-technology chain & asses energy scalability

PIP^{IV:} 6 GeV Plasma Injector

Promising a compact and energy efficient injector technology

Success is based on 3 pillars:

efficient high power Lasers & stable high quality electron beams	6 GeV guiding channels	post-pl energy compre (X-ban
KALDERA G. Palmer M. Kirchen et al.	HOFI R. Shalloo et al.	RF De P. Winkle S. Antipov A. Martine et al.

efficient

Success is based on 3 pillars:

high power Lasers & stable high quality electron beams	450 MeV guiding channels	post-pl energy compre (S-ban
KALDERA G. Palmer M. Kirchen et al.	HOFI R. Shalloo et al.	RF De P. Winkle S. Antipov A. Martine et al.

PETRA IV Pre-Project LPA

PETRA IV Pre-Project LPA

Demonstrate full-technology chain & asses energy scalability

DESY. I.FAST workshop, Kanstune, Warch 72, 2024 Joven Slevers, PETRA IV Technical Coordination – Slide by Paul Winkler

Subject to current planning

a compact, cost-effective and competitive alternative

- **Compact:** laser-plasma acc. + beamline: < 50 m
- Cost-effective: power consumption: < 500 kW</p>
- Competitive: full PETRA IV operation (fill + top-up)

Key challenges:

- Energy gain: 6 GeV
- Energy spread and jitter: < 0.3 % (to maximize charge throughput and stability)
- Charge injection rate: > 2.6 nC/s (to fill the ring in < 10 minutes)
- Availability: > 98% (for the user's satisfaction)

Laser-plasma acceleration technology (LPA) enables a more compact and energy efficient solution

a compact, cost-effective and competitive alternative

Key challenges:

- Avail-'

What about a new concept?

LPA for the long run...

Collimation of DESY II beam for the meantime?

How much worse would the injection efficiency be with DESY II? 20 vs 350 nm-rad emittance

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

[Courtesy S. Antipov]

How much worse would the injection efficiency be with DESY II? 20 vs 350 nm-rad emittance

DESY. I.FAST Workshop, Karlsruhe, March 7th, 2024 Sven Sievers, PETRA IV Technical Coordination

[Courtesy S. Antipov]

To make a long story short...

Summary

To make a long story short..

- With PETRA IV DESY aims to build the largest lacksquare4th generation light source in the world.
- To benefit from the existing infrastructure many parts of lacksquarethe PETRA III complex will be refurbished and reused.
- However, a new booster synchrotron should be built to \bullet meet the requirements of PETRA IV.
- Installing this booster in the existing accelerator tunnel lacksquareposes some challenges.
- In addition the development of an LPA based full energy \bullet injector has started.
- A pre-project with the goal of injecting an LPA beam into lacksquareDESY II is being prepared.
- Decision on injection concept necessary in about 2 years.

Summary

To make a long story short..

- With PETRA IV DESY aims to build the largest ${\bullet}$ 4th generation light source in the world.
- To benefit from the existing infrastructure many parts of lacksquarethe PETRA III complex will be refurbished and reused.
- However, a new booster synchrotron should be built to ulletmeet the requirements of PETRA IV.
- Installing this booster in the existing accelerator tunnel lacksquareposes some challenges.
- In addition the development of an LPA based full energy \bullet injector has started.
- A pre-project with the goal of injecting an LPA beam into ulletDESY II is being prepared.
- Decision on injection concept necessary in about 2 years.

Thank you

Thanks to many colleagues that provided material for this talk.

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Sven Sievers PETRA IV – Technical Coordination sven.sievers@desy.de +49 40 8998 2774