PAUL SCHERRER INSTITUT

Volker Schlott, Paul Scherrer Institut

Diagnostics for LESR Injectors

IFAST Workshop on Injectors for Storage Ring based Light Sources KIT, Karlsruhe, Germany, March 6th – 8th 2024

- Introduction
- Injector Diagnostics Requirements
- Diagnostics Systems
 - ... Overview
 - ... Beam Position Monitors
 - ... Profile Monitors Screens and Synchrotron Light
 - ... Loss Monitors
 - ... Current, Charge and Bunch Pattern Monitors
- Conclusions

Acknowledgements

This presentation is based on discussions and information material provided by many dear colleagues!

Special thanks go to ...:

- ... Cigdem Ozkan-Loch
- ... Jonas Kallestrup
- ... Boris Keil
- ... and PSI mechanical engineering for CAD drawings

Some General Remarks on LESR Injectors

Typical storage ring based light source injectors consist of...

- \rightarrow **a low energy** (up to some hundred MeV) **LINAC**
- → a LINAC to booster transfer line (LBTL)
- → a (full energy) booster synchrotron
- \rightarrow a booster to storage ring transfer line (BRTL)

SRLS injectors are typically operated at a few Hz for...

\rightarrow storage ring filling

(as fast as possible from scratch up to full current)

\rightarrow "top up" operation

(frequent filling to keep the current dead band of a few mA \rightarrow ~10 shots every 5 minutes)

LINAC and Transfer Lines

→ single-shot and shot-to-shot measurements of single bunches and bunch trains

 → provide input for beam dynamics applications to set-up and optimize LINAC (e.g. cathode and gun characterization, emittance and energy spread measurements)

→ **monitoring** of transmission, energy stability and injection points / angles

 \rightarrow allow for beam-based feedbacks to compensate drifts and minimize losses

Booster Synchrotron

- → measurement of orbit along the ramp to allow for orbit correction
- \rightarrow provide tune information along the ramp
 - (tune kicker and turn-by-turn BPM mode or multi-bunch feedback system)

 \rightarrow measurement and monitoring of losses and transmission

PAUL SCHERRER INSTITUT

CEI Overview of SRLS Injector Diagnostics Systems

LINAC and Transfer Lines (LBTL and BRTL)

Parameters	Devices	Measurement Mode(s)	
Bunch Pattern	 coaxial Faraday cup wall current monitor fast current transformer broadband pick-up 	 single bunches and bunch trains at a few Hz tens of ps to a few µs resolution read-out of waveforms by (ultra) fast digitizers and/or oscilloscopes 	
Bunch Charge Beam Current Transmission	- ICT and BCM - BPM sum signal	 single bunches and bunch trains at a few Hz absolute and relative charge measurement 	
Beam Position	 (resonant) stripline and button type BPMs 	 single-shot at a few Hz for single bunches average position for bunch trains 	
Transverse Profile	 screen monitors synchrotron radiation monitors 	 single shot image acquisition at a few Hz tens of mm AoI for beam finding / threading few tens of μm to a few μm spatial resolution for ε-measurement in LINAC and BRTL 	
Beam Loss	- scintillators & PMs - Cerenkov fibers & PMs	 beam loss detection and monitoring at selected locations monitoring of beam loss pattern along transfer lines and injection areas 	

Booster Synchrotron

Parameters	Devices	Measurement Mode(s)	
Beam Current Transmission	- NPCT (MPCT) - BPM sum signal	 sub-ms absolute beam current measurement along the ramp relative current measurement (e.g. turn-by-turn) 	
Beam Position	- button type pick ups	 turn-by-turn beam position for commissioning averaged beam positions along the ramp (lower BW / higher resolution "ramp modes") BPM readings can be used for orbit correction 	
Tune	 dedicated tune pick up tune (stripline kicker) 	- tune measurements along the ramp	
Transverse Profile	 screen monitors synchrotron radiation monitors 	 screens (2) at the injection for position and angle control (30 mm AoI, 100 µm resolution) a few more screens and/or synchrotron radiation monitors for observing beam profiles (in case of trouble shooting) 	
Beam Loss	 scintillator BLMs longitudinal LMs 	 beam loss detection and monitoring at selected locations monitoring of beam loss pattern at injection areas 	

BPMs – LESR LINAC and Transfer Lines

Requirements, Boundary Conditions and Evaluation

- → single-shot and shot-to-shot measurements of single bunches and bunch trains
- → spatial resolution requirements are moderate (~ 100 µm) in LINAC and LBTL but much more challenging (~ 10 µm for low charges (≤ 150 pC) during top -up) in BRTL
- \rightarrow if possible, make use of the same BPM electronics in the injector as for the storage ring

Options	Pros	Cons
Button-type	 make use of similar BPM pick-up HW from booster and storage ring 	 low signal levels & limited resolution for single bunches in top-up mode
Cavity-type	 highest signal levels and potentially best resolution (especially for low charge single bunches in top-up mode) 	 different type of BPM pick-up as in booster and storage ring different type of BPM electronics only limited (linear) meas. range
Matched Stripline	 high signal levels (up to 10 x button-type) large measurement range same BPM electronics in whole facility (but energy / signal level lost in input ringing filter) 	 different type of BPM pick-up as in booster and storage ring
Resonant Stripline	 higher signal levels than MS (10+ x button-type) large measurement range same BPM electronics in whole facility (pick-up res. frequency matches input ringing filter) 	 different type of BPM pick-up as in booster and storage ring

Transfer Line BPMs – Resonant Striplines *

* A. Citterio et al., Proc. DIPAC'09, Basel, Switzerland, MOPD12, p. 71

V.

<u>Schematic and Signal Waveform</u> (one plane)

- resonant frequencies f_M and f_D @ 500 MHz (< 1 MHz BW)
- loaded Q ≈ 7, measured sensitivity ≈ 1.5 dB/mm
- crosstalk (for orthogonal dipole modes) ≈ 0.1%
- beam aperture 38 mm, stripline length tuned to 138.4 mm

For SLS 2.0 BRTL single bunch / single shot position resolution using the turn-by-turn mode of the "DBPM3" BPM electronics and the 500 MHz resonant striplines is in the order of 10 μm RMS for typical top-up charges of 150 pC

BPMs – LESR Booster Synchrotron

- → sufficient number of **button-type BPMs** to be placed in the booster synchrotron for **orbit** and **tune measurement** and **correction**
- → **booster BPM system** should provide **turn-by-turn** and **"ramped-mode"** position data for **injection studies** and **beam orbit measurements / corrections** along the ramp
- \rightarrow spatial resolution requirements are moderate: \mathcal{O} (100 μm) for "turn-by-turn" data and \mathcal{O} (10 μm) for orbit measurements along the ramp (for top-up currents)
- → BPM sum signals can be used as a "turn-by-turn" current / transmission monitor
- → tune measurement is provided by a stripline kicker and a dedicated "turn-by-turn" BPM

Some Examples (from the upgraded ESRF EBS booster*)

* M. Cargnelutti et al., Proc. IPAC'15, Richmond, VA, USA, MOAB3, p.24 N. Carmignani et al., Proc. IPAC'21, Campinas, SP, Brazil, MOPAB051, p. 221

"turn-by-turn" BPM data for injection optimization

→ synchrotron oscillations of the beam entering the booster for three different cases:

blue:	optimized
yellow:	phase mismatch
brown:	energy mismatch

BPMs – LESR Booster Synchrotron

Some More Examples (from the upgraded ESRF EBS booster*)

beam position from all booster BPMs

(position offset of each BPM has been removed)

→ lower bandwidth (increased decimation) provides higher resolution (here x 64 for covering the booster ramp)

booster beam orbit measurement

(beam positions have been taken 20 ms after injection)

* M. Cargnelutti et al., Proc. IPAC'15, Richmond, VA, USA, MOAB3, p.24 N. Carmignani et al., Proc. IPAC'21, Campinas, SP, Brazil, MOPAB051, p. 221

LESR Booster Tune Measurement

Stripline Kicker*

schematic of SL kicker (one plane) and image (two planes)

* From J. Byrd, Stripline Pickups and Kickers, USPAS June 2009

Beam Excitation **

using white noise and increasing kick strength synchronized with beam energy on the ramp

** U. Iriso et al., Proc. BIW'10, Santa Fe, NM, USA, TUPSM073, p. 350

Measurement Example

from the upgraded ESRF EBS booster***

*** N. Carmignani et al., Proc. IPAC'21, Campinas, SP, Brazil, MOPAB051, p. 221

emittance exchange

vertical tune change by \approx 0.1 within 0.7 ms at extraction time of \approx 140 ms

LESR Booster – Beam Profile Measurements

Synchrotron Light Extraction

Emittance Exchange

on the ESRF EBS booster ramp observed by SL profile monitor ***

*** N. Carmignani et al., Proc. IPAC'21, Campinas, SP, Brazil, MOPAB051, p. 221

Synchrotron Light Profiles

** P.C. Chiu et al., Proc. IBIC'15, Melbourne, Australia, MOBLA01, p. 1

LESR Transfer Lines – Screen Monitors

courtesy of Cigdem Ozkan-Loch

Screen Monitors for SLS 2.0 BRTL

a dispersion-free beam path has been integrated in the SLS 2.0 BRTL for $\boldsymbol{\epsilon}$ measurement

	screen monitor for ε measurement	screen monitor for ∆E/E measurement	screen monitor as "beam finder"
minimum beam size	10 μm with ε _h = 2 nm	700 μm with ϵ = 12.5 nm energy dispersion = 0.085%	not defined
screen resolution	< 10 µm	10 μm to measure ∆E/E with 3% precision	10 µm
field of view	20 mm x 20 mm	20 mm x 20 mm	20 mm x 20 mm
charge sensitivity	< 10 pC (@ 2.7 GeV)	< 10 pC (@ 2.7 GeV)	< 10 pC (@ 2.7 GeV)

Optics Set-up for "BRTL ε-Screen"

Light Out-coupling for Ce:YAG

Light Out-coupling for OTR (Scheimpflug geometry)

- → **Ce:YAG screens** as beam finder for low charge beams with limited spatial resolution
- \rightarrow **OTR screens** for high resolution / precision measurements (ϵ and $\Delta E/E$)
- → separate optics boxes at ϵ and $\Delta E/E$ measurement station for high resolution and high sensitivity
- → camera mounted in Scheimpflug geometry to correct for focal plane of OTR screen (@ 45° to beam and camera)

Screen Holder with Ce:YAG and OTR

LESR Screens for Injection and 1st Turn(s)

- screens are not popular nor widely used in storage rings (impedance, heat load...)
- first turn(s) during commissioning can be considered as transfer line diagnostics
 - → one screen directly behind injection septum can be helpful for observing beam position (relative to septum), beam matching and injection point
 - → a second screen in injection straight to adjust the kick / injection angle

SLS Storage Ring Injection

screen monitor to observe injection and 1st turn(s)

screen(s) can be helpful for "trouble shooting" but turn-by-turn BPMs are the working horses...!!!

LESR Injector Diagnostics – Loss Monitors

Localized Loss Monitors – Scintillators and PMT

courtesy of E. Buratin, Kees Scheidt (ESRF-EBS) and L. Torino (ALBA)

BLM operation modes

fast ADC and sufficient buffer provides turn-by-turn (even bunch-by-bunch) options

integration mode provides loss pattern along accelerator and allows "sanity-check" in reference to pre-defined loss rates

over first turns

(e.g. "BLM drift control" in injector and transfer lines can be helpful for stable and reliable "top-up" operation)

LESR Injector Diagnostics – Loss Monitors

Longitudinal Loss Monitors – Cerenkov Fibers and PMT

courtesy of C. Ozkan-Loch (PSI)

- → similar to undulator lines in FELs, a long Cerenkov (quartz) fiber can be placed along the LINAC, transfer lines and booster / storage ring injection regions
- → **beam losses** generate **light pulses** in the **quartz fiber**, which are detected by a **PMT** at one end of the fiber.
- \rightarrow multiple loss locations generate multiple light pulses (\mathcal{O} 10s of ns) per injection trigger
- → a **fast ADC** (> 500 MS/s) digitizes the loss signal as a waveform corresponding to the fiber length or the beam path, which is covered by the LLM
- → the LLM spatial resolution is in the order of 0.5 1 m. loss locations can be "calibrated" by inserting screens valves at known locations along the beam path
- \rightarrow LLMs will be installed in SLS 2.0...:

LINAC – LBTL – booster injection BRTL – storage ring injection

→ LLMs will be used for "injector drift control" in SLS 2.0

LESR Injector: Charge and Current Monitors

- integrating current transformers are absolutely calibrated standard devices for beam charge measurements in LINACs and transfer lines:
 - \rightarrow e.g. ICT / BCM-IHR < 10 pC 1 nC (single bunches and bunch trains)
- parametric current transformers are standard devices for circulating beam current measurements in booster and storage rings:
 - \rightarrow e.g. NPCT 5 (1) μ A / VHz from DC (storage ring) to 10 kHz (booster ramps)
- **real-time determination of transmission efficiency** through injector complex provides important information of injector stability during commissioning and to-up operation
- coaxial Faraday cups, wall current monitors and fast current transformers provide timeresolved information of electron bunches and bunch patterns on a ps to ms scale

<u>SLS LINAC Coaxial F-Cup</u> 90° insertable version

Coaxial Faraday Cup integrated in a CF flange as low energy beam stop

SLS LINAC Gun Emission bunch length and charge as

function of gun bias settings

LESR SLS Booster Diagnostics – **Overview**

- 54 button-type BPMs
- 1 current transformer
- 1 tune kicker (diagonal)
- 1 tune BPM
- 2 screen monitors (at injection)
- 3 screen monitors (around ring)
- 3 synchrotron light ports
- BLMs and LLM at injection

100 MeV LINAC **Diagnostics Systems for SLS Booster** and Storage Ring beam position and orbit - button-type BPMs 2.4 GeV Booster (270 m circumference) transverse profile - screen monitors - synchrotron radiation monitors 2.4 GeV Storage Ring (288 m circumference) current measurement - parametric current transformer tune measurement - button-type BPM - stripline tune kickers (h.v) beam loss - scintillators or Cerenkov fibers - PMTs or CMOS cameras time structure / longitudinal profile - streak camera - filling pattern monitor

LESR Transfer Line Diagnostics

Example: SLS 2.0 BRTL aiming for good SR injection control

- \rightarrow matching from booster synchrotron to storage ring
- → dispersion-free beam path allows for ε and Twiss parameter measurement (strong SITF QFA quadrupoles and SCM-1 in front of B2)
- → high dispersion at location of SCM-2 / BPM-3 allows for $\Delta E/E$ measurement and monitoring of energy stability
- → BPM and corrector pairs in front of thick septum allow for good control of injection point and angle supported by high resolution "witness BPM" (BPM-7) behind thick septum
- → beam loss monitors at selected locations and **longitudinal loss monitor** along BRTL and storage ring injection region to **monitor** and **optimize beam losses** and **loss pattern**

 Injectors are often "re-used", and they are much less challenging than the new or upgraded generation of low emittance storage rings ⁽²⁾ ⁽²⁾ ⁽²⁾

However, ...

- \rightarrow existing diagnostics systems should be improved and/or refurbished
- \rightarrow new or adequate diagnostics systems should be introduced if and where necessary
- High resolution Profile Monitors and BPMs in combination with BLMs are required to...
 - \rightarrow determine beam parameters (e.g. in case of emittance exchange)
 - \rightarrow tune and monitor position and angle of injected beams
 - \rightarrow monitor drifts in LINAC and transfer lines

(especially during "top-up operation)

Thank You !!!

... for your patience and attention ^(C) ^(C) ^(C)

