

The new SOLEIL II MIK design

P. Alexandre

Pulsed Magnet and Power Supply Engineer Injector Technical Coordinator for SOLEIL II Project

> I.FAST 2024 Injectors Karlsruhe 6-8 March 2024

- > The SOLEIL II project & Top-Up injection scheme.
- > New MIK design constraints.
- New MIK engineering features and challenges.
- Future perspectives and work.

- Upgrade project to a 4th generation light source, in the same tunnels :
 - New storage ring.
 - New booster.
 - Refurbished or upgraded transfer lines & LINAC.
 - Upgraded beamlines in several phases.
- Projected electron beam performances :
 - Reduced emittance : 82 pm.rad (vs 3.9 nm.rad today).
 - 500 mA stored / 416 bunches / 2.75 GeV.
 - Transparent Top-Up injection.

• Time frame as of today :

- TDR phase : up to end 2024.
- Construction : 2025 to end 2030 including :
 - > Dark-time : late 2028 early 2030.
- User beam availability : mid-2030.

Preliminary view of a multi-bend achromat cell (7BA) foreseen for the storage ring, with dipoles (bends), reverse bends, quadrupoles, sextupôles, octupoles & correctors. Over 1500 main magnets are expected with a third being permanent magnet based. The current storage ring has 312 main magnets.

Storage ring Top-Up injection scheme

- In red : what beam dynamics group dream of...
- In green : what engineering can offer so far :
 - A peak field at 3.5 mm with quadratic-like distribution.
 - A zero-field region at center with octupole distribution
 - With defect small dipole component and small quadrupole component.
 - Small Bx (horizontal) component for a well aligned magnet.
 - Negligeable Bs component.
 - Aperture large enough for beams, in both planes.

Short summary of specifications				
Peak field value at 3.5 mm	10 mT / kA	9.2 mTm field integral needed		
Magnetic length	150 mm / mag.	limit inductance to allow pulsed operation		
Number of magnets	5	including redundancy for reliable operation		
Residual dipole at center	~ 2 μT	define the transparency of Top-Up injection, including eddy-current induced effects		
Residual quadrupole at center	< 0.1 T/m			

- Re-using the MAX IV type MIK
 - 11.5 kA & 2.4 µs pulse to achieve Top-Up injection @ 3.5 mm kick
 - Local 255T/m gradient.
 - > Workingsvoltage above spec (40 kV).
 - > Gradient detrimental non-uniform kick to injected beam.
- Shrinking the MAX IV type MIK design
 - Moves the peak field location from 10.3 mm to 3.5 mm.
 - Peak magnetinatiand atmetication.
 - > Mechanjcal anarture beammm (V) : not feasible.

MAX IV type MIK onot usable for Top-Up injection in SOLEIL II
 X axis in mm

> Need to create new topologies.

8 conductor topology

Inner conductors (red) : 14 mm square Outer conductors (green) : 20 mm square Aperture : 7.8 mm (V) x 46 mm (H) Length: 304 mm (magn.) / 400 mm (mech.)

- To achieve specifications presented earlier:
 - Maintain a large aperture:
 - 6 mm minimum in vertical aperture:
 - to preserve beam lifetime.
 - to maintain reasonable levels of beam induced heating in the titanium coating.
 - 30 mm minimum in horizontal aperture:
 - to avoid synchrotron radiation from upstream dipole intercepting a ceramic chamber or a conductor.

- Conductors:

- Location to achieve desired magnetic field distribution.
 - no conductor in the mid-plane.
- Maximum of 20 conductors.
 - more conductors could improve field distribution at the expense of inductance.
- All connected electrically in series.
 - to avoid dealing with several pulsers & current pulse identity.

Magnet mechanical design:

- Dissociate conductor assembly from titanium coated liners.
 - easier manufacturing process vs assembly tolerances.
- In vacuum or in air.
 - the more compact the conductors, the more efficient.
- Careful thermal design.
 - constant challenge with ceramic parts in kicker design.

Transverse cross-section

Green dot : stored beam Red dot : injected beam Orange : ceramic plates Dark blue : titanium coating

- 7 new ideas to form MIK topology : A to G.
 - **3 of which are patented in Europe** (and worldwide extension pending).
 - <u>A lot of other topologies did not work....</u>
- The most suitable for our needs is topology D:
 - 12 conductors in series electrically.
 - Aperture : 7 mm (V) x 30 mm (H) (minimum),
 - With no main physical constraint in horizontal plane (advantageous for synchrotron radiation issues.
 - B_y field : 11.5 mT / kA.
 - Zero field region at center : octupole shaped.
 - No dipole component with mechanically perfect magnet.
 - Quadrupole component below 0.1 T/m with mechanically perfect magnet.
 - Other features :
 - Liners with Ti coating mechanically decoupled from the conductor assembly.
 - The zero-field region can be tuned by moving the two outer conductors located at Z = +/- 17 mm, to compensate for some field errors due to magnet mechanical errors.

From colored dots on paper to a fully functional magnet....

- Challenges :
 - Mechanical and thermal design
 - How to manufacture the magnet ?
 - How to cope with the beam induced heat load on an in-vacuum magnet ?

Field tunability

• Quality of the correction of defect field at center and accurately moving an electrical conductor.

Liners and eddy currents

- Liner with coating separate from conductor assembly.
- Transient magnetic simulation to assess effect on the magnetic field distribution.

Voltage withstand

- High voltage pulsed magnet in vacuum.
- Paschen law.

Mechanical and thermal design

- Magnet: 3 sub-components:
 - Conductor assembly.
 - Liners : 0.5 mm thin ceramic plate with coating.
 - General mechanics.
 - Holding everything together.
 - Moving the tuning conductors (flexors).
- Conductor assembly
 - Brazed / bonded wires or deposited (PCB) on alumina or aluminum nitride parts.
 - Accurate machining to position conductors.
- Liners
 - Standard parts : 43 mm x 178 mm x 0.5 mm.
 - Decent flatness : 0.1 to 0.2 mm (or better).
 - Alumina or aluminum nitride with brazed transition parts.
 - <u>Advantage</u> : simple parts to manufacture in large number & coat separately.

Cross-section of half a MIK type D concept

Preliminary mechanical design

- The MIK topology D has no magnetic yoke: magnetic field distribution is only related to the conductor position.
- The zero-field region at center for the stored beam is degraded by:
 - Mechanical errors of positioning of the conductors.
 - Dipole & quadrupole component synchronous with current in conductors.
 - Eddy currents in the titanium coating.
 - Mainly an induced quadrupole.
 - Induced dipole possible for some coating errors.
 - Alignment of the magnet is equally critical...

Field tunability

- Corrected By(x) at center.
- Corrected dBy(x)/dx at center.
- Bx(x) zero at center.
- dBx(x)/dx not well corrected and remains around - 0.3 T/m
- Correction step: 10 µm (x & y) for each tuning conductor

Color code:

Grey: ideal MIK Blue: MIK with error Green: MIK with error corrected

Calculations of sensitivity to errors help justify machining tolerances

- Advantage of aluminum nitride over alumina:
 - Thermal conductivity Al₂O₃: **10 30** W/m/K
 - Thermal conductivity AIN: **150 180** W/m/K
- Both exhibit good dielectric rigidity.
 - 15 to 20 kV/mm, depending on quality & test norm.
- Both compatible with vacuum constraints.
- Using aluminum nitride for conductor support & liners leads to acceptable temperature on the magnets (with pessimistic heat load):

> 500 mA – 14 ps leads to a max heating of ~41°C.

- Transient magnetic simulation using QuickField 2D
- Use of a full model & a half model, with only functional elements.
 - Conductors, w/o mechanical errors.
 - Coatings $(0 5 10 20 \mu m)$, all uniform.
 - Various conductivities of titanium.
- Transient field is mainly a pulsed quadrupole at center.
 - Target is to get this quadrupole below 0.1 T/m at any time, to minimize beam size oscillations.
- Target residual dipole field shall be in the range of few μ T.
- Thickness, resistivity & homogeneity are critical.

- Harmonic decomposition at center for a MIK topology D with 4 cases calculated:
 - Sputtered titanium conductivity (based on experience).
 - Thicknesses of $5 10 20 \mu m$ (and no liner & coating modelled as comparison).

- > Promising results!
- Delicate simulations : feedback
 & discussion welcome!
- Prototype coatings and perform pulsed magnetic measurements to validate simulations.

- Compact design
 - Conductors ~ 2 mm apart & complex connections.
- Sandwich of parts in vacuum
 - Various outgassing levels.
 - Small conductance.
 - > What is the pressure surrounding the conductors?
- Paschen law
 - Arcing voltage depends on pressure and gas type.
 - Existence of a minimum in voltage withstand.
- To add: shapes of conductors, smoothness of surfaces, manufacturing errors in ceramics on a very small object.
- Not straightforward to calculate voltage withstand to access maximum performance of the magnet.

Prototyping !

- So far, the magnet prototypes held ~ 9 to 10 kV in pulsed mode with simulated Ti coated liners.
- Vessel pressure between low 10⁻⁶ and high 10⁻⁹ mbar (baked or unbaked)

How to provide pulsed current with minimal voltage on magnet ?

I _{мік} @ 3 kA	Trad. Cap.	TX Cap.	TX PFL
charging voltage (U ₀)	12.8 kV	11.1 kV	18.8 kV
MIK magnet max. voltage	9 kV	5.9 kV	5.4 kV
rise time (0 – peak)	0.734 µs	1.005 µs	1.173 µs
fall time (<i>peak – 0</i>)	1.036 µs	0.942 μs	0.884 µs

Pulse waveform main characteristic, for a target peak 3 kA in MIK magnet.

Note: injection with MIK is planned on one turn, so fall time should be less than 1 revolution (1.18 μ s) - pulse duration of 2.4 μ s maximum. Required current per MIK for nominal betatron injection is ~ 1 to 1.5 kA, depending on septum blade location. Parasitic components such as stray resistance and inductance as well as losses in cables considered. Voltage margin required for reliable operation.

TX capacitor discharge pulser topology seems the most suitable.

Extensive engineering to bring the design up to life to injection in SOLEIL II storage ring!

Early 2024 : ceramic manufacturer prospection.

No big NO on magnet part feasibility ! Several good recommendations to improve magnet design.

Next steps

Continue prototypes to measure pulsed magnetic field distortion due to eddy current in liners with several Ti coating thicknesses.

Continue pulser design (mechanical integration).

Produce a first of series magnet and test on beam to validate heating simulations.

Thank you for your attention !

Special thanks to the SOLEIL MIK engineering team for bearing with me : R. Ben El Fekih, J. Dasilvacastro, Z. Fan, A. Gamelin, A. Letresor, S. Thoraud, M.-A. Tordeux

Review on non-linear kicker designs throughout time & space. I.FAST 9th Low Emittance Ring Workshop – CERN 13th-16th Feb. 2024 <u>https://indi.to/FvCZT</u>

 \sim

