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Abstract 

The recent emergence of simplified models for general purpose GPU programming has 

led to an explosion in the popularity of GPU accelerated applications development. An 

overview of this phenomenon is presented along with a GPU based parallel 

implementation of the well known RANMAR pseudo random number generator. The 

parallel RANMAR implementation is shown to exhibit up to a 5 fold speed up over the 

sequential version on one system tested. Exhaustive statistical tests were run on the 

numbers produced and a potential weakness in at least two common implementations of 

the double precision RANMAR are discussed. The implementation is integrated with 

Corsika (the widely used, FORTRAN based, high-energy cosmic radiation interaction 

simulation software). Finally, the suitability of generating random numbers using GPU 

hardware is discussed. 
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1 Introduction 

1.1 GPGPU Background 

General purpose programming on GPUs began around 2001 with the arrival of the first 

GPUs with programmable graphics pipelines
1
. Researchers were quick to spot the 

potential of using the raw computational power (figure 1) of the GPU in solving non-

graphics problems - but the original programming models were unwieldy. In essence, 

early GPGPU
2
 programming required the recasting of problems in terms of GPU 

rendering pipeline stages, such as vertex or fragment shading. This was not only 

inconvenient but it meant that the set of problems that could be practically solved using 

GPUs was greatly limited. This in turn meant that for several years, GPGPU 

programming remained the preserve of determined researchers only.  

This picture has been rapidly changing due to a number of parallel developments. Firstly, 

in recent years simpler GPU programming models have emerged, including: Close To 

Metal (2006), CUDA (2007) and OpenCL (2008). These models now allow programmers 

to concentrate on the problem domain under consideration by treating the GPU as a 

general purpose parallel SIMD processor and using familiar high level language bindings 

such as C or Python. Secondly, over the same period, GPU hardware has advanced 

broadly in line  with Moore’s law [3] [18] so much so that it is now possible to buy 

reasonably priced consumer grade GPU hardware providing teraflop range (peak) 

performance (e.g.: NVIDIA GeForce GTX 480, Radeon HD 5870).  

  

Figure 1.  An NVIDIA illustration [25] of the potential computational power of the CPU 

by showing the relative ALU densities between CPUs and GPUs 

                                                 
1
 NVIDIA’s GeForce 3 in 2001 and ATI’s Radeon 9700 in 2003 

2
 General Purpose Programming on Graphics Processing Units (GPGPU) 



An Exploration of General Purpose Programming on GPUs  Michael Fergus McCann 

8 of 47  15 April 2011 

Thirdly, there has been on ongoing computing technology trend away from sequential 

programming environments to multi- and many-core computer systems [7], [8], [9] and 

[10]. This has further driven the uptake of general purpose GPU usage. 

The shift away from single core commodity systems began around 2003 when it became 

harder to fabricate processors that worked reliably at clock speeds in excess of 3.5GHz. 

Power dissipation also became an issue and ultimately manufacturers decided that the 

marginal gains achieved through hard won clock speed increases were not cost efficient. 

As others soon after observed, “The major chip manufacturers have, for the time being 

simply given up trying to make processors run faster” [10]. This marked the beginning of 

what has been described as two separate microprocessor design trajectories: the multi-

core and many-core trajectories [9]. The multi-core trajectory, aimed at optimising 

sequential programs, involved casting multiple processor cores on the same chip, each 

one capable of running its own instruction stream. The many-core systems (such as 

GPUs) aimed at optimising parallel programs by providing a far greater number of 

smaller cores, capable of running only one instruction stream. These systems were also 

designed to specialise at performing data parallel compute intensive applications and so 

dedicated more of their of chip transistors to computation and rather less to flow control 

and caching as depicted in figure 1.  

In summary, the simplified programming models, the performance characteristics and the 

highly parallel nature of many-core GPU hardware has been driving the increased 

prevalence of GPU programming in recent years. While it cannot be said that GPU 

programming is an area familiar to most working software engineers, the current 

abundance of published material (e.g.: [3], [4], [5], [16] and the series starting at [6]) 

related to general purpose programming on GPUs as well as the wide application of 

GPUs to non graphics problem domains [15] suggest that GPU programming is ready to 

become mainstream. 

1.2 Project Outline and Goals 

Primarily, this is a project about general purpose programming on GPUs. Reports abound 

of orders-of-magnitude speed ups being achieved by porting sequential algorithms to 

commodity parallel GPU hardware (for some examples see [17]). Motivated by such 

reports, this project aimed to investigate a real world problem to see if GPU acceleration 

could provide a cost effective speedup to a particularly lengthy computation. Specifically, 

a UCD School of Physics research group performing Monte-Carlo simulations of cosmic 

radiation interactions with the Earth’s atmosphere (using Corsika [21] and [22]) found 

that up to 80% of the simulation time was spent generating random numbers. This project 

implemented a GPU accelerated version of their pseudo random number generator – the 

RANMAR as described by Marsaglia in [12] and in a slightly modified form by James in 

[13].  

The RANMAR implementation presented here is original in the sense that no reference 

could be found to any existing CUDA implementation (NVIDIA’s programmable GPU 

architecture) and while an implementation for ATI graphics cards was found [14] and 

[23], the approach described here is more sophisticated. The adaptation of the algorithm 
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for parallel processing and the development process including all attendant challenges are 

presented along with a statistical validation of the random numbers sequences produced. 

Next, a performance comparison between the new GPU implementation and a sequential, 

CPU based implementation are described in detail. Finally, and for further comparison 

purposes, the statistical validation process is applied to the existing double precision 

RANMAR algorithm found in the Corsika simulation package. Some suspicions about 

the approach taken in Corsika (and also in the CERN program library) are presented. 

Based on the research and implementation experiences conclusions are drawn about the 

relative accessibility and applicability of using graphics processors for solving non 

graphics problems. 

2 The Problem Domain 

While the introductory paragraphs have already made clear that the implementation 

aspects of this thesis involve GPU accelerated random number generation, it is important 

to understand the motivations behind the choice of problem. In a way, this project began 

life as a solution looking for a problem, that is, it began with an awareness of the 

potential power of GPUs and a desire to solve a real world problem. The high energy 

astrophysics research group in the U.C.D School of Physics provided such a problem and 

at the same time, a collaboration opportunity. In order to fully understand this project’s 

motivations, the following paragraphs explain the motivations of the astrophysics 

research group and their desire for any possible acceleration of their cosmic radiation 

Monte-Carlo simulations. 

2.1 The Role of Monte-Carlo Simulations in Cosmic Ray and 
Gamma Ray Astronomy  

2.1.1 Introduction 

The Earth is continually bombarded by high-energy particles (known as cosmic rays) and 

photons (gamma rays), with energies orders of magnitude greater than those of CERN's 

LHC
3
 experiments. The quest to determine the sources of this cosmic radiation is almost 

100 years old – dating since its discovery by Victor Hess in 1912. While the Earth's 

atmosphere provides shielding which protects the surface from this harmful radiation, it 

also provides an indirect mechanism to detect and study the very high energy cosmic rays 

and gamma rays by detecting and studying the secondary showers of relativistic particles 

("extensive air showers") that are created when the high energy cosmic radiation interacts 

with the earth’s atmosphere. In the last two decades a new branch of astronomy has 

emerged, that of TeV
4
 gamma ray astronomy – this research field involves the detection 

                                                 
3
 Large Hadron Collider – interested readers can get an overview of its history and the kinds of experiments 

performed at CERN at http://en.wikipedia.org/wiki/Large_Hadron_Collider 

4
 TeV = tera-electronvolt 

http://en.wikipedia.org/wiki/Large_Hadron_Collider
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of the secondary particle showers in the atmosphere, and the development of techniques 

to discriminate gamma-ray induced showers from cosmic ray induced showers. There are 

currently three state of the art TeV observatories in operation (VERITAS in Arizona, 

MAGIC in La Palma and HESS in Namibia). Between them these operations have 

detected over 110 astronomical sources of TeV gamma rays and Monte Carlo simulations 

of extensive air showers are critical to the success of these observatories. 

2.1.2 Extensive Air Showers and TeV Gamma-ray Astronomy 

When a gamma ray of sufficiently high energy (>1~ GeV, about 1,000,000,000 times 

more energetic than a visible photon) interacts with the atmosphere it induces an 

electromagnetic cascade, that is, a shower of hundreds/thousands of electron-positron 

pairs and gamma rays. The development of such a shower of particles in the atmosphere 

is determined by the physics of pair production (where gamma rays interact with matter 

to transform into electron-positron pairs) and Bremsstrahlung (where energetic particles 

interact with matter to emit high-energy photons) and is a statistical process. Cosmic ray 

particles also induce air showers, but these are quite different in structure due to different 

physical mechanisms involved. Even though the shower of particles dies out before it 

reaches ground, an air shower can be detected via the Cherenkov radiation [20] that is 

emitted as the particles travel relativistically through the atmosphere. The early attempts 

at detecting gamma rays from these Cherenkov flashes of light form air showers proved 

very difficult as the small gamma-ray signal is overwhelmed by the background of 

cosmic rays. The key breakthrough in the field of TeV gamma ray astronomy came with 

the development of 'imaging', where a photomultiplier tube (PMT) camera is used to 

record an image of the shower development in the atmosphere. The images are analysed 

off-line to produce a set of parameters (e.g.: length, width etc.) that characterise them. 

Monte-Carlo simulations of thousands of gamma ray and cosmic ray induced air showers 

are used to derive 'cuts', selection criteria that distinguish between gamma-ray and cosmic 

ray induced showers. This technique was used for the first detection of a TeV gamma ray 

source, the Crab Nebula [19] and since then the field has flourished. Modern TeV 

observatories use arrays of imaging telescopes, and as no calibrated source of TeV 

gamma rays exists in nature, all information derived about the gamma-ray emission from 

astronomical sources is totally dependent on Monte-Carlo simulations of: 

 The air-showers 

 Propagation of Cherenkov photons through the atmosphere 

 Reflection off the mirrors and detection by the photomultiplier tubes.  

The response of the trigger and digitisation systems must also be included in these 

simulations. 

2.2 UCD High Energy Astrophysics Group and VERITAS 

The Very Radiation Imaging Telescope Array System (VERITAS) is an array of four 12 

metre diameter imaging atmospheric Cherenkov telescopes for TeV gamma-ray 

astronomy. It is located in southern Arizona, and has been in full scientific operation 

since autumn 2007. The high energy astrophysics group at UCD is a member of the 

VERITAS collaboration, which has 94 members from 24 institutions in the USA, 
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Canada, UK and Ireland. Each telescope contains a 499-pixel photomultiplier-tube 

camera and a three-level trigger system is used to determine whether events should be 

recorded. Images from the PMT cameras are digitised by a 500 MSPS flash ADC system 

and analysed off-line. Within the collaboration, the Monte Carlo Simulation Working 

Group provide simulations of the response of the VERITAS to gamma-ray and Cosmic 

Ray-induced Air Showers, which are vital to understanding the performance of the array 

and producing scientific results. Monte Carlo simulations of air showers and instrument 

response are performed on clusters of computers and take months to run therefore, the 

implementation of mechanisms to speed up this process is highly desired by the 

collaboration because instrumental or atmospheric changes (e.g.: the atmospheric 

transmission in Arizona in 2008 changed dramatically due to forest fires) require new 

Monte Carlo simulations to be generated which holds up image analysis. 

2.3 CORSIKA 

The first step in identifying ways to potentially speed up simulations was to look at the 

simulation software. Corsika [21], [22] is the software package used by the VERITAS 

collaboration to perform their simulations. It is a very widely used, open source, mainly 

FORTRAN based, cosmic radiation interactions simulation package. By profiling 

simulation runs, the UCD astrophysics group have determined that the random number 

generation aspect of the Monte-Carlo simulations tends to dominate the run-time. 

Therefore, RANMAR [12], the random number generator used by Corsika was the 

chosen area for potential GPU acceleration. 

2.4 The RANMAR Pseudo Random Number Generator 

The RANMAR pseudo random number generator of Marsaglia, Zaman and Tsang [12] 

consists of a combination of a lagged Fibonacci generator (LFG) and a simple arithmetic 

sequence. The general form of an LFG, describing how to generate the rth  element of 

the random number sequence, for a given binary operation   and lags i  and j  is given 

by: 

jrirr xxx    

For RANMAR, as originally described, we have the following specific LFG: 

{ yx if yx   then yx  , else }1 yx  

97i , 33j  

When used with 24 bit fractions, this sequence is equivalent in period and structure to an 

integer LFG with lags i  and j with operation subtraction modulus 242 . This gives a 

theoretical maximum period of 9624 2)12(  . Marsaglia et al point out that this LFG, 

assuming adequate assignment of the initial 97 seed values, provides a pseudo random 

number sequence that is almost good enough (i.e.: has a long period and appears 

sufficiently random) but that it fails the “birthday spacing test”. For this reason, the 
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RANMAR combines the LFG with a simple arithmetic sequence for the prime 

modulus 167772133224  . The sequence is defined as follows. For a sequence with a 

current value nc  the next value in the sequence 1nc is given by: 

dcc nn 1  

where: 

{dc  if dc   then dc  , else }16777216/16777213 dc  

16777216/3624361 c  

16777216/7654321d  

The combination of the LFG and the arithmetic sequence is then performed such that for 

an LFG sequence and arithmetic sequence respectively given by: 

nxxxx ,,, 321  

ncccc ,,, 321  

We produce the final (uniformly distributed) random number sequence: 

,,, 321 UUU     where nnn cxU   

The assignment of the initial 97 values for the LFG are of paramount importance and 

rather than impose that responsibility on the end user, Marsaglia et al provide an 

algorithm to generate their values from just 4 user provided seed values while James [13] 

while working for CERN, modified it very slightly, reducing the number of required 

seeds to 2. The algorithm, in an effort to remain machine portable, generates these values 

on a bit by bit basis, up to the supported 24 bits. James further draws attention to a very 

useful feature of the RANMAR which is the ease with which a user can generate multiple 

independent pseudo random number sequences. Considering his system of providing two 

seeds, there are 31329 possibilities for the first seed and 30082 possibilities for the 

second seed, with each combination (>942 million) giving rise to an independent, non-

overlapping sequence with an average period of 3010 .  

2.4.1 Extension to Double Precision 

The RANMAR as just described generates floating point numbers of single precision, 

that is, numbers using only a 24 bit mantissa (any other available mantissa bits would 

remain zero). This is because the initial values in the LFG and the elements of the 

arithmetic sequence are all initialised with 24 bits and consequently all additive and 

subtractive combinations of these values as per the RANMAR algorithm will still only 

have 24 bits. The implementation used in Corsika (and in its previous incarnation written 

by James as part of the CERN program library [24]) generates double precision floating 
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point numbers, using a 48 bit mantissa. The change to support this was trivial, simply 

requiring the initialisation routine to generate 48 bits fractions for the initial 97 LFG 

values instead of 24 bit fractions. Given that the LFG initialisation algorithm generates 

each bit value individually, all that was required was to loop 48 times instead of 24 times. 

It is noteworthy that both the CERN program library implementation and the Corsika 

implementation decided that converting the LFG component of RANMAR to use 48 bits 

was sufficient. The arithmetic sequence remained 24 bit. This means that the lower order 

24 bits of elements of the LFG always remain unperturbed when the LFG is combined 

with the arithmetic sequence. Given the concerns expressed by Marsaglia et al about the 

randomness of the LFG on its own, it is possibly of concern that at least two widely used 

48 bit RANMAR implementations only apply the arithmetic sequence to the high order 

24 bits of the LFG. Further investigations into this aspect of the double precision 

implementation are presented later. 

3 GPU Programming and CUDA 

3.1 Background 

As discussed in the introduction, GPU programming has been greatly simplified since the 

introduction of programming models that present the GPU as a general purpose SIMD
5
 

like processor with a rich API. While some GPU software architectures have come and 

gone – at the time of writing there are really only two options available: CUDA and 

OpenCL. CUDA is the NVIDIA proprietary model that works with NVIDIA GPUs only
6
. 

OpenCL is an open GPU programming framework originally developed by Apple but 

currently belonging to the collaborative standards organisation – the Khronos group. 

Despite OpenCL being standardised and supported by both NVIDIA and AMD/ATI GPU 

drivers it has not yet achieved the same popularity as CUDA. This is primarily because 

CUDA has been around longer and is therefore mature, stable and trusted, especially 

among the HPC community. For these reasons and because of the easy availability of 

documentation and an internet support ecosystem, this project decided to perform its 

implementation of the RANMAR using CUDA. 

                                                 
5
 Although the CUDA model is frequently described as SIMD, it is, in reality SPMD, which allows 

different instructions from a single instruction stream to be executed concurrently on different processing 

units. 

6
 CUDA has recently added support for x86 CPUs, exploiting available multi-cores or SSE. It will still not 

support AMD/ATI GPUs however.  
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3.2 The CUDA Model 

 

Figure 2. The CUDA Architecture (taken from [25]) 

The CUDA architecture supports the development of GPU applications using a choice of 

languages or APIs. CUDA C, which is based on C (with some small extensions) is of 

most interest in this project as it is used in the RANMAR implementation, but Fortran 

would also have been possible as would use of OpenCL (also based on C). The CUDA 

programming model can be understood at a high level by considering the areas outlined 

in the following sections: 

3.2.1 The CUDA C Coding and Compilation Model 

A CUDA C program utilising a GPU will consist of C code to be run on the CPU and C 

code to be run on the GPU. The code for both can reside in the same translation unit or 

they can be separated according to developer preference. The CPU (host) code provides 

the program entry point and overall program logic while the GPU (device) code consists 

of one or many “kernels” which are C functions that can be run on the GPU. The overall 

program execution must begin and end on the CPU, and the CPU code is responsible for 

making calls to the GPU kernels. Kernels may call other kernels, but they cannot make 

calls back to the CPU. 

The extensions to the C language to enable this model are minimal. A device kernel is 

differentiated from a normal host function by adding a simple prefix (“__global__”) to its 

signature. Host code calls kernel functions using a new triple-chevron notation that 

specifies the kernel name and the number of kernel instances that are to be concurrently 

run (see sample code in figure 3). 

When ready to compile, the CUDA C compiler separates the device code from the host 

code and generates either architecture specific binary files (cubin format) or architecture 

independent PTX assembler code that can be run on the GPU. The compiler also inserts 

kernel calls into the host code binding the two code domains. Once the host and device 

code are separated, the host code is compiled with the normal native C/C++ compiler and 

linked against the CUDA runtime library. 
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Figure 3. Sample code showing a kernel that adds 2 vectors and its invocation 

3.2.2 The CUDA Task and Data Parallelisation Model 

As can be seen from the sample code in figure 3, the kernel invocation call specifies the 

number of threads to run. In that example, 100 threads were specified (while the other 

argument specifies that there should be 1 thread block). A form of task parallelisation is 

achieved by specifying a kernel be run in multiple blocks, but the tasks in each block 

must be independent because there are no synchronisation primitives available across 

blocks. For each block, the number of required threads is specified, and synchronisation 

mechanisms are available between threads in the block. This allows for the 

implementation of solutions to typical data parallel problems.  

Kernel execution instances have access to their individual thread index via the build in 

variable threadIdx. They also have access to the index of the thread block in which they 

are running via the built in blockIdx variable. This allows kernel threads, in classic data 

parallel fashion, to access the specific area of a problem for which they have 

responsibility. 

When the RANMAR implementation is explained in the next chapter, the use of both 

multiple blocks and multiple threads are used in order to maximise GPU use and in turn 

RANMAR performance. 

3.2.3 The CUDA Memory Model 

One of the largest performance related GPU programming factors is the pattern and types 

of memory usage. The following briefly explains the CUDA memory hierarchy because 

an understanding of this is of importance in the RANMAR implementation. 

3.2.3.1 CPU RAM 

In the context of a CUDA program, CPU RAM is available to the GPU in one of two 

ways: 

 Data residing in CPU RAM is explicitly copied to GPU global memory by host code 

before making kernel calls. This is the most common pattern. 

 Host code can explicitly allocate page-locked CPU memory which can then be accessed 

from the GPU using DMA. 

// Kernel definition  

__global__ void myKernel(double* x, double* y, double* z)  

{  

    int tid = threadIdx.x;  

    z[tid] = x[tid] + y[tid];  

} 

// Usual CPU entry point 

int main()  

{  

    ...  

    // Execute myKernel on GPU with 100 threads  

    myKernel<<<1, 100>>>(a, b, c);  

} 
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3.2.3.2 GPU Global memory 

This is the largest area of NVIDIA GPU memory - it is typically implemented with off-

chip DRAM and it is the slowest GPU memory (hundreds of clock cycles). Any copy 

issued from host code will copy data into this area of memory. Global memory is 

readable and writable by all thread blocks and threads running on the GPU. Data in 

global memory persists across kernel calls and so can be used to maintain state with a 

lifetime exceeding a kernel execution.  

3.2.3.3 GPU Local memory 

Local memory is somewhat of a misnomer as it is actually global memory. Device code 

with automatic array variables (called local memory) will actually use the same DRAM 

global memory as per section 3.2.3.2, except the scope of the variable is thread local and 

the lifetime is that of the kernel invocation. 

3.2.3.4 GPU Shared memory 

Shared memory is low latency on-chip memory that is shared among all threads in the 

same thread block. It therefore offers a performance viable mechanism for collaboration 

between threads in a thread block. Variables in shared memory persist only for the 

duration of the kernel execution and as already explained, have thread block scope. 

3.2.3.5 GPU registers 

GPU register memory is also low latency on-chip memory. It has thread scope and it 

persists for the duration of the kernel only. All automatic scalar variables in kernels are 

placed in registers by default. 

3.2.4 The CUDA Program Flow Model 

While CUDA programming may vary considerably according to problem complexity, the 

most common program flow is as follows: 

1. Launch host program 

2. Host code allocates memory on GPU device using CUDA allocation 

primitives. 

3. Host code copies any data required by the GPU from CPU RAM to GPU 

global memory (although as already discussed, DMA from the GPU is also 

possible). 

4. The host invokes a kernel specifying number of thread blocks and the number 

of threads in each block. 
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5. The device kernel executes, according to its algorithm, potentially using 

shared memory, constant memory or texture memory
7
. 

6. The device kernel makes its results available in GPU global memory before 

returning control back to CPU. 

7. The host code copies result data from GPU global memory to CPU RAM. 

The GPU RANMAR implementation presented in this thesis matches this standard 

program flow matches almost exactly. 

4 Parallel RANMAR Using a CUDA GPU 

In order to implement RANMAR for a CUDA GPU environment the sequential 

algorithm described by Marsaglia et al must be parallelised in some fashion. There would 

be little point in replicating the algorithm exactly on the GPU because that would be akin 

to treating the GPU as another (slower) CPU. The following sections describe the 

approach that was taken and detail the challenges and limitations encountered. 

4.1 Parallel RANMAR Design 

There are three mechanisms for parallelising random number generators discussed by 

Coddington in [26]. These are: 

1. Leapfrog: This is a mechanism where the random number sequence generated is 

the same no matter how many processors are employed. It is useful where 

programs utilising a random number sequence wish to get the same numbers 

every test run despite the number of processors potentially varying. Note that it is 

also useful in current context, when implementing a new parallel algorithm and 

where one wishes to validate the algorithm by comparing the generated values 

with those generated by a reference sequential implementation. The method 

works in a parallel system of N  processors, where each processor generates 

every thN  sequence element. This can also be expressed more succinctly by 

stating that the thP  processor generates the sub-sequence: 

,....,, 2NPNPP XXX   

Of course this approach is only suitable when it is possible for processors to skip 

ahead in the random number sequence to those numbers for which they have 

responsibility. As we shall see an LFG with sufficient lags and an arithmetic 

sequence are candidates in this regard. 

                                                 
7
 Constant and texture memory are other off-chip memory options - designed for specialised access 

patterns. For a detailed explanation on these and all CUDA related issues, refer to [1] and [2] 
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2. Sequence Splitting: This is a mechanism similar to the leapfrog except where 

each processor generates a block of contiguous sequence elements before 

skipping ahead and generating its next block. In a system of N processors and for 

a block size of L , the thP  processor generates the sub-sequences: 

,...,...,...,,, 2121 PLLPLPLPLPL XXXXX   

As with the leapfrog method, sequence splitting requires a number generator that 

allows processors to skip ahead in the random number sequence. This method 

shares the same advantage as the leapfrog in that the same sequence is generated 

regardless of the number of processors in the system. 

3. Independent Sequences: This is perhaps the most intuitive approach because it 

simply involves using multiple independently seeded random number sequences 

presented to the caller as a single sequence. Each processor either populates some 

target random number array in a fashion similar to the leapfrog method (that is 

every thN  element) or it populates the target array in blocks similar to the 

sequence splitting method. Ultimately, because an independent sequence is 

generated by each processor, the combined random number sequence will depend 

both on the number of processors in the system and the manner in which the sub-

sequences are combined. 

The parallelisation of RANMAR was achieved using both the leap frog and independent 

sequences methods. The following sections describe the specific nature of the design. 

4.1.1 RANMAR Parallelisation within a Single Sequence (Leapfrog) 

In this section the design employed to realise a leapfrog style parallelisation of the 

RANMAR is presented. It is noteworthy that no example of such an implementation 

could be found during the research phase of this project and therefore it is this aspect of 

the parallel RANMAR that differentiates it from the ATI implementation found in [14] 

and [23].  

For any RANMAR sequence’s current state, it is always possible to generate a certain 

number of subsequent random numbers concurrently. This is because of the specific 

properties of the RANMAR generator - in particular, the fact that it is made up of an LFG 

with lags convenient for parallelisation and that the other component is a simple 

parallelisable arithmetic sequence. Taking the LFG component first of all - with lags of 

97 and 33, it is possible to generate the next 33 elements of the LFG component 

concurrently because there is no dependency between these next 33 values and the values 

needed to compute them. In order to see this, consider the initial state of the LFG, which 

is a buffer of size 97 which can be thought of as holding the first 97 values. In order to 

calculate the 98
th

 value, the values at position 1 and position 65 must be combined (i.e.: 

using the particular lags as mandated by the RANMAR definition, 98 – 97 and 98 – 33). 

It is easy then to see that there would be no reason why the 99
th

 and 100
th

 element in this 

sequence could not be calculated at the same time as the 98
th

 because there are no inter-

dependencies in these calculations. 
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Figure 4. The parallelisation of a single RANMAR sequence 

In fact the parallelisation in the LFG can be extended all the way up to the 130
th

 element 

(which depends on the 97
th

 and 33
rd

 elements). However, this exhausts the opportunities 

for parallelising the LFG because generating the 131
st
 element in parallel would require 

the 98
th

 element which may or may not be available. In implementation terms, the buffer 

illustrated in figure 4 is actually circular so that the newly computed 98
th

 element of the 

sequence is placed in the array in position 1 and the 99
th

 value is placed in position 2 and 

so on. The essential aspect is that at any time, the next 33 elements in the LFG sequence 

can be computed simultaneously and that an individual thread could be assigned to each 

of these computations. 

The second component of the RANMAR is the arithmetic sequence. While it is described 

by Marsaglia et al [12] as a “simple arithmetic sequence for the prime 

modulus 167772133224  ” it actually presents some difficulties for parallelisation. The 

specific parameters characterising the sequence have already been explained and a 

sequential realisation is trivial to implement. This is because in order to generate the next 

element in the sequence all that is required is a simple manipulation of the current 

element. For a parallel implementation however, we need a method such that, for any 

current element nc  we can generate some later element xnc  . Initial attempts to find such a 

method using floating point arithmetic (as in the sequential version) proved fruitless 

because they necessarily involved floating point multiplication and modulus operations 

95 96 97 1 2 3 65 66 67 …… ……

……. 

98 

……

……. 

……

……. 

95 96 97 1 2 3 65 66 67 98 99 100 

95 96 97 1 2 3 65 66 67 98 99 100 ……

……. 

130 ……

……. 

33 ……

……. 

……

……. 

(i) The 98
th

 element is computed by combining the 1
st
 and the 65

th
 element 

(ii) The 98
th

, 99
th

, 100
th

 … element computations have no inter-dependencies 

(iii) The possibilities for concurrent computation extend to the 130
th

 element 
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which introduced the usual floating point inaccuracies
8
. Instead it was necessary to use 

integer arithmetic for the sequence calculations (none of which require a division) and to 

divide by 242 at the end to convert back to a 24 bit fraction. For the integer calculations, 

all values are the same as per the RANMAR specification, except they are shifted 24 

binary decimal places to remove their fractional part. The eventual solution to the 

parallelisation of the arithmetic sequence is described in the algorithm presented in figure 

5. 

 

 

 

 

 

 

Figure 5. Algorithm for the first pass of the (single precision) RANMAR arithmetic 

sequence 

Note that the algorithm presented describes the first pass calculation. To understand the 

complete algorithm, say we have 32 threads (as we shall see later, this is in fact the 

chosen number of threads) and we wish for each thread to calculate 1 of the next 32 

elements of the sequence simultaneously, such that thread 1 computes the next value, 

thread 2 computes the next plus one and so on. When the generation process starts, these 

first 32 values constitute the first pass whereby all threads calculate relative to some 

common starting value ( nc  in the algorithm in figure 5). For subsequent elements 

however each thread can calculate its next assigned element relative to the value it just 

computed. In other words, it works by always calculating the value of the sequence 32 

positions from the thread’s current position (assuming there are 32 threads of course). 

Taking some thread, say thread j we would have the following: 

(i) Thread j in its first pass will calculate relative to nc using a value of jx  as per 

the algorithm in figure 5. 

(ii) Thread j will then store privately the value computed and from its point of view it 

will view this as the current value of the sequence. 

                                                 
8
 These approaches may have actually yielded acceptable random number generators, but they would not 

have been bit for bit RANMAR generators so they were not pursued. 

 The current thread identifies the current sequence value (that is the value nc ) and 

the offset to the element that it is expected to compute (that is x ) 

 The current thread then performs the following on nc : 

o Subtracts dx.  (equivalent to x subtractions) 

o Performs the modulus 3224  operation 

o If the value is less than zero, add 3224   

 Finally the answer is converted to floating point and divided by 
242  
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(iii) Thread j will calculate its next sequence element relative to its own “current 

value” but using a value of 32x  (that is, every thread is computing every 

32nd value of the overall sequence) 

This distinction between the first and subsequent passes constitutes an important 

optimisation, because without it, each thread would have to calculate relative to a 

common sequence value. This would mean having to synchronise all threads after each 

had computed their value and then having the last thread update some shared memory 

location with the “furthest” last value computed. Apart from concerns over the 

synchronisation aspect, the need to write to (and read from) shared memory means a 

performance penalty (over using purely thread local registers) and only having a single 

thread do this requires thread divergence (threads taking different code paths) which in 

GPU programming is generally highly undesirable, again for performance reasons. 

Instead, with the described algorithm, once started, each thread can keep generating 

sequence values without synchronising or sharing data with other threads. While this 

approach describes an embarrassingly parallel computation, the arithmetic sequence 

cannot be considered in isolation. It must be combined with the LFG component of the 

RANMAR and therefore synchronisation points are still required. However, the 

optimisation is still valid because of the savings in shared memory access.  

4.1.2 RANMAR Parallelisation Using Multiple Independent Sequences 

The second method of parallelising the RANMAR is to have several independent random 

number sequences generated simultaneously and to have their results gathered into a 

single resultant sequence. The RANMAR, as pointed out by James in [13] lends itself to 

this because it is extremely easy to generate large numbers of independently disjoint 

sequences. In particular and as mentioned earlier, there are approximately 942 million 

sequences available with an average period of 3010 .   

There are no particular challenges in implementing such an approach apart from two 

implementation considerations. Firstly, a decision was required on the method to be used 

for combining the independent sequences into the single output sequence. One element 

influencing this decision was the ultimate statistical quality of the combined sequence. 

Coddington [26] points out that combining multiple high-quality random number 

sequences into a single sequence will produce another high-quality random number 

sequence as long as the sub-sequences are seeded correctly and do not overlap (thereby 

introducing possible correlations). Given the fact that RANMAR’s strength is in easily 

generating disjoint sub-sequences this issue was less of a concern (although as discussed 

later, the theory was validated using statistical software packages for testing random 

number sequence quality). The combination strategy ultimately chosen was: in a scenario 

where N random numbers are required from P  processors, each processor iP  would 

generate PN /  random numbers from its own sequence and assuming N is divisible by P, 

would populate an output random number array X as follows: 

1)1(.
...




P

N
i

P

N
i

i XXP      where  1..0  Pi  
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Or, by example: in a system where 10 processors are required to generate 100 random 

numbers, each processor generates 10 numbers from its own sequence. Processor 1 

populates the first 10 numbers in the output array - processor 2 populates the second 10 

and so on – processor 3 populates the third 10 and so on. 

The second implementation consideration was around the seeding mechanism. In order to 

generate independent sequences for each processor, seeds are required for each one. It 

seemed unwieldy to require users to provide all these seeds - therefore a design decision 

was taken to keep the existing interface (that is, as per the RANMAR implementation in 

Corsika) and only require that the user provides 2 seeds - regardless of the number of 

independent sequences they require. The approach then taken was that the second user 

provided seed would be incremented by 1 internally (wrapping as necessary) before 

initialising each independent sequence.  

4.2 Comparison of Design with Existing Schemes 

As already discussed, an existing ATI graphics card implementation (Demchik in [14] 

and [23]) was discovered during the research phase of this project so it is perhaps 

instructive to compare his design with the current design. Quite apart from the fact that 

the design presented here is based on the CUDA (NVIDIA) architecture, there are other 

design differences that warrant further discussion. The primary difference is that the 

application of the “leapfrog” parallelisation strategy is unique to this implementation. 

Demchik uses the multiple independent sequences approach alone, but because of the 

nature of his problem, this was reasonable. His random number generator was part of a 

larger GPU computation where each GPU thread was allocated its own RANMAR 

sequence. Because of this, other differences arise between the two designs – for example, 

Demchik had no need to store the generated random numbers on the GPU and neither 

was he required to transfer them to CPU RAM. In contrast, the goal of the project 

presented here is to produce a general purpose random number generator for use by a 

CPU based simulation. Therefore there was no way to avoid the transfer of random 

numbers back to the CPU. 

The leapfrog method was deemed appropriate for this project for the following reasons; 

1. Because the GPU based RANMAR implementation is intended to replace an 

existing sequential implementation, there are likely repeatability requirements 

whereby the GPU RANMAR will be expected to generate exactly the same 

random number sequence as the sequential version. This is only possible when 

using a single RANMAR sequence. A single GPU thread generating that 

sequence would be prohibitively slow because it would have the normal 

RANMAR overhead along with the GPU call and data transfer overhead also. 

Additionally, GPU clock-speeds are generally substantially lower than those of 

CPUs. A single GPU thread would also be very wasteful, when one considers the 

processing power generally available on a GPU. On the other hand, a leapfrog 

approach to the RANMAR allows 32 GPU threads to cooperate in the generation 

of a single RANMAR sequence which at least means better use of the GPU 

computational capacity. 
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2. There is a larger memory footprint required of the purely independent sequences 

approach. This is because each sequence (which equates to each thread) needs to 

maintain the LFG array of 97 (presumably double precision) floating-point 

numbers as well as the current LFG index and the current value of the arithmetic 

sequence. A group of 32 threads performing the leapfrog method means that for a 

fixed number of threads, the overall memory footprint is reduced by a factor of 

32. 

4.3 Implementation Phase  

The design phase was exclusively concerned with understanding the RANMAR itself and 

devising acceptable strategies for parallelising the algorithm. The implementation phase 

concerned itself with the details. The following sections describe the features and 

constraints required of the implementation. The various implementation challenges are 

then presented. 

4.3.1 Corsika Imposed Constraints and Features 

Mindful of the fact that the implementation would ultimately be integrated with the 

Corsika package, this imposed some particular requirements, including: 

 Quite aside from the independent (sub)sequences approach to parallelising a 

RANMAR sequence, Corsika requires that it can initialise several independent 

sequences of the RANMAR and be able to later draw random numbers from a 

particular sequence of interest. All sequences are maintained internally by the 

RANMAR implementation and the caller only refers to them by id. 

 During the initialisation phase, apart from providing the RANMAR seeds, 

Corsika requires that it can specify a particular number of random numbers to 

skip – this is to allow simulations to be started at any point in a given random 

number sequence. 

 James [13] introduced the interface that allows RANMAR clients to request 

random numbers in batches (by providing an array and an array size argument). 

Corsika also requires this. 

 There is an overhead associated with calling the GPU kernels, generating the 

random numbers and copying the results back to CPU memory. In order to absorb 

this overhead, each trip to the GPU should generate a substantial number of 

random numbers (at least 1 million). Unfortunately, an analysis of Corsika during 

simulations showed that it only requests random numbers in very small batches 

(~10). For this reason an interface was required that allows RANMAR clients to 

specify, during initialisation, a pre-fetch size, which constitutes the number of 

random numbers generated with each call to the GPU. The RANMAR caches the 

numbers in CPU memory and client requests are serviced from there, until the 

cache is exhausted and another GPU kernel call is required. 
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 The original RANMAR algorithm generates floating point random numbers with 

a 24 bit mantissa (single precision). Corsika requires a 48 bit (double precision) 

mantissa. Fortunately within the last two years, commodity NVIDIA CUDA 

enabled GPUs have introduced support for double precision floating-point 

arithmetic - otherwise this requirement may have presented a problem. There is a 

cost to pay over and above single precision performance, so the parallel 

RANMAR implementation presented here, provides a compilation option to 

generate random numbers with the preferred precision. 

 The RANMAR specification generates uniform random numbers over the range 

[0, 1) however Corsika does not want any zero random numbers. A modification 

to the original RANMAR algorithm was therefore required which checked for a 

generated zero and replacing it with the smallest possible number according to the 

configured precision (that is, 2.0E-24 or 2.0E-48) 

4.3.2 Other High Level Features 

From a feature point of view, the Corsika requirements were the primary drivers. 

However, some more general requirements were also identified. 

 The RANMAR implementation should not be coupled to Corsika (or any other 

client) in such a way that assumptions are made about how the RANMAR is used. 

 Related to the previous point, the implementation should be shipped as a shared 

library with a well defined public interface. 

 Two interfaces for generating random numbers are required. One that utilises the 

pre-fetching mechanism already described and a second where all requests for 

random numbers are serviced by a GPU kernel call – that is, without a pre-

fetching mechanism. 

4.3.3 Implementation Details and Challenges 

The implementation of the GPU RANMAR used the sequential algorithm as its starting 

point and by considering the parallelisation strategies already discussed, the basis of the 

CUDA implementation was formed. Some early implementation decisions were made 

and they, along with the various algorithms used, are described in the following sections 

4.3.3.1 Early Decisions 

Because it is a sequential task, the initialisation of RANMAR state (that is, the initial 

LFG buffer population and setting the starting value for the arithmetic sequence) is 

performed on the CPU and copied to GPU global memory. Because GPU global memory 

persists across kernel calls, this state can remain on the GPU until the RANMAR instance 

is destroyed. There is little else to be said about the initialisation of a RANMAR instance, 

because once the seeds are provided, it is performed exactly as described in James [13] 

(apart of course from this being a C implementation).  
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In the discussion about parallelising a single RANMAR sequence it was noted that, in 

theory, 33 random numbers could be calculated simultaneously. However scheduling 33 

threads on a CUDA GPU is not optimal because the warp size (that is the number of 

threads that are created, managed and scheduled by the GPU hardware as a single entity) 

is 32. A CUDA program that requested 33 threads in a thread block would make very 

poor use of the available processing power in the GPU because the first 32 threads 

making up the first warp would run simultaneously as desired, but the second warp, 

separately scheduled would only contain 1 thread and while it would reserve the same 

amount of hardware as the 32 thread warp, it would still only have 1 thread using it. For 

this reason, the RANMAR implementation hard-codes the use of 32 threads per 

RANMAR instance. 

The multiple independent sequences strategy already discussed would be realised using 

an algorithm to allocate the generation of each sequence among CUDA thread blocks. 

The simplest model would be to allocate a separate thread block for each sequence 

computation, but given that each sequence computation uses 32 threads, there would only 

ever be 32 threads per thread block. This would not make optimal use of available GPU 

resources. Instead an algorithm would be employed to decide how many sequences 

should be allocated to each CUDA thread block. 

4.3.3.2 High Level Algorithm 

The implementation was then required to bring all the individual requirements, strategies 

and decisions into a unifying algorithm. Putting aside for a moment the aforementioned 

approach of caching random numbers generated by the GPU in CPU memory and 

assuming also that the RANMAR state has already been initialised on the GPU, the high 

level algorithm for retrieving a specified number of random numbers from the GPU is as 

follows:  

 From the CPU, an array (of a size to hold the requested number of random 

numbers) is allocated in GPU global memory using the standard CUDA memory 

allocation API. 

 Again from the CPU, two arrays (each sized according to the number of 

RANMAR instances) are allocated in GPU global memory. These arrays will be 

used later from the GPU kernel when each RANMAR instance will get a start 

index from one array and an end index from the other array, telling it the range of 

random numbers for which it is responsible.  

 Based on the number of instances (independent sequences) and on the number of 

required random numbers, the random number array is divided up (as evenly as 

possible) among the RANMAR instances by populating the start and end index 

arrays. 

 The RANMAR GPU kernel is launched with the specified necessary number of 

thread blocks, (based on the algorithm referred to in section 4.3.3.1), and with 

each having the some multiple of 32 threads (that is 32 threads for each sequence 

computation assigned to each thread block). 
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 Finally, the random numbers in the random number array on the GPU, having 

been populated by the kernel invocation are copied back from the GPU into the 

CPU memory array provided by the RANMAR client.  The GPU memory that 

was allocated is also freed at this time. GPUs tend to be limited in memory 

compared to CPUs so a memory leak, even a small one, can be quickly 

catastrophic. 

Figure 6 illustrates the algorithm more clearly by way of an example. Here the 

RANMAR has been initialised with three instances (sequences), so during 

initialisation 3 LFG buffers would have been allocated in GPU global memory and 

populated according to the RANMAR initialisation procedure. At some later point, 

300 random numbers are requested, so the algorithm allocates a 300 element array in 

GPU memory and will assign index ranges in this array to the three instances (in this 

case, it is evenly divisible so each instance gets a range of 100) by allocating and 

populating the indices arrays shown. When the kernel is launched, each GPU thread 

works out the sequence of which it is a part (by referencing to the usual CUDA grid 

and block dimension variables). It then reads its own start and end indices and using 

its own LFG state (and arithmetic sequence state which is not shown) generates its 

assigned random numbers. The large arrow indicates the copying of the entire random 

number array to CPU RAM when the kernel returns control to the CPU. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Example memory usage when RANMAR has been initialised with 3 instances 

and later 300 random numbers are requested. The start and end indices buffers inform 

each sequence which areas of the random number buffer they are to populate.  
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4.3.3.3 Kernel Algorithm 

The final aspect of the RANMAR implementation is the GPU kernel itself. Although 

much of what happens here, such as the key parallelisation approaches, has already been 

explained, many details remain. Given that the kernel execution (and its performance) is 

so central to the project’s goals, it is an area that deserves some detailed explanation. 

Perhaps the most appropriate place to start is with an overview of the primary 

performance considerations that informed the RANMAR kernel (or indeed any kernel) 

implementation.  

One the most important performance considerations is how a kernel accesses memory or 

more particularly - global memory. Global memory access, especially on early generation 

GPUs without a cache hierarchy, is extremely slow, so any strategies for minimising 

global memory use (even on next generation GPUs) is generally recommended. The 

RANMAR kernel for example performs all its global memory reads upon kernel start-up 

and copies performance critical data to shared memory – for example, the LFG state 

array. Any data that does not need to be shared across threads is copied into thread local 

registers – for example the arithmetic sequence state. Unfortunately, given that the 

purpose of RANMAR is to generate random numbers, there is nothing that can be done 

about the writes to global memory. On the plus side however, the RANMAR helps with 

memory store coalescing (making concurrent memory accesses with a single load or store 

operation across multiple threads) because contiguous threads store their random 

numbers to contiguous global memory addresses. 

While RANMAR was primarily concerned with global memory, it was possible to move 

all critical data to thread registers and shared memory. Other situations may require more 

sophisticated solutions, for example, using other areas of memory, such as constant or 

texture memory. Sometimes algorithms may need to be completely redesigned so as to 

have a more performance friendly memory access profile. 

Another critical factor in kernel code is to minimise thread divergence. This happens 

when “if-then-else” (or equivalent) constructs causes some threads to take different code 

paths. Any threads not taking a particular path become idle and must wait for the other 

threads to finish their execution path - then there is another code pass required for the 

threads that take the other code path. In effect the execution moves from parallel threads 

to serialised threads and arises because the thread warp (32 threads) is scheduled as a unit 

and so all threads within the warp must execute the same instruction. While it is often 

impossible to completely remove thread divergence, minimising it is critical. 

Some operations are particularly expensive such as floating point division and integer 

modulus. Some experimentation during the RANMAR testing discovered the large 

impact a modulus operation could have on overall performance when comparing two 

options for implementing wrapping around an incrementing index in a circular buffer. 

// Option 1: avoids thread divergence so might be preferred 

r = (r+32) % BUFFER_LENGTH 

 

// Option 2: despite the thread divergence, entire RANMAR  



An Exploration of General Purpose Programming on GPUs  Michael Fergus McCann 

28 of 47  15 April 2011 

// runs 4% quicker this way 

r+=32; 

if (r >= BUFFER_LENGTH) 

r = r – BUFFER_LENGTH; 

 

Making full use of the available computational power of the GPU is obviously important. 

In the RANMAR case we are constrained somewhat because the nature of the random 

number generator is such that only 33 numbers can be computed simultaneously within a 

single RANMAR instance. With mid level GPUs now having up to 500 CUDA cores, a 

single RANMAR instance with only 32 threads would be making very poor use of the 

available horsepower. The solution in the RANMAR case was to use the multiple 

independent sequences approach and to assign more than one such sequence to the same 

CUDA thread block. Multiple thread blocks were also used. With each sequence being 

calculated by 32 threads and with say 5 such calculations per thread block and then with 

10 such thread blocks, there would be: 32 x 5 x 10=1600 threads. 

The CUDA C Programming guide [25] and the NVIDIA published CUDA programming 

books [1] and [2] were invaluable resources in determining the best strategies for 

maximising kernel performance. The kernel source code delivered with this thesis is 

heavily commented and describes many of the performance aspects in specific detail, but 

for the sake of brevity, only a high level algorithm is described here. 

 The kernel is launched from the CPU with a one dimensional grid of thread 

blocks. Each thread block has a two dimensional thread structure. The first 

dimension represents a grouping of the threads working on the same RANMAR 

instance. The second thread dimension is the hard-coded size 32 grouping of 

threads. 

 Inside the kernel thread, it first establishes which RANMAR instance it belongs 

to. It calculates this by multiplying the block dimension (how many instances per 

block) by the block index and adding the first dimension of the thread dimension 

structure. Note that the second thread dimension indicates which thread (0 to 31) 

is executing. 

instanceId = (blockIdx.x * blockDim.x) + threadIdx.x  

If the instance id is greater than the total number of instances then the thread exits 

immediately. This can happen because there are a fixed number of instances 

allowed per thread block, but the end user may request any number of instances 

which will probably not be an exact multiple which ultimately means some 

threads have nothing to do. 

 Each kernel thread calculates the index into the output random number array that 

it will populate based on the start index and end index arrays and on the thread id. 

Once the number generation starts, this thread specific index will be incremented 

by 32 (the leap-frog) for each iteration. 
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 One of the threads for each RANMAR instance copies the LFG buffer for that 

instance into shared memory for performance reasons. Threads are synchronised 

at this point. 

 Each kernel thread calculates the index into the LFG buffer that it will write to 

next and based on that will also work out the initial lag indices for the LFG 

calculation. 

 Each thread then works out how many random numbers it needs to produce (not 

all threads will produce the same number). 

 Next the RANMAR loop begins. The logic is similar to the sequential algorithm 

except all indexes are incrementing by 32 instead of 1. Also the arithmetic 

sequence implementation is as per the algorithm described in Figure 5. For each 

number generated, it is copied into the global random number array. In this 

manner all threads from all sequences are populating different regions of this 

shared array. 

 At loop exit, one thread for each RANMAR sequence copies the LFG state and 

arithmetic sequence back to global memory so that the next invocation of the 

kernel can restart from the same place in each sequence. 

4.4 Verification of RANMAR Correctness 

The first task post implementation was to verify that the algorithm and the corresponding 

random numbers produced were correct. This was done by first implementing a 

sequential RANMAR and verifying its correctness by reference to Marsaglia et al in [12]. 

For a particular seeded RANMAR sequence, we are told the values of the random 

numbers from positions 20,001 to 20,006 in the sequence. A simple comparison is 

sufficient to have confidence in the sequential algorithm. 

Next, the sequential algorithm was used to verify the values for a number of different 

RANMAR sequences generated by the GPU implementation. The first 100 billion 

numbers in each sequence were checked and this it was felt was more than sufficient to 

have confidence in the correctness of the algorithm. By definition, this verification could 

only be performed on the GPU RANMAR when it used a single RANMAR sequence. 

For multiple RANMAR sequences combined into a single sequence, it is the quality, or 

randomness of the numbers produced that must be verified and this is discussed 

separately in section 5. 

4.5 Integration with Corsika 

The final implementation task required the integration of the GPU RANMAR with 

Corsika. This had its own challenges because it is written in FORTRAN an area with 

which the author was unfamiliar. However, all that was really required was to replace the 

implementation of the internal RANMAR implementation with a call to the GPU version 

contained in a shared library. Fortunately, calling C functions from FORTRAN 
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subroutines is very straightforward, apart from a couple of quirks (such as passing 

arguments by pointer only).  

Interestingly, the Corsika build environment runs the C pre-processor on its FORTRAN 

source code to allow the familiar #ifdef, #else, #endif paradigm. This allowed the 

changes made to call GPU code instead the Corsika RANMAR easy to swap in and out 

during development. One slight annoyance however was the fact that rather than there 

being one random number generator subroutine to change, there were in fact a dozen, all 

almost identical and with the kind of differences that could easily have been 

parameterised. This multiplicity of implementations made it harder to consider making 

larger changes to the Corsika code base beyond making the call out to the GPU 

RANMAR. 

5 Statistical Validation of Generator Output 

5.1 Validation Approach 

Statistical analysis of the output of the parallel RANMAR was deemed necessary due to 

the decision to use multiple independent sequences and to combine their output into a 

single sequence. While it may seem intuitive that multiple random number sequences 

spliced together in this way should yield another statistically valid random number 

sequence, this is not necessarily so (as mentioned in [26]). The combination process, 

perhaps due to poor seed choices, could yield correlations not present in the original 

sequences. For this reason it was decided to apply thorough statistical testing using 

TestU01 [27] - the respected random number generator tester. TestU01 supports the easy 

application of predefined batteries of statistical tests to random number generators. The 

available test batteries are known as: small crush, crush and big crush (in order of 

increasing strictness). 

TestUO1 requires that a test program be written to enable the tester to draw numbers 

directly from the random number generator under test. The alternative approach, as used 

in some earlier testers such as Diehard (also by Marsaglia) is to draw its sample of 

random numbers from a user provided file. However, this file based approach is 

impractical for the more strict randomness tests, because these tests typically require a 

very large quantity of random numbers. The programmatic approach on the other hand, 

once initially configured, can cater for the most thorough of statistical tests and the code 

required is not onerous. Some sample code is presented in figure 7. 

Before discussing the tests that were performed with TestU01, it is probably worth 

mentioning that another popular random number generator tester, Dieharder (the tongue 

in cheek successor to Diehard) was also tried. Unfortunately, attempts to get any tests to 

pass, even when run on Dieharder’s own RANMAR implementation failed. Time did not 

permit any investigation into the cause of the problems and Dieharder was abandoned in 

favour of TestU01.  
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For an exhaustive description of the actual statistical tests performed by TestU01, see 

[27]. The high level test plan using TestU01 was as follows: 

 Perform a sanity validation on the double precision sequential RANMAR 

provided by TestU01. 

 Perform a sanity validation of the double precision parallel RANMAR initialised 

with 1 instance (which as verified previously, generates the same numbers as an 

equally seeded sequential RANMAR) 

 Perform a validation of the double precision parallel RANMAR initialised with 8 

instances. 

 

 

 

 

 

 

 

 

Figure 7. Driver program to run big crush on a RANMAR instance 

5.2 Validation Results 

5.2.1 Sanity Validation of Sequential RANMAR Provided by TestU01 

In an attempt to set a baseline expectation on the statistical quality of the RANMAR 

according to TestU01, the TestU01 internal RANMAR implementation was tested. The 

initial results were surprisingly poor, even on the small crush (most forgiving) battery. 

Some investigation uncovered a problem in the TestU01 RANMAR implementation 

whereby the double precision RANMAR was really only generating single precision 

values (initialising only 24 bits). With half of the mantissa bits always zero, 

unsurprisingly, several tests failed. The problem was rectified with a small code change 

and TestU01 itself was recompiled. The test was then run again and the results of the 

crush battery were more promising: 

========= Summary results of Crush ========= 

Version:          TestU01 1.2.3 

Generator:        Sequential RANMAR 

Number of statistics:  144 

double get_double(){ 

    static ranmar_t r; 

    return (double)ranmar_get(0, &r, 1);  

} 

int main(int argc, char* argv[]) { 

    /* Initialise RANMAR with 4 instances and prefetch 100000 */ 

    int ij = 1802; int kl = 9373; 

    ranmar_initialise(0, ij, kl, 4, 100000); 

 

    /* Run big crush on parallel RANMAR with 1 instance */ 

    unif01_Gen* gen = unif01_CreateExternGen01( 

          "RANMAR”, get_double); 

    bbattery_BigCrush(gen);  

} 
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The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                          p-value 

---------------------------------------------- 

22  ClosePairsBitMatch, t = 4       2.2e-4 

34  Gap, r = 22                     5.3e-6 

54  WeightDistrib, r = 24            eps   

---------------------------------------------- 

All other tests were passed 

5.2.2 Sanity Validation of Parallel RANMAR with 1 Instance 

The sanity check on the single instance parallel RANMAR was, as expected, identical to 

the sequential result. 

========= Summary results of Crush ========= 

Version:          TestU01 1.2.3 

Generator:        Parallel RANMAR 1 instance 

Number of statistics:  144 

The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                          p-value 

---------------------------------------------- 

22  ClosePairsBitMatch, t = 4       2.2e-4 

34  Gap, r = 22                     5.3e-6 

54  WeightDistrib, r = 24            eps   

---------------------------------------------- 

All other tests were passed 

5.2.3 Validation of Parallel RANMAR with 8 instances 

The first test of the parallel RANMAR with multiple instances was performed using 8 

instances and run 10 times with different seed values each time (each run being the crush 

test battery and taking a little over an hour and a half). Each test run yielded the same test 

failure profile. Interestingly, this test failure profile was actually better than the sequential 

RANMAR because it passed the ClosePairsBitMatch test. This was an important result 

because it validated the decision to parallelise the RANMAR using multiple independent 

sequences (instances), and it also validated the method of seeding the RANMAR 

instances (by incrementing the second of the two user provided seeds). 

========= Summary results of Crush ========= 

Version:          TestU01 1.2.3 

Generator:        Parallel RANMAR 8 instances 

Number of statistics:  144 

The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                          p-value 

---------------------------------------------- 

34  Gap, r = 22                     6.4e-5 

54  WeightDistrib, r = 24            eps   

---------------------------------------------- 
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All other tests were passed 

5.3 Proposed Extension to Current Double Precision RANMAR 

While the validation of the independent sequences approach was welcome, there was a 

suspicion that improvements could be made. The RANMAR as originally described was 

a single precision random number generator – that is, it generated 24 bit random numbers 

by combining 24 bit elements from an LFG sequence with 24 bit elements from an 

arithmetic sequence. As mentioned in section 2.4.1, when RANMAR was extended to 

double precision in the CERN program library, the only change made was to extend the 

initial values of the LFG buffer to 48 bits (thereby making all subsequent LFG values 48 

bit also). The initial value of the arithmetic sequence, its decrement value and its modulus 

remains 24 bit. This means that the process of combining the 48 bit LFG with the 24 bit 

arithmetic sequence (a subtractive and additive operation) causes only the high order 24 

bits of the LFG values to change. The low order 24 bits remain unaffected. This means 

that the low order 24 bits of the RANMAR sequence are derived purely from the LFG. 

Given the concerns expressed by Marsaglia et al about the randomness of the LFG on its 

own, there is valid reason to be concerned about the double precision RANMAR 

implementations present in the CERN program library and in Corsika.  

In order to test this hypothesis, an alternative arithmetic sequence was implemented, one 

where the parameters defining the arithmetic sequence were converted from 24 bit 

fractions to 48 bit fractions. The GPU RANMAR implementation used 64 bit longs in its 

computations before converting the final arithmetic sequence value to a 48 bit fraction. 

The following sections describe the TestU01 results of the new implementation. 

5.3.1 Validation of Extended Parallel RANMAR with 1 instance 

This test of the new extended RANMAR implementation used the TestU01 big crush 

battery as it was necessary to give any changes to the generally accepted form of 

RANMAR, the sternest possible examination. Once again a comparison baseline test was 

performed, using the standard (non-extended) parallel RANMAR. 

========= Summary results of BigCrush ========= 

Version:   TestU01 1.2.3 

Generator: Double precision parallel RANMAR 1 instance 

Number of statistics:  160 

The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                          p-value 

---------------------------------------------- 

35  Gap, r = 25                      eps   

61  WeightDistrib, r = 28            eps   

64  WeightDistrib, r = 26            eps   

98  HammingIndep, L=300, r=26      1.2e-12 

---------------------------------------------- 

All other tests were passed 
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The next test was on the newly extended double precision RANMAR, again using the big 

crush battery. The results here were generally very encouraging (although only two such 

tests were possible because of the time taken to run - up to 18 hours). In summary, it was 

found that the extended RANMAR passes more tests than the standard double precision 

RANMAR found in the CERN program library and in Corsika. More investigation would 

be required to establish if this trend is repeated across many different RANMAR 

sequences, but time did not permit this. It is worth noting however, that the testing of 

random number generators is in itself a prime candidate for parallelising and 

implementing on a GPU. 

========= Summary results of BigCrush ========= 

Version:   TestU01 1.2.3 

Generator: Double precision extended parallel RANMAR 1 instance 

Number of statistics:  160 

The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                            p-value 

---------------------------------------------- 

60  WeightDistrib, r = 20           9.5e-6 

61  WeightDistrib, r = 28           1.2e-5 

---------------------------------------------- 

All other tests were passed 

5.3.2 Validation of Extended Parallel RANMAR with 8 instances 

The final test executed the big crush test battery against the multiple instances version of 

the extended RANMAR. Again, a baseline test against the non-extended parallel 

RANMAR was performed first. The results were almost identical to the single instance 

parallel RANMAR.  

========= Summary results of BigCrush ========= 

Version:   TestU01 1.2.3 

Generator: Double precision parallel RANMAR 8 instances 

Number of statistics:  160 

The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                           p-value 

---------------------------------------------- 

35  Gap, r = 25                      eps   

61  WeightDistrib, r = 28            eps   

64  WeightDistrib, r = 26            eps   

98  HammingIndep, L=300, r=26      5.2e-14 

---------------------------------------------- 

All other tests were passed 

 

The results of the extended RANMAR with multiple instances, again shows an 

improvement over the non-extended version. The extended version in the tests performed 

passed the Gap and Hamming independence tests that were observed as failing in the non 

extended RANMAR test. 
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========= Summary results of BigCrush ========= 

Version:   TestU01 1.2.3 

Generator: Double precision extended parallel RANMAR 8 instances 

Number of statistics:  160 

The following tests gave p-values outside [0.001, 0.9990]: 

 

    Test                           p-value 

---------------------------------------------- 

60  WeightDistrib, r = 20           3.2e-4 

61  WeightDistrib, r = 28           4.8e-6 

---------------------------------------------- 

All other tests were passed 

6 Performance Results 

6.1 Introduction 

The RANMAR implementation was tested on two systems (the details of which are 

presented in Appendix A). The first system was a desktop personal computer with an 

Intel Pentium 4 CPU (at 3.2GHz) with the GPU being an NVIDIA GeForce GTX 460. 

The second system was a modern server machine with a Xeon X5670 CPU (at 2.93GHz) 

with the GPU being an NVIDIA Tesla C2050. Before any tests were run, it was expected 

that the server machine would outperform the personal computer because of the Xeon 

being a more modern CPU and because the personal computer only had a PCI express 1.0 

bus (for graphics card connectivity). The transfer of random numbers from the GPU to 

CPU can dominate the runtime and PCI express 2.0 offers a potential doubling of 

throughput when compared with version 1.0. Despite the differences, it was deemed 

instructive to test the RANMAR on more than one system.  

6.2 Standalone Testing 

The first and most important performance testing was standalone testing as this would 

provide the data that could predict the kind of speedup possible with RANMAR 

integrated with Corsika. These tests involved the use of a client program to drive the 

random number generator in various scenarios in order to characterise the performance of 

the GPU parallel RANMAR and also to compare it with the sequential RANMAR. In 

each scenario, the RANMAR is asked to generate 1 billion random numbers. The 

scenarios tested were as follows: 

1. For the non-buffered API (each client request involves a call to the GPU), the 

quantity of random numbers requested on each trip to the GPU is varied. 

2. For the buffered API (where numbers are cached by the RANMAR in CPU 

RAM), the size of the pre-fetch is varied. 

3. For each of the first two scenarios the number of RANMAR instances is varied. 
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4. For the first 3 scenarios, the scheme of allocating instances to CUDA thread 

blocks is varied – either 1 instance per thread block, or 4 instances per thread 

block. 

There are some other characteristics of the standalone tests that should be made clear 

before presenting results: 

 In the sequential tests on both systems, each individual call to the sequential 

RANMAR requested 10 random numbers (therefore 100 million calls were 

necessary to generate the required 1 billion numbers). The same buffer was reused 

for each call so there is no repeated memory allocation overhead. The number 10 

was chosen based on profiling Corsika’s use of the RANMAR and observing that 

the average RANMAR call requested 10 numbers. 

 For the reason outlined in the previous point, in the buffered parallel tests on both 

systems, each individual call to the parallel RANMAR requested 10 random 

numbers. This was practical because the requests could usually be serviced from 

the CPU RAM cache without needing to visit the GPU. 

 In the non-buffered parallel tests, because each call to RANMAR requires a call 

to the GPU, the tests requested far larger batches of random numbers. 

 

Figure 8. Varying RANMAR instances on PC system with 1 instance per thread block 
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Figure 9. Varying RANMAR instances on PC system with 4 instance per thread block 

 

Figure 10. Varying RANMAR instances on server system with 1 instance per thread block 
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Figure 11. Varying RANMAR instances on server system with 4 instances per thread 

block 

6.2.1 Analysis 

The results in figures 8 to 11 enable a number of conclusions to be drawn: 

1. The straight line sequential (CPU) speed of the server system is greatly superior 

to the PC system. The indicative time to generate 1 billion numbers on the PC was 

34.65 seconds whereas on the server system it was 12.83 seconds. 

2. The best observed RANMAR performance result on the PC system was: 

o Best non-buffered speedup over sequential: 4.82. 

o Best buffered speedup over sequential: 2.69 

o Best scenario: non-buffered, fetch size=10,000,000. 

3. The best observed RANMAR performance result on the server system was: 

o Best non-buffered speedup over sequential: 4.85 

o Best buffered speedup over sequential: 2.68 

o Best scenario: non-buffered, fetch size=10,000,000. 

4. There was no definitive performance difference between allocating multiple 

instances to the same thread block versus having only 1 thread per block. This 

would seem to suggest that the performance of CUDA kernels does not change 

whether warps are scheduled as part of the same thread block or there is only one 

warp per thread block (at least within the bounds actually tested here). 
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5. As might be expected, the best GPU RANMAR performance is achieved using 

the non-buffered interface and when the fetch size is maximised. The reason the 

non-buffered interface outperforms the buffered counterpart is that the buffered 

interface has extra memory copying to perform – once from the GPU to the 

RANMAR cache and then again to a client provided array when the call to 

request random numbers is made. The non-buffered interface can copy random 

numbers directly into the client provided array. 

6. The graphs show that in the best case scenario (on both systems) using the non-

buffered interface with the largest fetch size, the performance quickly reaches a 

point of diminishing marginal returns as the number of instances is increased. An 

analysis of the kernel runtime using the CUDA profiler shown below in figure 12, 

in one particular test run provided the reason: 

 

 

 

Figure 12. CUDA profile of best RANMAR scenario on the server test system  

From this it is clear that the performance of the parallel RANMAR is dominated 

by the performance of the transfer of random numbers generated from GPU 

memory to CPU memory. This profile alone suggests that only 17% of execution 

time is spent generating the numbers whereas 74% is in transferring data from 

GPU to CPU. This suggests that at this point, the kernel implementation is close 

to optimal (in the current system context). Any further performance gains will be 

achieved through improvements in GPU/CPU transfer throughput. 

7. Given that little performance gain is possible from maximising use of the GPU, 

there appears little point in initialising parallel RANMAR generators with large 

numbers of instances (say >25).  

8. In the worst performing scenarios, where smaller numbers of random numbers are 

generated for each call to the GPU, adding extra instances means that each 

instance has even less to do and extra instances can actually cause overall 

performance to degrade. In figure 8, the buffered scenario with a pre-fetch of 

100,000 spread over 50 instances means that each instance is only generating 

2000 random numbers. GPU algorithms perform best when there is enough 

computational workload to absorb the cost of the CUDA overhead. 

6.3 Corsika Testing 

The second area for performance testing involved comparing Corsika simulations using 

the internally provided RANMAR implementation against simulations using the GPU 

based RANMAR. As already mentioned, Corsika generally requests random numbers in 

Total time for program execution   : 2.926 sec 

Time copying data from GPU to CPU  : 2.165 sec 

Time copying data from CPU to GPU  : 0.019 sec 

Time spent executing kernel        : 0.512 sec 

Time spent in all other processing : 0.230 sec 
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quite small batches - averaging about 10 for the simulations profiled, but frequently it 

will ask for one random number at a time. This means that Corsika was forced to use the 

buffered interface to the GPU RANMAR. The results from the standalone performance 

testing in section 6.2.1 showed that the best expected speedup from the server test system 

using a buffered interface to the RANMAR would be approximately 2.68. 

Given the time invested in integrating the GPU RANMAR with the Corsika system, not 

enough time remained to fully explore all the possible Corsika simulations. This was due 

to the fact that Corsika is quite large and it includes many possible interaction models for 

use in cosmic radiation simulations. Some analysis was of course possible but ultimately, 

the GPU RANMAR implementation will be presented to Corsika domain experts for 

further analysis. 

With the performance of the GPU RANMAR implementation already characterised from 

the standalone testing, it only remained to find a Corsika simulation with the largest time 

spent generating random numbers. By so doing, the best possible overall simulation 

speedup would be realised. In the time available, by using the Gnu FORTRAN profiler, a 

simulation that spent 32% of its time in RANMAR was found. (Note: from initial 

discussions with the UCD School of Physics, it was said that there were simulations 

spending 80% of their time generating random numbers – but this has yet to be verified).  

The best results achieved are presented in figure 13. 

 

 

 

Figure 13. Best overall Corsika simulation speedup observed. 

The results of the Corsika performance profiling show that the overall simulation speedup 

achieved using the GPU RANMAR is broadly in line with that predicted by the 

standalone testing. While the 2.68 speedup was not observed, it was noted that the GPU 

RANMAR imposes an extra function call overhead on Corsika which may explain the 

disparity.  

7 Conclusion and Future Work 

7.1 Project Recap 

In this project, an overview of the technology trends driving mainstream software 

engineering towards general purpose programming on GPUs was presented. The 

NVIDIA CUDA architecture was researched (primarily from [1] and [2]) and used to 

produce a novel and successful implementation of the well known RANMAR random 

number generator. The problem domain and the motivation behind the development of a 

GPU based RANMAR was explained through a description of the Monte Carlo 

Chosen simulation RANMAR % time         : 32% 

RANMAR instances                        : 20 

RANAR pre-fetch buffer size             : 10,000,000 

Simulation speedup due to GPU RAMNMAR   : 17% 

RANMAR speedup as part of simulation    : ~X2 
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simulations that use it. The implementation was novel in that no implementation of the 

RANMAR could be found using the CUDA architecture on NVIDIA GPUs. Moreover, 

the implementation used two levels of parallelisation: multiple independent sequences 

and leapfrog parallelisation within each sequence. This two fold approach provided a 

more sophisticated implementation than any other RANMAR implementations that were 

found. The challenges involved in realising the parallelisation strategies, in particular the 

leapfrogging of the arithmetic sequence aspect of the RANMAR were detailed. The 

algorithms in the control program and the GPU kernel were also explained.  

Given that the overriding goal of the project was to increase the speed of an existing CPU 

RANMAR implementation, several strategies were employed to maximise the 

performance of the GPU based implementation. Through program timing and CUDA 

profiling, it was shown that the best case tests of the implemented GPU RANMAR were 

constrained by the transfer of random numbers from GPU to CPU memory and not by the 

RANMAR algorithm itself. Almost a 5 fold speedup over a sequential RANMAR 

implementation was achieved during standalone testing.  When integrating with Corsika, 

(with an extra function call random number copy overhead) the observed speedup was 2. 

This was the target set during the initial planning stages for this project, which from a 

performance point of view renders the project a success. 

The statistical quality of the random numbers produced by the GPU RANMAR using the 

multiple independent sequences was verified using TestU01. Finally, statistical evidence 

of a possible weakness in the double precision RANMAR implementations found in the 

CERN program library and in Corsika was found. An improved double precision 

RANMAR was proposed and implemented, and shown to pass more tests from the most 

stringent of the test batteries from TestU01 (“big crush”). 

7.2 Conclusions 

The advertised strength of the GPUs is in computation on data parallel problems. For best 

possible performance there should be a high proportion of computational complexity 

relative to the amount of data to be transferred between the CPU and GPU memories (and 

the amount of GPU global memory accesses). For this reason, it was always of concern 

that random number generation may not have been a viable problem to implement on a 

GPU. The evidence in this project suggests that while the multiple orders of magnitude 

speed-ups may not be seen, a speed-up of up to 5 is still possible. The performance of the 

RANMAR was shown to be constrained by the transfer of the generated random numbers 

from GPU back to CPU, so this is the area in which further improvements will be made – 

possibly via a next generation bus (a successor to PCI Express) or more probably by a 

unification of the CPU and GPU such that the transfer isn’t in fact necessary. Hybrid 

CPU/GPU chips are already production, for example, AMD Fusion, Intel Sandy Bridge 

or NVIDIA’s Project Denver (which is in development). More generally however, these 

hybrid chips provide the most likely trajectory for data parallel SIMD style programming 

to enter software engineering’s mainstream. 

The CUDA programming model proved very useful and does not distract the programmer 

from the actual problem domain – that is, it does not have a complicated API and neither 
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does it introduce any tricky syntax. Some aspects were of slight concern such as being 

able to extract significant performance gains by simply reordering some source code. 

This sort of trial and error programming is not something normally seen on CPUs due to 

mature and aggressive optimising compilers and CPU optimisation strategies such as 

multi-level caches, hyper-threading, branch prediction, instruction reordering, register 

reassignments and so on. It is likely that GPU compilers and chips will improve in the 

future however. 

As would be expected with any parallel architecture, programming with CUDA requires 

a particular data parallel mindset. In addition, algorithm design using CUDA, on current 

generation GPUs requires the programmer to be very aware of the underlying hardware 

architecture. The relative performance of the various GPU memories and the constraints 

on aspects such as registers, shared memory size and maximum threads per thread block 

must always be considered. Sometimes tradeoffs are necessary – for example, moving 

computation onto the GPU despite it running slower there, in order to save on an 

expensive data transfer between GPU and CPU.  

The RANMAR implementation was successful because it reached its target of a two fold 

speed up when integrated with Corsika. However, the RANMAR lent itself to 

parallelisation by: (a) having suitable LFG lags (b) using an arithmetic sequence and (c) it 

being easy to generate multiple disjoint sequences. Other random number generators may 

not have these advantages so not all generators will be parallelisable in the same way. 

The suggested weakness in the double precision RANMAR in the CERN program library 

and in Corsika requires further investigation. This project makes a compelling logical 

argument as to why these implementations are questionable, and it produces some 

statistical evidence supporting this claim. The extended RANMAR implementation that 

addresses these concerns has been shown, in certain tests, to produce a statistically 

superior random number sequence. However a much larger series of tests would be 

required to confidently assert this. 

7.3 Future Work 

While a doubling of RANMAR performance in the Corsika context was welcome, a 

further increase in performance could be achieved by implementing the following: 

 Dedicated CPU thread for generating random numbers: Assuming there are 

available CPU cores, it may make sense to have a dedicated CPU thread 

populating a CPU buffer of random numbers ensuring there are always numbers 

available when simulations need them. A single reader/single write thread queue 

mechanism such as this can be implemented very efficiently with so called lock 

free methods. 

 Change the way Corsika draws down its random numbers. Corsika itself 

could maintain a single large array that it populates only as needed with calls to 

the GPU (effectively, the non-buffered approach except managed by Corsika 

itself). Corsika simulations that require a certain quantity of random numbers 
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simply request that quantity and are returned a pointer to the next random number 

in the array (assuming there are enough numbers left to satisfy the request, 

otherwise a GPU call is necessary). The result would mean a significant reduction 

in memory copying and a reduced function call overhead. 

 Move simulations onto the GPU: If Corsika Monte Carlo simulations ran on the 

GPU then quite apart from the potential gains that that would bring, the 

RANMAR performance would also increase because the need to transfer the 

generated random numbers from GPU to CPU would disappear. 

In addition, given that the future of general purpose GPU programming appears likely to 

trend towards the aforementioned hybrid CPU/GPU chips, a RANMAR implementation 

using this technology should be undertaken. 
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9 APPENDIX A – Specification of Test Systems 

9.1 Test System1 

9.1.1 CPU Specification (cat /proc/cpuinfo) 

Model name : Intel(R) Pentium(R) 4 CPU 3.20GHz 

Stepping : 3 

Cache size : 2048 KB 

9.1.2 Operating System (cat /etc/*release) 

DISTRIB_ID=Ubuntu 

DISTRIB_RELEASE=10.04 

DISTRIB_CODENAME=lucid 

DISTRIB_DESCRIPTION="Ubuntu 10.04.1 LTS" 

9.1.3 GPU Driver (cat /proc/driver/nvidia/version) 

NVRM version: NVIDIA UNIX x86 Kernel Module 260.19.21 Thu Nov 4 

20:24:24 PDT 2010 

GCC version:  gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5) 

9.1.4 GPU Specification 

Device 0: "GeForce GTX 460" 

  CUDA Driver Version:                           3.20 

  CUDA Runtime Version:                          3.20 

  CUDA Capability Major/Minor version number:    2.1 

  Total amount of global memory:                 1072889856 bytes 

  Multiprocessors x Cores/MP = Cores:            7 (MP) x 48 (Cores/MP) 

= 336 (Cores) 

  Total amount of constant memory:               65536 bytes 

  Total amount of shared memory per block:       49152 bytes 

  Total number of registers available per block: 32768 

  Warp size:                                     32 

  Maximum number of threads per block:           1024 

  Maximum sizes of each dimension of a block:    1024 x 1024 x 64 

  Maximum sizes of each dimension of a grid:     65535 x 65535 x 1 

  Maximum memory pitch:                          2147483647 bytes 

  Texture alignment:                             512 bytes 

  Clock rate:                                    1.40 GHz 

  Concurrent copy and execution:                 Yes 

  Run time limit on kernels:                     Yes 

  Integrated:                                    No 

  Support host page-locked memory mapping:       Yes 

  Compute mode:                                  Default (multiple host 

threads can use this device simultaneously) 

  Concurrent kernel execution:                   Yes 

  Device has ECC support enabled:                No 

  Device is using TCC driver mode:               No 
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9.2 Test System2 

9.2.1 CPU Specification (cat /proc/cpuinfo) 

Model name : Intel(R) Xeon(R) CPU X5670 @ 2.93GHz 

Stepping : 2 

Cache size : 12288 KB 

9.2.2 Operating System (cat /etc/*release) 

USE Linux Enterprise Desktop 11 (x86_64) 

VERSION = 11 

PATCHLEVEL = 1 

SGI Foundation Software 2SP1, Build 701r3.sles11-1005252113 

SUSE Linux Enterprise Desktop 11 (x86_64) 

VERSION = 11 

PATCHLEVEL = 1 

9.2.3 GPU Driver (cat /proc/driver/nvidia/version) 

NVRM version: NVIDIA UNIX x86_64 Kernel Module 256.35 Wed Jun 16 

18:42:44 PDT 2010 

GCC version:  gcc version 4.3.4 [gcc-4_3-branch revision 152973] (SUSE 

Linux) 

9.2.4 GPU Specification 

Device 0: "Tesla C2050" 

  CUDA Driver Version:                           3.10 

  CUDA Runtime Version:                          3.10 

  CUDA Capability Major revision number:         2 

  CUDA Capability Minor revision number:         0 

  Total amount of global memory:                 2817982464 bytes 

  Number of multiprocessors:                     14 

  Number of cores:                               448 

  Total amount of constant memory:               65536 bytes 

  Total amount of shared memory per block:       49152 bytes 

  Total number of registers available per block: 32768 

  Warp size:                                     32 

  Maximum number of threads per block:           1024 

  Maximum sizes of each dimension of a block:    1024 x 1024 x 64 

  Maximum sizes of each dimension of a grid:     65535 x 65535 x 1 

  Maximum memory pitch:                          2147483647 bytes 

  Texture alignment:                             512 bytes 

  Clock rate:                                    1.15 GHz 

  Concurrent copy and execution:                 Yes 

  Run time limit on kernels:                     No 

  Integrated:                                    No 

  Support host page-locked memory mapping:       Yes 

  Compute mode:                                  Default (multiple host 

threads can use this device simultaneously) 

  Concurrent kernel execution:                   Yes 

  Device has ECC support enabled:                Yes 

 


