

Belle II on NEMO: Flavour and Dark Matter Physics

Patrick Ecker, Matthias J. Schnepf | 25. September 2024

www.kit.edu

Particle Physics

- the Standard Model (SM) of particle physics
 - world is built of elementary particles
 - mesons: made of quarks-antiquark pair
 - baryons: made of three quarks, e.g., proton, neutron
 - describes the forces and interactions of particles
 - complete since the discovery of the Higgs Boson ("God Particle")
- some parameters need to be measured, e.g. masses

https://home.cern/science/physics/standard-model

Open Questions

NASA picture of the day 26.7.24

- Where is the antimatter?
- What is the invisible mass in the universe (dark matter)?
- Is there a universal force?

Belle II

- Belle II particle physics experiment at SuperKEKB accelerator in Japan near Tokyo
- collision of electrons and positrons to create other particles
- clean collision events
- B-factory: creates mostly B mesons
- worldwide collaboration
 - more than 1000 people in 28 countries
 - KIT is in the top 10 of the biggest groups
- will collect 50 times more data than Belle

Physics Analysis Workflow

- collaboration
 - record collision events
 - simulate events
 - reconstruct recorded and simulated events
 - study detector and machine effects
 - mostly done on worldwide distributed computing infrastructure, so-called Grid (common resources)

analyst

- select events necessary for the analysis
- analyze data, mainly compare distributions via statistical methods
- mostly done on local/institute resources, e.g., NEMO (premium resources)

Physics Analysis Workflow

collaboration

- record collision events
- simulate events
- reconstruct recorded and simulated events
- study detector and machine effects
- mostly done on worldwide distributed computing infrastructure, so-called Grid (common resources)
- analyst
 - select events necessary for the analysis
 - analyze data, mainly compare distributions via statistical methods
 - mostly done on local/institute resources, e.g., NEMO (premium resources)

cds.cern.ch ATLAS-PHOTO-2012-001

Physics Analysis Workflow

- collaboration
 - record collision events
 - simulate events
 - reconstruct recorded and simulated events
 - study detector and machine effects
 - mostly done on worldwide distributed computing infrastructure, so-called Grid (common resources)
- analyst
 - select events necessary for the analysis
 - analyze data, mainly compare distributions via statistical methods
 - mostly done on local/institute resources, e.g., NEMO (premium resources)

cds.cern.ch ATLAS-PHOTO-2012-001

Flavor Physics at Belle II

- flavor physics: study quarks and leptons and their bounding states
- B mesons are ideal to study flavor physics
- B meson
 - easy to detect
 - several hundred decays
- precise measurement of the decays is key to understand matter-antimatter asymmetry

Citation: S. Navas et al.	(Particle Data Group), Phys	. Rev. D 110, 090000 (2024)
---------------------------	-----------------------------	-----------------------------

		Scale factor/	ρ
8 ⁰ DECAY MODES	Fraction (f ₁ /f)	Confidence level	(MeV/c)
$\ell^+ \nu_\ell X$	[a] (10.33± 0.2	3) %	-
e ⁺ v _e X _c	(10.1 ± 0.4)	-)%	-
$\ell^+ \nu_\ell X_\mu$	[a] (1.51± 0.1	$(9) \times 10^{-3}$	-
$D\ell^+ \nu_{\chi} X$	[a] (9.1 ± 0.8	1)%	-
$D^-\ell^+\nu_\ell$	[a] (2.12± 0.0	(6) %	2309
$D^-\tau^+\nu_{\tau}$	(9.9 ± 2.1	$) \times 10^{-3}$	1909
$D^{*}(2010)^{-}\ell^{+}\nu_{f}$	[a] (4.90± 0.1	2)%	2257
$D^{*}(2010)^{-}\tau^{+}\nu_{\tau}$	(1.45± 0.1	0)% S=1.3	1838
$\overline{D}^{(*)} n \pi \ell^+ w (n \ge 1)$	[a] (2.3 ± 0.5	0.5	-
$\overline{D}^{0}\pi^{-}\ell^{+}\nu_{\ell}$	[a] (3.64± 0.2	$(0) \times 10^{-3}$	2308
$D_{*}^{*}(2300)^{-}\ell^{+}\nu_{2}$	[a] < 4.4	× 10-4 CL=90%	-
0* 00=-			
0*(2460)-(+)	[-] (141+ 01	n) - 10-3 E-17	2068
D ₂ (2460) 2 · D ₂ .	[a] (1.41± 0.2	0)×10 - 5=1.7	2005
$D_2 \rightarrow D^{\alpha}\pi^{-}$			
$D^{*0}\pi^{-}\ell^{+}\nu_{\ell}$	[a] (5.44± 0.2	8) × 10 ⁻³	2256
$D_1(2420)^- \ell^+ \nu_\ell, D_1^- \rightarrow$	[a] (2.85± 0.2	$(5) \times 10^{-3}$	-
D*0 7-			
$D_1(2420)^- \ell^+ \nu_\ell, D_1^- \rightarrow$	[a] (1.02± 0.1	$(6) \times 10^{-3}$	-
$D^{-}\pi^{+}\pi^{-}$			
$D'_1(2430)^{-\ell+}\nu_{\ell}, D'_1^{-} \rightarrow$	[a] (2.5 ± 0.6) × 10 ⁻³	-
D*0 π-			
$D_2^*(2460)^- \ell^+ \nu_\ell, D_2^{*-} \rightarrow$	[a] (6.6 ± 1.1) × 10 ⁻⁴	2065
D*0 7-			
$D^{-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	[a] (1.45± 0.2	$(2) \times 10^{-3}$	2299
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{2}$	[a] (5.1 ± 2.1) × 10 ⁻⁴	2247
$\rho^- \ell^+ \nu_\ell$	[a] (2.94± 0.2	1) × 10 ⁻⁴	2583
$\pi^- \ell^+ \nu_\ell$	[a] (1.50± 0.0	(6) × 10 ⁻⁴	2638
$\pi - \tau + \nu_{\tau}$	< 2.5	× 10 ⁻⁴ CL=90%	2339
	and and an and an		
K± Y	(78 + 8	14	-
DR Y	(81 + 18		
70 -	(_
0+ X	(47.4 ± 2.6	1.).7% Al di anti	-
D-X	< 3.9	7, CL::907,	-
DX	(30.9 ± 3.3	1.7.9	
$D_{g}^{+}X$	(10.3 + 2.1)%	-
D_ X	< 2.6	% CL=90%	-
A [‡] Y	2	N (1-00k)	-
··e ··			
https://pdg.lbl.gov F	Page 32	Created: 5/31/202	4 10:13

Dark Matter at Belle II

- some theory models predict a "dark Higgs" (Higgs boson that does not interact much with "visible" particles)
- electron-positron collision results in dark matter particles and a dark Higgs boson, which decay in SM particles
- SM particles can be reconstructed to determine their daughter particles' position, momentum, and energy

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods
- Dark Higgs events can be simulated
 - seven parameters of the dark Higgs process are not defined by models
 - more than 35000 different parameter combinations were simulated

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods
- Dark Higgs events can be simulated
 - seven parameters of the dark Higgs process are not defined by models
 - more than 35000 different parameter combinations were simulated

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods
- Dark Higgs events can be simulated
 - seven parameters of the dark Higgs process are not defined by models
 - more than 35000 different parameter combinations were simulated

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods
- Dark Higgs events can be simulated
 - seven parameters of the dark Higgs process are not defined by models
 - more than 35000 different parameter combinations were simulated

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods
- Dark Higgs events can be simulated
 - seven parameters of the dark Higgs process are not defined by models
 - more than 35000 different parameter combinations were simulated
- about 100 TB storage space and 1.2mil CPUh needed

Search for Dark Matter at Belle II

- PhD Thesis of Patrick Ecker (KIT)
- compare distributions of recorded events with simulated SM and dark Higgs events via statistical methods
- Dark Higgs events can be simulated
 - seven parameters of the dark Higgs process are not defined by models
 - more than 35000 different parameter combinations were simulated
- about 100 TB storage space and 1.2mil CPUh needed
- result
 - will be published
 - discovery of dark Higgs or (more likely) new exclusion limits on dark Higgs

Dark Higgs bosons at colliders, https://doi.org/10.1016/j.ppnp.2024.104105

Computing Infrastructure

- users submit jobs to Overlay Batch System (OBS)
- different resources are (dynamically) integrated into the OBS (several thousand cores)
- resources provide a homogeneous software environment via container
- Grid storage
 - accessible on all resources via Grid protocols
 - 250 TB for KIT Belle II group

b2luigi

- Analyses contain complex workflows and should be reproducible
- Workflow Management Tool Luigi from Spotify
- b2luigi add Grid and Batch System support to Luigi

🗋 Luigi Task Visualiser 🗙 🔚	
🗢 🔶 😂 🗋 localhost:8082/static/visualiser/index.html#CreateAudioStr	reamHistoryAnonym(test=False, date=2015-06-12) గ్లి
Luigi Task Status	
Taskid(param1=val1,param2=val2) Show task details s	Show Upstream Dependencies Visualisation Type D3 SVG
CreateAudioStreamHistoryAnonym(test=False, date=2015-06-12) Dependency Graph	
Alad Anone Databa Anone Databa Anone Databaa Databaa Anone Databaa Databaaa Databaaa Databaaa Databaaaa Databaaaa Databaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	anym
	n ferdalaster min belander og fer af kalaster en som belander og fer af fer at som belander og som belander og m
pointing, CreateReportingUsage proting, CreateReportingUsage	age Opporting CreateReportingUsage

Conclusion and Outlook

https://www.belle2.org/research/luminosity/

- Belle II studies the fundamental principles of the universe
- Belle II at KIT does several analyses on different topics, e.g., flavor physics, and dark matter search
- NEMO helped a lot to analyze data and produce simulations
- Happy to use NEMO 2 for further analysis with more data

